
Sensitivity Estimates in Dynamic Reliability

Sophie Mercier, Michel Roussignol
Université Paris-Est, Laboratoire d�Analyse et de Mathématiques Appliquées, CNRS UMR 8050

5 boulevard Descartes, Champs sur Marne, F-77454 Marne-la-Vallée, France
Sophie.Mercier@univ-mlv.fr, Michel.Roussignol@univ-mlv.fr

Abstract

The aim of this paper is to study and to compute �rst-order derivatives with respect to some
parameter p, for some functionals of piecewise deterministic Markov processes (PDMP), in
view of sensibility analysis in dynamic reliability. Such functionals are mean values of some
function of the process, cumulated on some �nite interval [0; t], and their asymptotic value
per unit time.

1 Introduction

In dynamic reliability, the time-evolution of a system is described by a piecewise deterministic Markov
process (PDMP) (It; Xt)t�0 (see Davis 1993, Cocozza-Thivent & co 2006-1). The �rst component It
is discrete, with values in a �nite state space E. Typically, it indicates the state (up/down) for each
component of the system at time t. The second component Xt, with values in V � Rd, stands for
environmental conditions, such as temperature, pressure, and so on. Both components of the process
interact in each other: the transition rate for a jump of the discrete part It depends on the value of Xt

just before the jump; between jumps of It, the evolution of Xt is deterministic with paths depending on
the �xed discrete state of the system; by jump of It, the component Xt jumps to a random value which
depends on the discrete states just before and after the jump. Under technical assumptions, (It; Xt)t�0
is a Markov process with general state space E � V (see Davis 1993, Cocozza-Thivent & co 2006-1).
We study quantities of the shape

R�0(t) = E�0
�Z t

0

h(Is; Xs) ds

�
where �0 is the initial distribution of the process and h is some bounded measurable function.
We assume that the jump rates for It and the function h depend on some parameter p. The quantities

of interest then are the �rst-order derivatives of R�0(t) and limt!+1R�0(t)=t with respect to p, which
may help to rank input data according to their relative importance. This kind of sensitivity analysis was
studied by Gandini (1990) and by Cao and Chen (1997) for Markov jump processes. In this paper we
present extensions of their results to PDMP.
The model is presented in Section 2, as well as �rst results on di¤erentiability of R�0(t) with respect

to p. In Section 3, we introduce importance functions, which are the main tool of the study. We derive
an analytical expression for the derivative of R�0(t) with respect to p. The asymptotic behaviour of the
derivative of R�0(t)=t with respect to p is studied in Section 4. We �nally provide examples in Sections
5 and 6.

2 The model

The evolution of the process (It; Xt)t�0 is characterized by:

� the transition rate a (i; j; x) from i to j when the environmental variable is equal to x; the function
a : E � E � V ! R+ is assumed to be bounded, with x 7�! a(i; j; x) continuous for all i; j 2 E.



� the probability measure �(i;j;x) (dy) which controls jump of (Xt)t�0 by jumps of (It)t�0: given that
(It� ; Xt�) = (i; x) just before a jump towards j at time t, the random variable Xt is then distributed
according to �(i;j;x) (dy). We assume that for all i; j 2 E and for all function  : V ! R continuous
and bounded, the function x 7�! �(i;j;x) :=

R
 (y)�(i;j;x)(dy) is continuous.

� the velocity v(i; x) of the environmental variable between two jumps when the discrete part is equal
to i; given that It = i, Xt follows a deterministic trajectory which is solution of

dy
dt = v(i; y); the

function v : E�V ! Rd is assumed to be such that x 7�! v(i; x) is locally Lipschitz continuous and
sub-linear for all i 2 E (there are some V1 > 0 and V2 > 0 such that 8i 2 E;8x 2 Rd; kv(i; x)k �
V1kxk + V2). These assumptions guarantee the existence and uniqueness of the solution to the
di¤erential equations ful�lled by the environmental component; we denote by g (i; x; t) the single
solution such that g (i; x; 0) = x.

