OPTIMAL SCHEDULING FOR THE REPLACEMENT OF COMPONENTS SUBJECT TO
TECHNOLOGICAL OBSOLE SCENCE

MERCIER Sophie®—LABEAU Pierre-Etienne'

@ Univesité de Marne-la-Vall ée
Laboratoire d'Anayse @ de Mathématiques Appliqguées (CNRS - UMR 8050
Béatiment Copernic - Cité Descartes
5 boudevard Descartes - Champs sur Marne
F-77454Marne-la-Vall ée- France
Tel: (+33) 1 60 95 75 40 Fax: (+33) 1 60 95 75 45 merciers@math.unv-mlv.fr

® Université Libre de Bruxel es
Servicede Métrologie Nucléaire
Avenue F.D. Roosevelt, 50 (CP16584)
B-1050Bruxelles - Belgium
Tel: (+32) 2 6502060 Fax: (+32) 2 6504534 pelabeau@ulb.ac.be

Abstract : Most maintenance palicies assume that failed or used comporents are replaced with identica
units. Actually, such a hypathesis negleds the possble obsolescence of the comporents. When a new,
more reliable and less consuming techndogy becomes available, a dedsion hes to be made & for the
replacement strategy to be used: old-type cmporents can al be immediately replaced, o new-type units
can be introduced progressvely, each time a orrective adion is undertaken. Partly corrective, partly
preventive palicies can also be envisioned.

Thiswork tacklesthisisauein the cae of aseries g/stem. It provides, under given modeling assumptions,
the fully analyticd expresson d the expeded total cost induced by each passble strategy, as well as the
optimal replacement padlicy, asafunction d the problem parameters.

Keywords: techndogicd obsolescence, preventive maintenance, cost-based ogimization.

1 —Introduction

Many papers devoted to the optimization d preventive or corrective maintenance palicies, assume that
failed or used comporents are dways replaced by identical items. Actually, most comporents are subject
to techndogica obsolescence new comporents may appea on the market with the same (or even higher)
cgpabiliti es but smaller fail ure rates and/or lower energy consumption. Managers then face an important
question: how to optimally schedule the replacement of old-type units by new-type ones? Is it worth
preventively repladng still working, old-type comporents by new-type ones? This question was
considered in [Borgonovoet al.] in the cae of one single comporent subjed to aging, and which can be
either periodically maintained or replaced by atechndogicdly more alvanced urit.

The present work investigates thisisaue in the cae of a system of componrents. It focuses on the particular
case of a series system made of nidentical and independent comporents with constant fail ure rates, which
may be instantaneously replacaed by new-type ones. The latter are asumed (withou any loss of
generality) to become available & time 0. No preventive replacement is performed at the beginning; a
new-type cmmponent isintroduced in the system only to replace an dd-type unit that has fail ed. This goes
on urtil K - 1 corredive actions of this kind have been performed (1 < K < n). When the K-th old-type
unit fails, al the remaining old-type units (the failed urit and the other ones) are preventively replaced
with new-type ones, which leads to the smultaneous replacement of n - K + 1 old-type comporents. This
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strategy will be referred to as strategy K. Note that strategy n corresponds to a purely corrective gproach,
sinceit simply consists in repladng failed unts withou any preventive replacement. As for strategy 1, all
units are dhanged as onas one has fail ed. Besides, we dso consider the so-cdled "strategy 0", where dl
the old-type units are replaced with new-type ones as $on as they appear on the market, i.e. at time 0.
The objedive of our study isto look for the optimal strategy Koy, Which minimizes a given cost function,
which is defined later on, with respect to acertain missontime, say t.

Such a problem was adually propounckd and studied in [Elmakis et a.]. Their work takes into accourt
different costs for preventive and corredive maintenance, as well as a rate of discourt. Yet the treagment
they perform relies on some asumptions, which are not always acceptable. First, the computation d the
cost functionis made under alarge missontime assumption. In ather words, they assume that a sufficient
timeinterval has elapsed and that all replacementsto be dorein strategy K have dready taken place This
prevents the manager from getting a genuine estimation d the st induced by a given strategy on short
and medium misgon times, espedally for large values of K. Seandy, noeconamicd dependencein the
replacement costs is accourted for, i.e. the @mst of performing m simultaneous replacements is taken
propational to m. Moreover, different approximations are made dl aong the cdculation, such as
substituting the randam sojourn time of the system in a state with its mean, instead of using its full
distribution. Finally, the optimal K is numericadly computed.

