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Abstract:

A continuously monitored system is considered, that gradually and stochastically deteriorates ac-
cording to a bivariate non decreasing Lévy process. The system is considered as failed as soon as
the bivariate indicator enters a failure region L. The point of the paper is to study a preventive
maintenance policy for the system, which aims at reducing a cost function on some infinite horizon
time.

A first point for the study is to propose a model for the bivariate increasing deterioration. Classical
univariate (cumulative) wear processes are Gamma and compound Poisson processes, which both are
univariate subordinators (increasing Lévy processes). We hence propose to use a bivariate subordinator
as bivariate degradation indicator, with univariate subordinators as marginal processes.

Considering a system with deterioration modelled by a bivariate subordinator and failure region L
which is an upper set. It ensures that once the system fails, it remains in failure state without repair.
We add the following assumptions: the system is continuously monitored and at failure, a repair
team is immediately called, which arrives after a delay τ . A perfect and instantaneous repair is next
performed in the failure time plus τ . The future evolution of the system after time τ is an exact and
independent stochastic replica of the initial system evolution. A cost function is then used to measure
the system performance on an infinite horizon time, which includes some replacement cost and unitary
down-time cost.

A preventive maintenance (PM) policy is next proposed for the system, where the repair team is now
called when the system enters a preventive region M (an upper set which includes L).

The points of the study are: first, compute the asymptotic cost of the system submitted to this PM
policy; study the influence of the different PM parameters on the cost function; study the influence of
the dependence between the marginal wear indicators and of the failure and PM regions on the cost
function.

Keywords: Multivariate Lévy processes; dependent wear indicators; optimal replacement; renewal
theory.

1. INTRODUCTION

In case of a system submitted to an accumulative random damage, classical stochastic models are
compound Poisson processes and Gamma processes, which both are increasing Lévy processes,see [1],
[9] or [10] e.g. Such classical wear models typically are univariate. However, the deterioration level
of a system cannot always be synthetized into one single indicator and several indicators may be
necessary, see [6] for an industrial example. In that case, a multivariate wear model must be used to
account for the dependence between the different univariate indicators of the system. Another context
where multivariate wear models are required is the case of different systems submitted to common
stresses, which make their wear indicators dependent. Multivariate increasing stochastic models hence
are of interest in different contexts.We here propose to use multivariate increasing Lévy processes (or
multivariate subordinators) as wear processes.



Under such an assumption, a system is considered, subject to continuous monitoring. It is considered
as failed as soon as its bivariate deterioration level has reached a failure zone L. Once in L, the system
cannot leave L without being repaired. This property is translated through the assumption that L
is an upper set. As in [3], when the system enters L, a signal is immediately sent to a repair team.
It takes some delay τ for the repair team to arrive. The repair duration is short compared to the
delay τ and it is hence considered as instantaneous (and perfect). To shorten the system down-time,
a preventive maintenance (PM) policy is proposed, where the signal is sent to the repair team as soon
as the deterioration level reaches a PM zone M, larger than L.

The paper is organized as follows: in Section 2, the model is presented, both for the initial (without
maintenance) and preventively maintained system. Section 3 is devoted to theoretical developments
whereas Section 4 presents some numerical experiments. We finally conclude in Section 5.

2. THE MODEL

2.1. The initial system

A system is considered with deterioration level measured by a bivariate non decreasing process(
Xt =

(
X

(1)
t , X

(2)
t

))
t≥0

. The process (Xt)t≥0 is assumed to be a bivariate subordinator with null

drift, namely a pure jump process. To avoid trivialities, the process (Xt)t≥0 is also assumed to be

non zero: P
(
X

(1)
t > 0, X

(2)
t > 0

)
> 0. Such assumptions will be referred to as assumption H. For

i = 1, 2, the marginal process
(
X

(i)
t

)
t≥0

is known to be an univariate subordinator (with null drift).

The system is continuously and perfectly monitored. It is considered as failed as soon as its bivariate
deterioration level reaches a failure zone L ⊂ R2

+. The failure time of the unmaintained system hence
is:

σL = inf {t ≥ 0|Xt ∈ L} .

As explained in the introduction, L is assumed to be a closed and non empty upper set, namely such
that for all (x1, x2) ∈ L and all (y1, y2) ∈ R2

+, if (y1, y2) ≥ (x1, x2), then (y1, y2) ∈ L. As (Xt)t≥0 is
non decreasing, this means that once failed, the system cannot leave L any more and remains failed
(until it is repaired). For illustrative purpose, three different shapes are envisioned for L. For the first
two shapes, the system may be considered as composed of two different units and for i = 1, 2, the

marginal process
(
X

(i)
t

)
t≥0

stands for the deterioration level of the i-th unit. Setting Li > 0 to be

the failure threshold for the i-th unit, the corresponding univariate failure time is

σ
(i)
Li

= inf
{
t ≥ 0|X(i)

t ≥ Li
}
.