We assume that the jump rates a(i; j; x) and the measurable bounded function h depend on some
parameter p, where p belongs to an open set O � R or Rk. We add exponent (p) to each quantity
depending on p, such as h(p) or R(p)�0 (t).
We denote by �(p)t (j; dy) the distribution of the process (It; Xt)t�0 at time t with initial distribution

�0 (independent on p) and by P
(p)
t (i; x; j; dy) the transition probability distribution of (It; Xt)t�0. We

then have:

R(p)�0 (t) =

Z t

0

�(p)s h(p) ds =
X
i2E

Z
V

�Z t

0

h(p) (i; x) ds

�
�(p)s (i; dx)

=

Z t

0

�0P
(p)
s h(p) ds =

X
i2E

Z
V

�Z t

0

�
P (p)s h(p)

�
(i; x) ds

�
�0 (i; dx)

Let us recall an expression for the transition probability distribution (see Cocozza-Thivent & co
2006-1):

Proposition 1 The transition probability distribution of (It; Xt)t�0 is given by:

�
P
(p)
t f

�
(i; x) =

+1X
n=0

�
T
(n)
t f

�
(i; x)

for any function f bounded and measurable, with�
T
(0)
t f

�
(i; x) = f (i; g (i; x; t)) e�

R t
0
b(p)(i;g(i;x;s))ds

and for n � 1:�
T
(n)
t f

�
(i; x) =

X
j 6=i

Z t

0

c
(p)
i (u; x) a(p)(i; j; g(i; x; u))

�Z
V

�
T
(n�1)
t�u f

�
(j; y)�(i;j;g(i;x;u)) (dy)

�
du

where b(p) (i; x) =
P

j 6=i a
(p) (i; j; x) and c(p)i (t; x) = e�

R t
0
b(p)(i;g(i;x;s))ds.

In order to calculate derivatives of the functional R(p)�0 , we must give a sense to derivatives of the
transition probability distributions. With that aim, we shall need the following assumption: the function
p 7�! a(p)(i; j; x) is di¤erentiable and, for all p0 2 O, its derivative with respect to p is uniformly bounded
for all (i; x; p) 2 E � V �N (p0), where N (p0) is some neighbourhood of p0 (assumption H1). We get
the following result:



Proposition 2 Under assumption H1, for all i; j 2 E, all x 2 V and all s 2 [0; t], there exists a unique
signed measure @P (p)

s

@p (i; x; j; dy) on V which is such that

@

@p

0@X
j2E

Z
V

f(j; y; s)P (p)s (i; x; j; dy)

1A =
X
j2E

Z
Vj

f(j; y; s)
@P

(p)
s

@p
(i; x; j; dy)

for all bounded measurable function f (independent of p). Moreover, we have:

sup
i;j2E;x2V;s2[0;t]

�����@P (p)s

@p
(i; x; j; dx)

����� (V ) < +1
Sketch of proof. Under H1, the expression of the transition probability distribution in Proposition

1 is di¤erentiable with respect to p. The operator f !
�
@P (p)

s

@p f
�
(i; x) is a linear operator and can be

considered as a signed measure.
We easily derive the following theorem:

Theorem 3 We assume that H1 is true, that the function p 7�! h(p)(i; x) is di¤erentiable and that, for
all p0 2 O, its derivative with respect to p is uniformly bounded for all (i; x; p) 2 E � V �N (p0), where
N (p0) is some neighbourhood of p0 (assumptions H2). Then, the function p 7�! R

(p)
�0 (s) is di¤erentiable

with respect to p and

@

@p

�
R(p)�0 (s)

�
=

Z s

0

X
i2E

X
j2E

Z
V

Z
V

h(p)(j; y)
@P

(p)
u

@p
(i; x; j; dy)�0(i; dx) du

+

Z s

0

X
i2E

X
j2E

Z
V

Z
V

@

@p
h(p)(j; y)P (p)u (i; x; j; dy)�0(i; dx) du

=

Z s

0

X
j2E

Z
V

h(p)(j; y)
@�

(p)
u

@p
(j; dy) du+

Z s

0

X
j2E

Z
V

@h(p)

@p
(j; y) �(p)u (j; dy) du (1)

where we set:
@�

(p)
s

@p
(j; dy) :=

X
i2E

Z
V

@P
(p)
s

@p
(i; x; j; dy) �0(i; dx)

Our purpose is to compute this derivative. We can compute the marginal distribution �
(p)
u (j; dy)

of the process by Monte-Carlo simulations or by the �nite volume method from Cocozza-Thivent & co
2006-2 (at least when d and the number of discrete states are small). However, we do not know how to
compute directly the derivatives of the marginal distribution which appear in the above expression. We
now transform this expression in order to make it easier to compute.