In this paper, the assumption onthe misgon time is relaxed, while the exaad distributions of the time to
the next fallure ae used instead of their meansin al analytical developments. The optimal value of K is
anayticdly provided, depending on the misgon time and onthe problem parameters. Moreover, an
eoonamicd dependence for the replacanents has been introduced: eadh solicitation d the repair team
entail s a fixed cost, no matter what type and number of adions must be adieved. Furthermore, the rate of
energy consumption d the new comporentsis taken small er than that of the old-type ones.

This paper is organized as follows. Section 2 pesents the modeling assumptions of the problem and the
notations used. Important preliminary results are then gathered in Sedion 3, kefore giving in Sedion 4the
expresson d the expeded total cost entailed by the gplicaion d each pcssble strategy. The next
sedion deds with the determination d the optimal replacement padlicy, and is followed in Section 6 ty
some numerica cases illustrating the results. Due to the lack of space ony milestones of the
demonstrations are given here. The proofs of the different results can be foundin [Mercier, Labeai] and
can be asked to the authors. Concluding remarks and perspectives close the paper.

2 —Asumptions - Notations

Let 1, and 1, be the fail ure rates of the old- and rew-type componrents, respedively. We recdl that both
failure rates are assumed to be @nstant, i.e. aging is not taken into accourt for bath kinds of units.

ForO<K<n,let E(CK ([Ot])) be the expeded cost of exploitation d the system oninterval [0,t] when

strategy K is used. As already noted, a rate of discourt, say iy, is taken into acournt and al the asts are
computed at time 0.

The following costs are cnsidered:
® Replacament costs:

- replacement of asingle componrent in case of failure & timeu suchthat 0 <u <«
(r + c)(1 +iy)", wherer denotes the st entail ed by the solicitation o the maintenance team and
¢t isthe st induced by the fail ure of a cmponrent, and hence by the unavail abili ty of the system,

- simultaneous preventive replacements of n comporents at time O: r + n ¢,, where ¢, is the unit
cost per preventive replaceanent,

- smultaneous preventive replacenents of | comporents and corredive replacanent of one
comporent at timeusuchthat 0<u <z (r+jco+ c)(1 +ir) ™,

® Energy consumption costs:
- energy consumption d j new-type units on [u, u+dul: jy (1 + i;)"du, where n is the energy
consumption rate of the new-type comporents in monetary values. This leads to the foll owing cost
on|ty, ty] (includedin [0, t]):
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- energy consumption d j old-type unitson|ty, to]:
. ntv ( . \—t . \—t )
—— \1+i, ) T -Q+i, ) ?
Jln(1+ir)( r) ( r)
withv > 0.
Note that the energy consumption rate of the new-type comporents (1) is assumed to be lower than
for the old-type ones (n + v).

When strategy n isused (i.e. no peventive replacement is undertaken), wedenoteby 0<T; < T < ... <
Ththe fail ure times of the old-type units. When strategy K is used (with K > 2), only failed dd-type units
are replaced at times Ty, Ty, ... Tk.1, whereas new-type comporents are substituted to al then - K + 1
remaining old-type units at time Tk.

Finaly, we will use the foll owing notations:

r+c
a= f ; hza%l—/\—zgl
Cp /\1

b:hcp+i : a:n)\1+ln(1+|r)
Al n/\l

3 —Preliminary Results

We summarize in this s2dion some key results and definitions, which are nealed in sedion 4to cdculate
the total expeded costs for the different possble strategies.