Two classical structures are then envisioned for the two-units system, which leads to the following
first two cases:

Case 1 The two units are set up into series. The time-to-failure of the whole system then is:

min
(
σ
(1)
L1
, σ

(2)
L2

)
= inf

{
t ≥ 0|X(1)

t ≥ L1 or X
(2)
t ≥ L2

}
= inf {t ≥ 0|Xt /∈ [0, L1[×[0, L2[}
= σL,

with L = R2
+\[0, L1[×[0, L2[.

Case 2 The two units are set up into parallel. The time-to-failure of the whole system is max
(
σ
(1)
L1
, σ

(2)
L2

)
=

σL, with L = [L1,∞[×[L2,∞[.



Case 3 Both components of (Xt)t≥0 stand for different indicators of a single system and the system
time to failure is

inf
{
t ≥ 0|X(1)

t +X
(2)
t ≥ L

}
= σL,

with L =
{

(x1, x2) ∈ R2
+|x1 + x2 ≥ L

}
.

Such three shapes are plotted in Figure 1.
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Figure 1: Examples of failure regions

Once the system is failed, a signal is sent to the repair team and an instantaneous repair takes place
at time σL + τ , where τ is the deterministic time required by the repair team to arrive (the delay).
The repair is perfect, which means that at repair, both of the system deterioration indicators are reset
to zero.

2.2. The preventive maintenance policy

Without any PM policy, the system is down from σL up to σL + τ . To shorten this down-time (of
length τ), the following PM policy is applied: settingM to be a closed and non empty upper set such
that L ⊂M ⊂ R2

+, a signal is preventively sent to the repair team at time σM(≤ σL). The system is
then perfectly and instantaneously repaired at time σM + τ . If σL < σM + τ , a failure occurs before
the repair and the down-time duration is σM + τ − σL. On the contrary, if σL ≥ σM + τ , the system
is repaired before failure and there is no down-time up to the repair. In each case, the down time up
to the repair hence is (σM + τ − σL)+ = max (σM + τ − σL, 0).

The future evolution of the system after repair is assumed to be independent from its past, and
stochastically identical to its initial evolution. Setting (Zt)t≥0 to be the process describing the main-
tained system, (Zt)t≥0 appears as a regenerative process with cycles delimited by repairs (and t = 0)
and generic cycle length σM+ τ . This is illustrated in Figure 2 where the horizontal axis corresponds
to the time and the vertical one to the deterioration level, drawn as a one-dimensional level for sake
of clarity. Note that, as a bivariate subordinator (with null drift) is a pure jump process, the failure
zone L has a non zero probability to be reached at the same time as the system enters M. This can

be seen in Figure 2, where σM = σL in the first cycle (σ
(1)
M = σ

(1)
L ). In the second cycle (which starts

at σ
(1)
M + τ), the system is replaced before failure (σ

(2)
M + τ < σ

(2)
L ).

TakingM = L, the unmaintained system appears as a special case of the maintained system. Taking
M = R2

+ provides σM = 0 and the system is periodically replaced, every τ time units. The classical
periodic replacement policy with no repair at failure and period τ then appears as a special case of
the PM policy.

To assess the PM policy, a cost function is considered, which takes into account:

• C1 > 0 : the restoration cost of the system,
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Figure 2: The preventive maintenance policy

• C2 > 0 : the unitary cost (per unit time) for down-time.

The envisioned cost function is the asymptotic unitary cost (per unit time), namely the function C∞
defined by:

C∞ = lim
t→∞

C(t)

t
a.s.,

where C (t) stands for the accumulated cost on the time interval [0, t]. Our goal is to prove existence
of C∞, find a computable expression for it and study its behavior with respect to different parameters.

We will sometimes complete the assessment of the PM policy by another criterion, the asymptotic
availability, defined by:

A∞ = lim
t→∞

U (t)

t
a.s.,

where U (t) stands for the system up-time on [0, t]. Methods are quite similar for both criteria and
details are only provided for C∞.