3 Importance function

In this section we shall use the in�nitesimal generator of the process:

De�nition 4 Let DH0
be the set of functions '(i; x) from E�V to R such that for all i 2 E the function

x 7�! '(i; x) is bounded and continuously di¤erentiable and the function x 7�! v(i; x)�r'(i; x) is bounded
and continuous. For ' 2 DH0 , we de�ne

H
(p)
0 '(i; x) =

X
j2E

a(p)(i; j; x)
�
�(i;j;x)'(j; �)

�
+ v(i; x) � r'(i; x)

with a(p)(i; i; x) = �
P

j 6=i a
(p)(i; j; x) and �(i;i;x)(dy) = �x (dy), where �x is the Dirac measure at x.



Let DH be the set of functions '(i; x; s) from E � V �R to R such that for all i 2 E and s 2 R+ the
function x 7�! '(i; x; s) is bounded and continuously di¤erentiable and the function x 7�! @

@s'(i; x; s) +

v(i; x) � r'(i; x) is bounded and continuous. For ' 2 DH , we de�ne

H(p)'(i; x; s) =
X
j

a(p)(i; j; x)
�
�(i;j;x)'(j; �; s)

�
+
@'

@s
(i; x; s) + v(i; x) � r'(i; x; s) (2)

We then have: P (p)s ' = ' +
R s
0
H
(p)
0

�
P
(p)
u '

�
du for all ' 2 DH0

and P (p)s ' (�; �; s) = ' (�; �; 0) +R s
0
H(p)

�
P
(p)
u '

�
(�; �; u) du for all ' 2 DH (Chapman-Kolmogorov equations).

We are about to de�ne the importance functions:

De�nition 5 We say that a function '(p)t 2 DH is the importance function associated to the function
h(p) and t if:

� '(p)t is solution of the di¤erential equation H(p)'
(p)
t (i; x; s) = h(p) (i; x) for all s 2 [0; t[,

� '(p)t (i; x; t) = 0 for all (i; x) in E � V .

Such an importance function may be proved to be uniquely associated to
�
h(p); t

�
, due to the Cauchy-

Lipschitz theorem and using a similar method as in Cocozza-Thivent & co (2006-1).
In examples from Sections 5 and 6, the importance functions will be computed numerically. However,

an analytical form is available, which is also useful for the asymptotic study:

Lemma 6 Let us assume that the function x 7�! a(p)(i; j; x) is continuously di¤erentiable for all i; j 2 E,
all x 2 V and all p 2 O, and that the function v is bounded (assumptions H3), the importance function
associated to

�
h(p); t

�
is then given by:

'
(p)
t (i; x; s) =

(
�
R t�s
0

�
P
(p)
u h(p)

�
(i; x) du if 0 � s � t

0 otherwise
(3)

Sketch of proof. It is clear that '(p)t (i; x; t) = 0 and under H3, one may check that the function
'
(p)
t (i; x; s) is in DH . Beside, for 0 � s � t, we have:�
H(p)'

(p)
t

�
(:; :; s) = �H(p)

Z t�s

0

P (p)u h(p) du = �H(p)
0

�Z t�s

0

P (p)u h(p) du

�
� @

@s

�Z t�s

0

P (p)u h(p) du

�
= �

Z t�s

0

H
(p)
0

�
P (p)u h(p)

�
du+ P

(p)
t�sh

(p)

= h(p)

due to the Chapman-Kolmogorov equation, which ends the proof.

We now derive a new expression for
@R(p)

�0

@p (t):

Theorem 7 Under assumptions H1�3 (namely H1 +H2 +H3), we have:

@R
(p)
�0

@p
(t) =

Z t

0

�(p)s
@h(p)

@p
ds+

Z t

0

�(p)s
@H(p)

@p

�Z t�s

0

P (p)u h(p) du

�
ds (4)

where we set:
@H(p)

@p
' (i; x; s) :=

X
j2E

@a(p)

@p
(i; j; x)

�
�(i;j;x)'(j; �; s)

�
for all ' 2 DH , all (i; x; s) 2 E � V � R+.



Proof. Starting from (1), we have to compute
R t
0
@�(p)s

@p h(p) (�; �; s) ds. We �rst know from the Chapman-

Kolmogorov equation applied to '(p)t that:Z t

0

�(p)s H(p)'
(p)
t (:; :; s) ds = �

(p)
t '

(p)
t (:; :; t)� �0'(p)t (:; :; 0) = ��0'(p)t (:; :; 0)

due to '(p)t (�; �; t) = 0. By di¤erentiating this expression with respect to p, we derive:Z t

0

@�
(p)
s

@p
h(p) (�; �; s) ds+

Z t

0

�(p)s
@H(p)

@p
'
(p)
t (�; �; s) ds+

Z t

0

�(p)s H(p) @'
(p)
t

@p
(�; �; s) ds = ��0

@'
(p)
t

@p
(�; �; 0)