Lemma 1. Tk admits fx andFg for probahlity density and cumulative distribution functions, respedivey,
with
f (t)=A,. KCKre lrDnt (1_ e—Alt)K-ﬂ o) K=1..n
and
FK+1(t) =F, (t)_Cr e (Kt (1_ g Mt )K . (t) ,K=1..n-1
Proof. The first result is easy to prove recursively using Tk = (Tk - Tk.1) + ...+ (T2 - T1) + Ty and the fad

that T+, - T; follows an exporential distribution with rate (n - i)44, i=0...n-1 (with Ty = 0). An integration
by parts gives the secondresult. m
Let I', B, and I be the gamma, beta and incomplete beta functions, respectively. We recall that:

+oo _

F(v):‘[O e *xV " 1dx

B(v,w) = J’(;Luv_l(l— u)"du

(v, w) = B(\j:W)I(;(UV_l(l—U)W_l du
forall vyw>0and 0<x<1.
Besides, we will use function R defined as:

R(t,v,w)= Alj'(;e_’\l"” (1— e~ Mu )W_l du
foral t>0,v,w>0.
Lemma 2. E(I{TK <« (@+ip ) K )z KCKX R(t,na -K +1,K)
where CX isthe binomial coefficient.

Proof. Due to the density function d Tk (see Lemma 1), this result is a dired consequence of the
definitiond R m



Lemma 3.Let 7, U1, Uy, . U;, ... berandam variables following exporential distributions with parameters
' for T and u for all U;, al i ndependent with each ather andindependent of Tx. Then:

H"‘OO ) —(U +U,+ +U')H 1_(1+i )—t
E I 1 2 T... _ - W*)
%Zl{UlJFUZhJFUj<t}(1+lr) | E : In(1+i,)
+ 00
EHZ {TK +U1+U2+---+Uj<t}(1+ir)_(TK +U1+U2+...+Uj)§
=1 0
—uln(1+lr) 1 r , ,
- +w| ' @;ri)—ﬁK+U1+u2+_ﬁuj)H
Elizl {TK tU+Uop +.+U; <inf (thK +T)} r ]
_Hu.+|n(1+ir)§?(t,an K+1,K)-e M (1+i,) RE’n K +1 )\,K%

Element of proof. Those results (a littl e more technicd) may be proved using the fact that U; + U, + ...
+ U; hasan Erlang distribution with parametersj and . m

4 —The st function

We here calculate the expeded cost E(CK ([Ot])) induced by the applicaion d strategy K on[0t]. We

start (Theorem 1) by expressng it in the case K = 0, what can be quite easily achieved based onLemma
3. However, the gproach adopted for strategy O is far from trivial when applied to strategy K, for K > 1,
due to the change of compasition d the system at each failure and at time Tx. As the composition d the
system is the same before time Tk and after time Tk.1, no matter what strategy between K or K+1 is used,
the analyticd work isthen fadlit ated by calculating first the st difference between strategies K and K+1
(Lemma 4), and then by summing these @st differences to oltain the &solute expeded cost for each
possble strategy K (Theorem 2).

Theorem 1.

_(:I-"'ir)_t

ECo(0.t])=ncy +r + n(an/\z +’7)1 In(1+i,)

Proof. When strategy O is used, the st on [0, t] is due to the preventive replacement of n components at
time 0, to the crrective replacements of the new-type units (among n) that fail on[0, t] and to the energy
consumption d the new-type unitson [0, t]. Taking 4 = n 1> in Lemma 3, symbals Uy, Uy, . U;, ... now
represent the time intervals between successve failureson [0, t]. We get:

E(C,(o.t])=nc, +r
o H{U1+U2+...+Ujst<U1+U2+...+UJ+1} EH

+ac E
p £ E((l_l_ ir)_U1 + (1+ ir)—(U1+U2) + 4 (1+ ir )—(U1+U2+...+UJ))EH
oo+ )
In(L+i, )
—_ = i YU tUp+ AU :I'_(:l‘-'-ir)_t
- nCP tr+ anE A I{U1+U2+...+Uj<t}(1+ Ir) (U " v )E'HWW

which, after reduction, givesthe result, using Lemma 3. m
Lemma4.For 1<K <n-1:
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A
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"B (- K)K CKRt, nar - K +1,K) E

Proof. No matter what strategy between K or K+1 is used, the mixture of both types of comporentsin the
system is the same before time Tx. Consequently, when t < Tk, the difference of costs between these two
strategies is null and we only have to consider the case Tk < ¢. Besides, the cmmpasition d the system is
the same dter time Tk+1 too, so that we only have to cdculate the difference of costs on [Tk ,
min(t,Tk+1)], which leals to split the cae Tk < between Ty <t < Tk+1 and Tk+1 <z. We now get:

E(Ck+1(0.t) -k [0.t]) = E((Ck +2 [Tk t) - Sk (T DV st<tisa})
+ E((CK a1 (T Teaad)-C [T Tewa))) {TK+1st})

and have to compute bath of those terms. Actually, we only give hints here on how to ded with the first
term of this expresson, dieto the reduced size of this paper.