3. THE THEORETICAL RESULTS

3.1. Calculation of the cost function

Under the assumption H, the means of σL and σM are finite. Thanks to the renewal theory (see in
[2]), it implies that the asymptotic unitary cost exists a.s and it is equal to the unitary cost in each
generic cycle:

C∞ =
C1 + C2E

[
(σM + τ − σL)+

]
τ + E (σM)

. (1)

By setting L − x = {(y1 − x1, y2 − x2)|(y1, y2) ∈ L} for all x = (x1, x2) /∈ L and

Gt(M) = P(Xt ∈M) =

∫∫
M
PXt(dx1, dx2),

Gt(M) = P(Xt /∈M) = 1−Gt(M),



we obtain

h (M) = E (σM) =

∫ ∞
0

Gt(M)dt,

gL (M) = E
[
(σL − σM − τ)+

]
=

∫ ∞
0

∫∫
M
Gτ (L − x)PXv(dx1, dx2) dv,

where PXt stands for the probability distribution of Xt . This provides the following expression for
C∞:

C∞ = C2 +
C1 + C2 (gL (M)− h (L))

τ + h (M)
, (2)

The details of proof can be found in [7] as for the remaining of the paper.

Using similar methods as for C∞, the asymptotic availability may be proved to exist almost surely
and to be equal to the mean up time on a cycle divided by the mean cycle length:

A∞ =
E (σL)− E

[
(σL − σM − τ)+

]
τ + E (σM)

=
h (L)− gL (M)

τ + h (M)
,

which involves the same quantities as C∞, and can consequently be computed at the same time.

As particular cases:

• For M = L (unmaintained case), noting that gL (L) = 0, we get:

C(ini)
∞ =

C1 + C2τ

τ + E (σL)
and A(ini)

∞ =
E (σL)

τ + E (σL)
,

• For M = R2
+ (periodic replacements), we get:

C(PR)
∞ =

C1 + C2E
[
(τ − σL)+

]
τ

and

A(PR)
∞ =

E (σL)− E
[
(σL − τ)+

]
τ

=
E [min (σL, τ)]

τ
.

3.2. Some comparison results

If C1
C2
≥ E [min (τ, σL)] then we can prove that C∞ ≤ C

(PR)
∞ (whatever M is) and the PM policy is

better than a simple periodic replacement policy. As a special case (M = L), this result shows that if
C1
C2
≥ E [min (τ, σL)], then we also prove that C

(ini)
∞ ≤ C(PR)

∞ . That means the periodical replacement
policy always decreases the cost function when compared to the unmaintained case, whatever the
period τ is.

If C1
C2
≥ E (σL), then C∞ ≥ C(ini)

∞ and the best is not to use the PM policy, namely call for the repair

team only at σL. As a consequence from the previous results, if C1
C2
≥ E (σL), then C

(ini)
∞ ≤ C∞ ≤

C
(PR)
∞ . Also, the only situation where the PM policy can be interesting (namely s.t. C∞ ≤ C

(ini)
∞ ) is

the case where C1
C2

< E (σL).



3.3. Influence of the delay time τ on C∞

Though the delay time τ is generally fixed by the application context (and stands for the time required
by the repair team to be ready to operate), we here consider that τ may vary, to better understand
its influence both on the maintained and unmaintained system and write C∞ (τ) instead of C∞. We
get the following results:

If E(σL) < C1
C2

, the cost function C∞ (τ) is decreasing with respect of τ , whateverM is. On the other

hand, if E(σL) ≥ C1
C2

, assuming L  M and noting that P (σL = σM)E (σM) < E(σL), we have the
following dichotomy:

• if C1
C2
≤ P (σL = σM)E (σM) then the cost function C∞ (τ) is non decreasing with respect of τ

• if P (σL = σM)E (σM) < C1
C2
≤ E(σL) then the cost function C∞ (τ) admits a unique minimum

at some τM (0 < τM < +∞) such that:∫ τM

0
P (t < σL − σM ≤ τM) dt+ P (σL − σM ≤ τM)E (σM)− C1

C2
= 0.

The behavior of the cost function with respect of τ may be quite different according to the case. As
an example, in case of a high replacement cost (E(σL) < C1

C2) , we can see that, from a cost point of
view, the best is not to ever repair the system. Even if some benefit for up- time were considered in
the cost function, such a result would still be valid in case of too high a replacement cost. In this
situation, the system does not bring any profit , with or without preventive maintenance. If there is
still some interest in the functioning of the system (which may be some client satisfaction e.g.), one
should then control another reliability indicator, such as the system availability. It is easy to check that
the system availability is always decreasing with τ . The optimal value of τ may then be provided by
optimizing the cost function under some availability constraint, namely chose the largest τwhich meets
with the availability constraint. As an alternative, one may also optimize the availability under some
cost constraint, namely chose the shortest τ which meets with the cost constraint. More generally,
from a cost point of view, one can observe that it is not necessarily mandatory that the repair team
arrives as soon as possible (with the shortest τ ) and some added delay in the repair may improve the
cost function. However, such an added delay always decreases the availability, and it should then be
controlled.