(5)

Chapman-Kolmogorov equation applied to @'
(p)
t

@p gives:Z t

0

�(p)s H(p) @'
(p)
t

@p
(�; �; s) ds = �

(p)
t

@'
(p)
t

@p
(�; �; t)� �0

@'
(p)
t

@p
(�; �; 0) = ��0

@'
(p)
t

@p
(�; �; 0)

We derive from (5): Z t

0

@�
(p)
s

@p
h(p) (�; �) ds = �

Z t

0

�(p)s
@H(p)

@p
'
(p)
t (�; �; s) ds

Whence the result, using (1) and substituting '(p)t with (3).
Equation (4) actually is an extension of the results given by Gandini (1990) for jump Markov processes.

4 Asymptotic results

In all this section, we assume that the process (It; Xt)t�0 is positive Harris-recurrent with �
(p) as unique

stationary distribution. We �rst transform (4) in view of studying its asymptotic expression:

Lemma 8 Under assumptions H1�3, we have:

1

t

@R
(p)
�0

@p
(t) =

1

t

Z t

0

�(p)s
@h(p)

@p
ds+

1

t

Z t

0

�(p)s
@H(p)

@p

�Z t�s

0

�
P (p)u h(p) � �(p)h(p)

�
du

�
ds (6)

Proof. The �rst term is clear. Beside, setting 1 the constant function equal to 1, we have: @H(p)

@p 1 = 0

since H(p)1 = 0. As �(p)h(p) is a constant (independent of (i; x)), we derive

@H(p)

@p
�(p)h(p) =

�
�(p)h(p)

� @H(p)

@p
1 = 0

and consequently:
@H(p)

@p

�Z t�s

0

�(p)h(p) du

�
= (t� s) @H

(p)

@p
�(p)h(p) = 0

Whence the result.

We may now prove existence and provide an asymptotic expression for 1
t

@R(p)
�0

@p (t), at least un-
der the following additional assumptions: we assume that, for each p 2 O, there exists a func-
tion f (p) such that

R +1
0

f (p)(u) du < +1,
R +1
0

u f (p)(u) du < +1, limu!+1 f (p)(u) = 0 and����P (p)u h(p)
�
(i; x)� �(p)h(p)

��� � f (p)(u) for all (i; x) 2 E � V , all u � 0 (assumptions H4).

Theorem 9 Let us assume that H1�4 are true. Then:

Uh(p) (i; x) :=

Z +1

0

��
P (p)u h(p)

�
(i; x)� �(p)h(p)

�
du

exists for all (i; x) 2 E � V and

lim
t!+1

1

t

@R
(p)
�0

@p
(t) = �(p)

@h(p)

@p
+ �(p)

@H
(p)
0

@p
Uh(p) (7)



Proof. The quantity Uh(p) (i; x) is clearly de�ned for all (i; x) 2 E � V . To derive (7) from (6), we use
the fact that, due to positive Harris-recurrence of (It; Xt)t�0, we know:

lim
t!+1

1

t

Z t

0

�(p)s '(p) ds = �(p)'(p) (8)

for each measurable and bounded '(p) (see Asmussen (1987)). Under H2, the �rst term in right
side of (6) consequently converges to the �rst term in (7). For the second term, setting Us :=R +1
s

�
P
(p)
u h(p) � �(p)h(p)

�
du, we �rst have:����@H(p)

@p
Us (i; x)

���� �X
j2E

����@a(p)@p
(i; j; x)

�
�(i;j;x)Us(j; �)

�����
As jUsj �

R +1
s

f (p)(u)du due to H4, we also have
����(i;j;x)Us(j; �)��� � R +1s

f (p)(u)du for all (i; j; x; s).
Using H1, we get existence of K � 0 such that:����@H(p)

@p
Us (i; x)

���� � K

Z +1

s

f (p)(u)du (9)

for all (i; x; s). We derive:����1t
Z t

0

�(p)s
@H(p)

@p
Ut�sds

���� � K

t

Z t

0

�(p)s

Z +1

t�s
f (p)(u)du ds

=
K

t

Z t

0

Z +1

t�s
f (p)(u)du ds

=
K

t

Z +1

0

u f (p)(u) du

so that limt!+1
1
t

R t
0
�
(p)
s

@H(p)

@p Ut�sds = 0 due to H4. Beside, (9) shows that @H
(p)

@p Uh(p) is bounded due
to H4 again. We derive from (8) that

lim
t!+1

1

t

Z t

0

�(p)s
@H(p)

@p
Uh(p)ds = �(p)

@H(p)

@p
Uh(p) = �(p)

@H
(p)
0

@p
Uh(p)

because Uh(p) is independent on time. Whence the result, usingZ t�s

0

�
P (p)u h(p) � �(p)h(p)

�
du = Uh(p) � Ut�s

in (6) and letting t! +1.
The previous theorem provides an extension of the results given by Cao and Chen (1997) for jump

Markov processes.
The following proposition now gives a tool to compute the function Uh.