When Tx <t < Tx+1, the differenceof costs between strategies K and K+1 on[Tk , t] isdueto:

@)

- the n - K preventive replacements at time Tk in case of strategy K (to be alded to the
corrective replacement, which iscommonto bah strategies),

- the mrredive replacements on [Tk, t], because of failures among the n (respectively K) new-
type comporents for strategy K (respedively K + 1),

- thedifferencein energy consumption on[ T, t] between n - K old-type components in strategy
K + 1, andthe mrrespondng n —K new-type unitsin strategy K.

Now, taking 4 = nl, in Lemma 3, let Uy, Uy, U, ... represent the time intervals between successve
failures among n new-type comporents. In the same way, taking u = K/, let U'y, U's,  U'j, ... represent
the same timeintervals for K new-type comporents. We now get:

E((CK ) ([TK 't]) - Cy ([TK ’t]))l { St<TK+1})

- \T,
(- K)o El1+1,) ™ 1y )
[T U140 44U <U<T HUL4U 440 )

—ac,E1+i, ) <t )
U r) ZE((1+I ) Ui 4 (1+ir)—(U1+Uz) ++ (1+| u1+u2+ AU, E{TK t<Te 1} [

TK+U 1+Up+.4U t<TK+Ui+U'2+...+U'j+1}

1+| )U1 +(1+i,)_(ui+U'2) +...+(1+| vy E{TK«TM}E

s )E(((1+.) ~0+1,) V)

which reduces to:

+ac, E 1+|

( K+1([TK ’t] -C ([TK ’t])) {TK<t<TK+1})

=(n- ET_C % 141 )™ N e, 1})

(T +U, 40, +.4U )
- anE I {TK +U1+U2+...+Ujst} (1+ I ) ‘ ’ I{t<TK+1}

)=

oo

: —(T +u'+u'+...+u'-)
+anE I{TK+ui+u'2+...+u'jst}(1+Ir) e Jl{t<TK+1}

1) (B0 Feal)

+(n_K)In(1+|

A similar expresson can be written for the secondterm of expresson (1).



Adding both terms and wsing Lemmas 1, 2 and 3 then leads, after some tedious computations, to the
expeded result. m
Theorem 2. For 1<K <n-1:
_ 1-(1+ip )"
E(Ck (0.t]) = n(acp)\z +n)— +nc, Chgt(n-K)R(t.na - K +1,K)
In(1+i,)
K ,
+ 3 (ep+b)iciREna - j+1])
j=1

1- e (nla-1)+1)st
nla-1)+1

c(caloa)=nlecp 1) BN v, o)

Proof. We begin with computing E(C; ([0,t])) in the same way as E(Cq ([0,t])) (with the help of Lemma 2
K —_
and 3. We then write E(Cy (0,t])) = E(C,(0,t])+ ZJ(E(C i+1(0)-€lc; (0.1])) for 1<K <nand

conclude with Lemma 4.
In the cae K = n, the expresson can be mmpacted to the formula mentioned abowve, using a binomia
expansion, after substituting Rwith its definition. m

5 —The optimal strategy

This sdion povides the value of Koy, as afunction d the misgon time and d the problem parameters.
The results are summed upin Theorem 3 below.

In the first case of a single cmporent, a @ndtion is given on the problem parameters, under which
corrective replacement of the comporent is always optimal (Kopt 1), nomatter what the missontimeis.
Under the oppaite condtion, it is siown that, if the misson time t is greaer than some daracteristic
timety, it is then worthy to preventively replace the amporent at time 0 (Ko = 0). If the missontimeis
smaller than t;, then the best pdlicy isto perform only corredive replacements.

In the multi-component casg, it is rown that only threestrategies may be optimal, i.e. strategies 0, 1 and
n; it is quite noticedle that strategies 2, 3, ... o n -1 never are optimal. More precisely, asin the single-
comporent case, under some a@ndtion onthe problem parameters, it is shown that a purely corredive
replacement padlicy is optimal, no matter what the misson time is. Under the oppaite condtion, if the
misgontimetislarge (see Theorem 3 just below for detail s), the best solution is to preventively replace
all comporents very quickly, ether at time O (strategy 0) or at the first failure of one comporent of the
system (strategy 1). Here again, if the misgon time is gnall, then the best is dill to perform only
corrective replacements, as intuitively expeded.