4. NUMERICAL EXPERIMENTS

4.1. A bivariate Gamma process

Let us first recall that an univariate Gamma process with parameters (a, b) (where a, b > 0) is a
subordinator such that for every t ≥ 0, the random variable Yt is Gamma distributed Γ(at, b) with
probability distribution function (p.d.f.):

fat,b(x) =
1

Γ(at)
bate−bxxat−11{x>0}.

We only envision the case b = 1 in the following (no restriction) and we set fat,b = fat. The corre-
sponding cumulative distribution function (c.d.f.) and survival function are denoted by Fat and F̄at,
respectively, with F̄at = 1− Fat.

Starting from three independent univariate Gamma processes
(
Y

(i)
t

)
t≥0

with parameters (αi, 1) for

i = 1, 2, 3 (where α1, α2, α3 > 0), we set

X
(1)
t = Y

(1)
t + Y

(3)
t and X

(2)
t = Y

(2)
t + Y

(3)
t .



The process (Xt)t≥0 =
(
X

(1)
t , X

(2)
t

)
t≥0

then is a bivariate subordinator with Gamma marginal pro-

cesses and marginal parameters (ai, 1) where ai = αi+α3 for i = 1, 2. The linear correlation coefficient

between the two random variables X
(1)
t and X

(2)
t is independent of t and given by

ρ =
α3√
a1a2

.

We consequently have α1 = a1 − ρ
√
a1a2, α2 = a2 − ρ

√
a1a2 and α3 = ρ

√
a1a2, with 0 ≤ ρ ≤ ρmax =

min
(√

a1
a2
,
√

a2
a1

)
, see [5] e.g.. Two equivalent alternate parameterizations hence are available for

(Xt)t≥0: either (α1, α2, α3) or (a1, a2, ρ).

When ρ 6= 0, the joint p.d.f. of the random vector Xt = (X
(1)
t , X

(2)
t ) is provided by:

fXt(x1, x2) =

∫ +∞

0
fα1t(x1 − x3)fα2t(x2 − x3)fα3t(x3)dx3.

When ρ = 0, X
(1)
t and X

(2)
t are independent. Thus the joint p.d.f. of the random vector Xt =

(X
(1)
t , X

(2)
t ) is

fXt(x1, x2) = fa1t(x1)fa2t(x2).

4.2. Validation of the numerical results

Both C∞ and A∞ are here computed on a few examples, via the previous analytical results and by
Monte-Carlo (MC) simulations, with 104 stories. For the MC results, the regenerative property of the
system is exploited to derive some 95% confidence bands for the results, see[2] e.g.. We consider the
three different cases for the shape of (M,L).

Case 1 We take a1 = 4, a2 = 5, ρ = 0.6708, τ = 0.1, M1 = 3.4, M2 = 2.4, L1 = 3.5, L2 = 2.5,
C1 = 100 and C2 = 30. The results are displayed in Table 1.

Analytical formula MC simulations MC 95% confidence interval
C∞ 154.21612 154.38232 [152.79936; 155.96529]
A∞ 0.87203 0.87245 [0.85885; 0.88604]

Table 1: Comparison with MC simulations, Case 1 (series system)

Case 2 We take a1 = 7, a2 = 9, ρ = 0.75, τ = 0.1, M1 = 2.9, M2 = 2.3, L1 = 3.5, L2 = 2.5, C1 = 100
and C2 = 30. The results are displayed in Table 2.

Analytical formula MC simulations MC 95% confidence interval
C∞ 172.60371 171.04858 [168.722395; 173.3732]
A∞ 0.91734 0.917911 [0.90132; 0.93450]

Table 2: Comparison with MC simulations, Case 2 (parallel system)

Case 3 We take a1 = 4, a2 = 9, ρ = 0.4, τ = 0.1, M = 2.4, L = 3.5, C1 = 3 and C2 = 1. The results
are displayed in Table 3.

Such comparison results validate the theoretical results from the previous section.