Proposition 10 Let us assume H1�4 to be true. The function Uh(p) ful�lls the di¤erential equation:

H
(p)
0 Uh(p) (i; x) = �(p)h(p) � h(p)(i; x)

Sketch of proof. We have:

H
(p)
0 Uh(p) (i; x) = H

(p)
0

Z +1

0

��
P (p)u h(p)

�
(i; x)� �(p)h(p)

�
du

=

Z +1

0

�
H
(p)
0 P (p)u h(p) (i; x)�H(p)

0

�
�(p)h(p)

��
du

=

Z +1

0

H
(p)
0 P (p)u h(p) (i; x) du



since H(p)
0

�
�(p)h(p)

�
=
�
�(p)h(p)

�
H
(p)
0 1 = 0. We derive:

H
(p)
0 Uh(p) (i; x) = lim

t!+1

Z t

0

�
H
(p)
0 P (p)u h(p) (i; x)

�
du

= lim
t!+1

P
(p)
t h(p) (i; x)� h(p) (i; x) (Chapman-Kolmogorov equation)

= �(p)h(p) � h(p) (i; x)

due to H4.
We now look at two examples. In such examples, dependence on p (namely (p)) is generally not

speci�ed any more, in order to get simpler notations.

5 A �rst example

A single component is considered, which is perfectly and instantaneously repaired at each failure. The
time evolution of the component is described by the process (Xt)t�0 where Xt stands for the time elapsed
at time t since the last instantaneous repair. (There is one single discrete state here so that the component
It is not necessary). The failure rate for the component at time t is � (Xt) where � (�) is some continuous
non negative function. The process (Xt)t�0 is "renewed" after each repair so that � (x) (dy) = �0 (dy)

and the evolution of (Xt)t�0 between renewals is given by g (x; t) = x+ t.
We are interested in the rate of renewals on [0; t], namely in the quantity Q (t) such that:

Q (t) =
R (t)

t
=
1

t
E0
�Z t

0

� (Xs) ds

�
=
1

t

Z t

0

 Z
R+
� (x) �s (dx)

!
ds

where R (t) is the renewal function associated to the underlying renewal process and �s is the distribution
of Xs given that X0 = 0.
The function � (x) depends on some parameter p and we want to compute @Q(t)

@p . Using (4), we get:

@Q (t)

@p
=
1

t

Z t

0

Z s

0

�s (dx)
@�

@p
(x) (1� 't (0; s) + 't (x; s)) ds

where 't is solution of � (x) ('t(0; s)� 't(x; s)) + @
@s't(x; s) +

@
@x't(x; s) = � (x) for all s 2 [0; t[ and

't(x; t) = 0 for all x 2 [0; t]. No closed form is available for 't and for the numerical computation, this
equation has been discretized and solved numerically.
As for the asymptotic quantities, assuming E (T1) < +1, where T1 is the �rst renewal time, it is

known that:

Q (1) =
Z
R+
� (x)� (dx) =

1

E (T1)
where � is the stationary distribution of (Xt)t�0. Beside, � has a density f� with respect to Lebesgue
measure with:

f� (x) =
P0 (T1 > x)

E (T1)
=
e�

R x
0
�(u)du

E (T1)
(10)

Now, we know from (7) that:

@Q (1)
@p

= �
@�

@p
(1 + V �(0)� V �) (11)

where V � is solution of � (x) (V �(0)� V � (x)) + @
@x (V � (x)) = ��� � (x) = Q (1)� � (x).

Solving this equation and substituting in (11), we get:

@Q (1)
@p

=

Z +1

0

f� (x)
@�

@p
(x)

�
1�

Z x

0

(Q (1)� � (v)) e
R x
v
�(u)dudv

�
dx

=
1

E (T1)

Z +1

0

@�

@p
(x)

�
1�Q (1)

Z x

0

e�
R v
0
�(u)dudv

�
dx



using (10).
Taking � (t) = ��t��1 and (�; �) =

�
10�5; 4

�
, we are now able to compute @Q(t)

@� and @Q(t)
@� for t � 1.