Theorem 3.
Forn=1:
1. Ifbsar +(a-1)cp :Kop= 1
1 H +b E
2. Ifb -1l)c,: letty = In
>ar +(a -1)ep 17 \a H-(a- 1)cp—arE

For t<t;: Kopt= 1 andfor t >t1: Kopr=0

Forn>2:
1. 1fbs(a-1)ncy :Kop=n
2. 1f b>(a -1)ncy : let to bethe single t such that



~(n(or —1)+2)A;t
nla-1)+1

_(ncp +b) _e;na/\lt 0

( b\le

a. Ifbsar+(a—1)ncp:fortst0:Kopt:nandfort>t0:Kopt: 1.
b. Ifb>ar+(a—1)ncp:
b b
H ncp+ andt, = 1 H ( +)
1a Ba na -1, —ar | n(a - 1)+1)\1 Ehb—r— (ncp+r)(a DE
. If t; <ty (or t; <tg): for t<ty: Kopt— n andfor t >t,: Ko = 0.

i If t, 2ty (or tg 2tg): for t<ty: Kop= n,for tg <t <ty: Kox= 1 andfor t >t;:

Let t; =

Elements of proof. We first show that the best strategy among 1, 2, ...and nis drategy 1 or n. As a
consequence, the optimal strategy has to be searched among 0, 1 and n. We then compare those three
strategies two by two and finaly conclude. The proof is quite lengthy and can be foundin [Mercier,
Labeal]. m

6 —Examples

All the computations of this dion have been made with Matlab. We recdl that the incomplete beta
function, the gamma function and its logarithm (gammaln) are implemented in Matlab. Expressons with
products or ratios of gamma functions have been computed with gammaln instead of gammato prevent
overflow (using gamma(x) = exp(gammaln(x))).

For each example, two different time windows have been provided for the same figure.

6.1 —Example 1:
Let

n=10,cf =1,¢, =05,r =1,A; =01,A, =005,i, =00257 =01,V =002

We derive:
b-(a - 1)nc, 005765>0

b-ar - (a - 1)nc, 0-0.4482<0
This stuation corresponds to the cae 2.a. of theorem 3.

20 T T T T T T T T T 0

Figures1 and 2 E(CK ([Ot])) with resped of t for K fromOto 10,Example 1.

The time evolution d the expeded cost asociated with ead strategy is presented in Figures 1 and 2.We
ched that Koy = 10for t <ty 06.9101, and Ko = 1for t > t.

6.2 —Example 2:
Let




n=100 cs =0.05¢c, =00001r =0.0124; =00015

A, =00011i, =0025,7 =000001v =0000005
We derive:
b-(a - 1)nc, 00.0181>0

b-ar - (a -1)nc, 00.0041>0
tg 06.0534<t; 011.2853 (and tg <t, [18.204)
Case 2.bii. of theorem 3 hasthus to be onsidered thistime.
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Figures 3 and 4 E(C, ([0,t])) with respect of t for K = 0, 1, 10, 20,.. 100,Example 2.

We can check in Figures 3 and 4that for t<ty: Koy = 100, for tg <t<t;: Koy = 1 andfor t>ty:
KOpt.:.O.

7 —Conclusions

This paper has provided the analytical treament of a simple cae of an important indwstrial isdue, i.e. the
optimization d the replacement strategy of comporents sibjed to tedindogica obsolescence Analyticd
expressons could be obtained assuming a.0. a series system, no aging of both dd-type and rew-type
units, no common cause failures, instantaneous replacaments and a full compatibility of the new
comporents.

Future work shoud give dlowance to more redistic situations in which these hypotheses are relaxed.
Isaues to be tadckled include a.0. problems of compatibility between bah types of comporents, common
cause failures, more complex system structures, and so on. This implies onto give up the analyticd
work and to resort to Monte Carlo simulation. Y et these analytical solutions for the particular case given
in this paper will turn ou to be useful in vali dating the simulation approad.
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