Analytical formula MC simulations MC 95% confidence interval
C∞ 9.0611 9.0461 [8.6960; 9.3961]
A∞ 0.8750 0.8738 [0.8407; 0.9069]

Table 3: Comparison with MC simulations, Case 3

4.3. Examples

We now illustrate our results through different numerical experimentations. The parameters of the
bivariate Gamma process and the shape of (M,L) are provided in Table 4 for each example. Here
the cases 1, 2 and 3 refer to the different cases from the subsection 2.1.

a1 a2 ρ τ
shape of
(M,L)

L1

(ou L)
L2

M1

(ou M)
M2 C1 C2

Ex. 1 4 9 0.5 - case 1 3.5 2.5 2.8 2 − 1
Ex. 2 7 9 0.76 0.1 case 2 3.5 2.5 - - - 1
Ex. 3 4 9 - 0.1 case 1 3.5 2.5 2.8 2 20 -

7 9 - 0.1 case 2 3.5 2.5 2.9 2.3 20 -
Ex. 4 4 - - 0.1 case 3 3.5 2.4 1 -

Table 4: Parameters and shapes of (M,L) for the different examples

Example 1 Two different values are considered for C1 : C1 = 0.198 and C1 = 0.594, and C∞ is
plotted against the delay time τ in Figure 3 for both values. In the first case (Figure 3a), C1 is such
that C1

C2
< E (σL) and the cost function C∞ is minimum at τ opt0 ' 0.0625. In the second case (Figure

3b), we have C1
C2

> E (σL) and C∞ is decreasing with τ . In case C1
C2

> E (σL), the lowest cost is
obtained for τ = ∞ which means that, from a cost point of view, the best is not to ever repair the
system. Thus one should then control the asymptotic availability, which is also decreasing in τ , see
Figure 3c. Assume for instance that we have an availability constraint provided by A∞ ≥ 0.9 (to
ensure client satisfaction e.g.). The optimal value of τ which minimizes the cost function under this
availability constraint then is the largest τ which fullls this constraint, namely τ0 ' 0.075.

Example 2 Two different values are considered for C1 : C1 = 0.15 and C1 = 2, and C∞ is plotted
against (M1,M2) in Figure 4 for both values. In the first case (Figure 4a), C1 is such that C1

C2
< E (σL)

and the cost is minimum at (Mopt
1 ,Mopt

2 ) ' (2.8, 1.8). In the second case, we have C1 > C2E (σL)
(Figure 4b) and the cost is minimum at (L1, L2), which means that no PM policy is required.

Example 3 We take three different values for C2: C2 = 4, C2 = 20 and C2 = 30, and two different
shapes for (M,L). The cost is plotted against the dependence (measured by ρ) in Figure 5 in all these
cases. For the first shape of (M,L), we observe that the cost is decreasing with ρ for the three values
of C2 (Figure 5a). For the second shape of (M,L), the monotony is reversed (Figure 5b) and the cost
is increasing with ρ.

Example 4 We here consider the third shape for (M,L) and the cost is plotted against ρ for four
different couples (a2, C2) in Figure 6, with (a2, C2) ∈ {(9, 1) , (9, 10) , (4, 30) , (4, 7)}.

According to these four cases, we can see that the cost may be increasing, decreasing, concave, convex
with respect of ρ, so that nothing can be said about the behavior of the cost function with respect of the
dependence.
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Figure 4: C∞ as a function of (M1,M2), Example 2.

5. CONCLUSION

We here proposed a PM policy for a continuously monitored system modeled by a bivariate subor-
dinator. The PM policy has been assessed through a cost function on an infinite horizon time. We
studied some conditions under which the PM policy decreases the cost function when compared to a
simple periodic replacement policy or to the unmaintained case. The influence of the delay time on
the cost function has been studied too.

As for the influence of the dependence between the two wear indicators on the cost function, we have
not been able to study it from a theoretical point of view. We have however numerically observed
that the cost function seemed to be monotonic with respect to the dependence for the first two
shapes of failure regions considered in the paper (decreasing for the first shape and increasing for the
second one). The proof of these monotonicity results remains a challenging open question. As for the
third envisioned shape, the different examples show that the cost function is not monotonic with the
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Figure 5: C∞ as a function of ρ, Example 3.
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Figure 6: C∞ as a function of ρ, Example 4, Case 3 - the third shape.

dependence. The shape of the failure region hence has a clear influence on the eventual monotonicity
of the cost function with respect to the dependence. According to the case, not taking into account the
dependence between the wear indicators may hence lead to under- or over-estimate the cost function
(see Figures 5 and 6), which may induce difficulties in an industrial context. Taking into account the
dependence as in the present paper then is essential.
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