In order to validate our results, we also compute such quantities by �nite di¤erences using:

@Q (t)

@p
' 1

"

�
Q(p+") (t)�Q(p) (t)

�
for small " and t � 1. For the asymptotic results, we use Q (1) = 1

E(T1) to compute such a derivative.
For the transitory results, we use the algorithm from Mercier (2007) which provides the renewal function
R (t) and hence Q (t) = R(t)

t . The results are gathered in Table 1 for the asymptotic derivatives.

Table 1: @Q(1)
@� and @Q(1)

@� by �nite di¤erences (FD) and the present method (MR)

FD MR
" 10�4 10�6 10�8 10�10

@Q(1)
@� 5:1� 102 1:496� 103 1:5504� 103 1:5510� 103 1:5509� 103
" 10�4 10�6 10�8 10�10

@Q(1)
@� 4:3761� 10�2 4:3760� 10�2 4:3760� 10�2 4:3760� 10�2 4:3755� 10�2

The results are very stable for @Q(1)
@� by FD choosing di¤erent values for " and FD give very similar

results as MR. The approximation for @Q(1)
@� by FD requires smaller " to give similar results as MR.

We now plot the transitory results in Figures 1 and 2 for t 2 [0; 50].
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Figures 1 and 2: @Q(t)@� and @Q(t)
@� by FD and MR

In Figure 2, the results are very similar for @Q(t)
@� by FD and MR even for " not that small (here

" = 10�3) whereas Figure 1 shows that FD requires much smaller " (" � 10�8) for @Q(t)
@� to provide

similar results as MR.

6 A second example

6.1 Presentation - Theoretical results

A tank is considered, which may be �lled in or emptied out using a pump. This pump may be in two
di¤erent states: "in" (state 0) or "out" (state 1). The level of liquid in the tank goes from 0 up to R.
The state of the system "tank-pump" at time t is (It; Xt) where It is the discrete state of the pump
(It 2 f0; 1g) and Xt is the continuous level in the tank (Xt 2 [0; R]). The transition rate from state 0



(resp. 1) to state 1 (resp. 0) at time t is �0 (Xt) (resp. �1 (Xt)). The speed of variation for the liquid
level in state 0 is v0 (x) = r0 (x) with r0 (x) > 0 for all x 2 [0; R[ and r0 (R) = 0: the level increases in
state 0 up to reaching R, where it remains constant. Similarly, the speed in state 1 is v1 (x) = �r1 (x)
with r1 (x) > 0 for all x 2]0; R] and r1 (0) = 0: the level of liquid decreases in state 1 until reaching 0,
where it remains constant. Also, the level in the tank is continuous so that � (i; 1� i; x) (dy) = �x (dy)

for i 2 f0; 1g, all x 2 [0; R]. The functions ri and �i are assumed to be continuous, with �i bounded,
which ensures an almost sure �nite number of jumps on [0; t] (all t � 0).
Such an example is very similar to that from Boxma & co (2005). The main di¤erence is that we here

assume Xt to remain bounded (Xt 2 [0; R]) whereas Xt takes its values in R+ in the quoted paper.
In order to study asymptotic quantities, we assume conditions which ensures the process (It; Xt)t�0

to be '-irreducible, in the sense of Down, Meyn and Tweedie (1996). Such conditions for irreducibility
are very similar to those by Boxma & co (2005): we �rst take �1 (0) > 0 and �0 (R) > 0 which prevents
the system from being stuck in states (1; 0) and (0; R), respectively. Setting t(i)x!y for the deterministic
time to go from x up to y following the curve (g (i; x; t))t2R (all x; y 2 [0; R]), we also assume that:

if
Z R

x

1

r0 (u)
du = t

(0)
x!R = +1, then

Z R

x

�0 (u)

r0 (u)
du = +1 for some (and hence all) x 2 [0; R[ (12)

if
Z y

0

1

r1 (u)
du = t

(1)
y!0 = +1, then

Z y

0

�1 (u)

r1 (u)
du = +1 for some (and hence all) y 2]0; R] (13)

The �rst condition ensures that if t(0)x!R is in�nite, then the probability for the process (Xt)t�0 starting

from x to reach R without any jump is zero, the same for t(1)y!0 and the second condition.
Due to the general assumptions, we also have:Z y

x

1

ri (u)
du = t(i)x!y < +1 and

Z y

x

�i (u)

ri (u)
du =

Z t(i)x!y

0

�i (g (i; x; v)) dv < +1

for all 0 < x < y < R. The second expression ensures that the probability for (Xt)t�0 starting from x

to reach y without any jump is non zero (if x and y are correctly ordered according to the monotony of
t 7�! g (i; x; t)). Such conditions are assumed in Boxma & co (2005) to ensure irreducibility but seem to
be always true here.
To sum up, conditions for irreducibility here are: �1 (0) > 0, �0 (R) > 0 and (12� 13). Such conditions

are referred to as assumption HI in the following.

Proposition 11 Under assumption HI , the process (It; Xt)t�0 is positive Harris recurrent with single
invariant distribution � given by:

� (i; dx) = fi (x) dx

for i = 0; 1 and

f0 (x) =
K�

v0 (x)
e
�
R x
R=2

�
�1(u)

v1(u)
+
�0(u)

v0(u)

�
du
=

K�

r0 (x)
e
R x
R=2

�
�1(u)

r1(u)
��0(u)

r0(u)

�
du (14)

f1 (x) = �
K�

v1 (x)
e
�
R x
R=2

�
�1(u)

v1(u)
+
�0(u)

v0(u)

�
du
=

K�

r1 (x)
e
R x
R=2

�
�1(u)

r1(u)
��0(u)

r0(u)

�
du (15)

where K� > 0 is a normalization constant.

Remark 12 Though such results are very similar to some special case from Boxma & co (2005), we have
better give here a quick proof due to a few di¤erences in the results, such as some eventual masses for �
at the bounds of the interval in the quoted paper.



Sketch of proof. Under (HI), one may �rst prove that the process (It; Xt)t�0 with values in F :=

f0; 1g � [0; R] is '�irreducible for ' = cf0;1g � � where cf0;1g is the counting measure on f0; 1g and �
is the Lebesgue measure on [0; R]. Beside, the process (It; Xt)t�0 is non-evanescent (due to values in a
compact set) and it is a T-process (a proof may be found in Desgrouas (2007) in more general a context).
The process is then Harris recurrent (Meyn-Tweedie 1993) and it admits a unique invariant measure �
up to some multiplicative constant.
As the support of ' is the whole set F , the irreducibility measure ' = cf0;1g � � actually is maximal.

As a consequence, � and ' = cf0;1g � � are mutually absolutely continuous (Down, Meyn and Tweedie
1996). We can then write:

� (i; dx) = fi (x) dx

for some positive measurable function fi. Beside, using the fact that � (�; dx) is such that �H(p)
0 ' = 0

for all ' 2 C1 ([0; R]), one easily �nd that

�1�i (x) f1�i (x)� �i (x) fi (x)�
d

dx
(vi (x) fi (x)) = 0

for i = 0; 1, so that (f0; f1) are of the shape (14� 15). Beside, it is easy to check that, for i = 0; 1:R R
0
fi (x) dx < 1. We derive that � is a �nite measure which can then be normalized in a single way

in a probability measure. Consequently, (It; Xt) is a positive Harris recurrent process, which ends the
proof.

6.2 Quantities of interest

We are interested in two quantities: �rst, the proportion of time spent by the level in the tank between
two �xed bounds a and b with 0 < a < b < R and we set:

Q1 (t) =
1

t
E�0

�Z t

0

1fa�Xs�bgds

�
=
1

t

1X
i=0

Z t

0

Z b

a

�s (i; dx) ds =
1

t

Z t

0

�sh1 ds (16)

with h1 (i; x) = 1[a;b] (x).
The second quantity of interest is the mean number of times the pump is turned from state "in" (0)

to state "out" (1) by unit time, namely:

Q2 (t) =
1

t
E�0

0@ X
0<s�t

1fIs�=0 and Is=1g

1A =
1

t
E�0

�Z t

0

�0 (Xs)1fIs=0gds

�

=
1

t

Z t

0

Z R

0

�0 (x) �s (0; dx) ds =
1

t

Z t

0

�sh2 ds (17)

with h2 (i; x) = 1fi=0g�0 (x).
For both quantities (Q1 (t) and Q2 (t)), we want to study the in�uence of some parameter �i on which

depends �i (x) but neither �1�i (x), nor v0 (x), v1 (x), �0 (�; dx), R, a nor b. More precisely, we want to
compute @Qi0 (t)

@�i1
and @Qi0 (1)

@�i1
for i0; i1 2 f0; 1g, where Qi0 (1) = limt!+1Qi0 (t).

Setting '(i0)t (i1; x; s) = �
R t�s
0

(Puhi0) (i1; x) du for the importance function associated to hi0 , we �rst
know from (4) that, for i1 2 f0; 1g:

@Q1 (t)

@�i1
=
1

t

Z R

0

Z t

0

�s (i1; dx)
@�i1 (x)

@�i1

�
'
(1)
t (i1; x; s)� '(1)t (1� i1; x; s)

�
ds (18)

and:

@Q2 (t)

@�0
=
1

t

Z R

0

Z t

0

�s (0; dx)
@�0 (x)

@�0

�
1� '(2)t (1; x; s) + '

(2)
t (0; x; s)

�
ds (19)

@Q2 (t)

@�1
=
1

t

Z R

0

Z t

0

�s (1; dx)
@�1 (x)

@�1

�
'
(2)
t (1; x; s)� '(2)t (0; x; s)

�
(20)



As for the asymptotic derivatives, using (7), we get:

@Q1 (1)
@�i1

=

Z R

0

� (i1; dx)
@�i1 (x)

@�i1
(Uh1 (1� i1; x)� Uh1 (i1; x)) (21)

for i1 2 f0; 1g and

@Q2 (1)
@�0

=

Z R

0

� (0; dx)
@�0(x)

@�0
(1 + Uh2 (1; x)� Uh2 (0; x)) (22)

@Q2 (1)
@�1

=

Z R

0

� (1; dx)
@�1(x)

@�1
(Uh2 (0; x)� Uh2 (1; x)) (23)

where, in such expressions, the function Uhi0 is solution of

vi(x)
d

dx
(Uhi0 (i; x)) + �i(x) (Uhi0 (1� i; x)� Uhi0 (i; x)) = Qi0 (1)� hi0 (i; x)

for i = 0; 1. One easily gets:

Uhi0 (1; x)� Uhi0 (0; x) = �
Z x

0

�
ui0 (1; z)

r1(z)
+
ui0 (0; z)

r0(z)

�
e
R z
x

�
�1(y)

r1(y)
��0(y)

r0(y)

�
dy
< +1 (24)

and closed forms are now available for Qi0 (1) and
@Qi0

(1)

@�i1
, using (14� 15), (21� 23) and (24).

As for the transitory quantities, one needs to compute numerically quantities of the shape �th and
'
(i0)
t (i1; x; s) which appears in Qi0 (t) and

@Qi0
(t)

@�i1
(see (16� 17) and (18� 20)). Such quantities are here

computed using �nite volume methods as in Cocozza & co (2006-2).

6.3 Numerical example

We assume that the system initially is in state (I0; X0) = (0; R=2). Beside, we take:

�0 (x) = x�0 ; r0 (x) = (R� x)r0 ; �1 (x) = (R� x)�1 ; r1 (x) = xr1

for x 2 [0; R] with �i > 0 and ri > 1. All conditions for irreducibility are here achieved.
We take the following numerical values:

�0 = 1:05; r0 = 1:2;�1 = 1:10; r1 = 1:1;R = 1; a = 0:3; b = 0:7.

Similarly as for the �rst method, we test our results using �nite di¤erences (FD). The results are here
rather stable choosing di¤erent values for " and the results are provided for " = 10�6. The asymptotic
results are given in Table 2 and the transitory ones are given in Table 3 for t = 2.

Table 2: @Qi0
(1)

@�i1
by �nite di¤erences (FD) and the present method (MR).

@Q1(1)
@�i

@Q2(1)
@�i

i FD MR FD MR
0 �1:4471� 10�2 �1:4469� 10�2 �5:5294� 10�2 �5:5303� 10�2
1 �1:7471� 10�2 �1:7469� 10�2 �4:9948� 10�2 �4:9946� 10�2

Table 3: @Qi0
(t)

@�i1
for t = 2 by �nite di¤erences (FD) and the present method (MR).

@Q1(2)
@�i

@Q2(2)
@�i

i FD MR FD MR
0 �4:7561� 10�2 �4:7580� 10�2 �8:6747� 10�2 �8:6599� 10�2
1 �4:5566� 10�3 �4:5166� 10�3 �2:7299� 10�2 �2:7370� 10�2

The results are very similar by FD and MR both for asymptotic and transitory quantities, which
clearly validate the method.



7 Conclusion

This paper is a �rst step for the computation of derivatives of functionals of PDMP with respect to some
parameter p. The results appear as extensions of those available for jump Markov processes in Cao and
Chen (1997) and Gandini (1990). However, the present study is restricted to the case where only the
discrete transition rates depend on parameter p. Some additional mathematical work remains to be done
to extend the results to more general cases. Also, some re�exion should be lead on to go through the
numerical computation of the importance functions, in case of larger studies than the small examples of
this paper.
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