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Abstract

We consider a system with a finite state space subject to continuous-time Markovian deterio-
ration while running, that leads to failure. Failures are instantaneously detected. This system
is submitted to sequential checking and preventive maintenance: up-states are divided into
7good” and "degraded” ones and the system is sequentially checked through perfect and in-
stantaneaous inspections until it is found in a degraded up-state and stopped to be maintained
(or until it fails). Time between inspections is random and is chosen at each inspection accord-
ing to the observed degradation degree of the system. Maintenance duration follows general
distribution. Markov renewal equations fulfilled by the reliability of the maintained system
are given and an exponential equivalent is derived for the reliability. We prove the existence
of an asymptotic failure rate for the maintained system, which we are able to compute. We
show that under natural conditions on the preventive maintenance policy, the reliability and
the asymptotic failure rate of the system are both improved by the preventive maintenance
policy.

Key-words: Preventive maintenance; Sequential checking; Markov renewal equation; Asymptotic
failure rate.

1 Introduction

We consider a system with a finite state space subject to continuous-time Markovian deterioration while
running, that leads to failure: typically, we are here concerned with a system formed of components
with constant failure rates, which cannot be repaired while the system is running. However, they may
be repaired (or replaced) during a stop of the system for preventive maintenance, with general repair
rates. No continuous monitoring is performed on the system, so that the state of the running system
is not continuously known. However, failures are instantaneously detected. Also, it is possible to know
the current state of the running system (among a finite number of possible up-states) through perfect
instantaneous inspections, which do not degrade the system. The system is then submitted to the
following preventive maintenance policy: the up-states are divided into two parts, ”good” ones and
”degraded” ones, and the system is inspected until it is found in a degraded up-state and stopped to be
maintained for a random duration that depends on the degradation degree of the system. Time between
inspections may be random and is chosen at each inspection according to the observed state of the system.
Such a dynamic succession of inspections had been called sequential checking procedure by Barlow and
al. (1963) (to be opposed to periodic checking procedure).

The same modelization has already been studied in Cocozza-Thivent (2000) and Bloch-Mercier (2002),
where the authors are respectively interested in the availability and in the mean cost per unit time in
long-time run. Though, we are here only concerned with the system up to its first failure (with possible
preventive maintenance actions however) whereas such papers are concerned with the system in long-time
run with possible corrective maintenance actions. Note that, in an industrial context, it may be interesting
to control different criteria, though optimization of the preventive maintenance policy is generally lead
with respect to one single criterion.



The proofs of the different results, a numerical example and some more references may be found in
Bloch-Mercier and Roussignol (2001).

2 Notations - Assumptions

Let 1, 2, ..., m be the up-states of the system and let m + 1, ..., m + p be the down-states. The system
is up at the beginning and then evolves in time according to the Markov process (X;),., as long as it is
running. (We consider the down-states as absorbing for (X;)). The system almost surely breaks down
after a finite time T%: P, (T ni +oo) = 1, where P; is the conditional probability, given that the
system started from state ¢ (all 1 <7 < m). Symbol E; represents the associated conditional expectation.
Symbol (P, (i, 7)) represents the transition semi-group associated to (X;) : P, (¢,7) =P; (X, =j) (all
1<i4,j<m+p), with P,(i,j) =0,allm+1<i<m+p, 1<j<m+p.
Given that the system started in state ¢ (1 < i < m), we recall that its reliability is:

RI™ (1) =P, (Tmi > t) = ZPi (Xi=j)= ipt (4,7) (all t > 0)

Jj=1

Exponent ini here refers to the initial or unmaintained system, to be opposed to the maintained
system, submitted to the following preventive maintenance policy:

The up-states are divided between ”good” up-states: 1,...,q and "degraded” ones: ¢ + 1, ...,m, with
q a fixed integer such that 1 < g <m —1.

Let py, po, .., p,y, be some probability distributions on R such that f0+oo t.p;(dt) >0,all <i<m.

Now, let Sp = 0 and let S; be a random variable independent of the evolution of the system, with px
as distribution (we recall that Xy € {1,...,m}). As long as the system is not failed, it is instantaneously
inspected by time Sy, Sa, ..., Sy, ... recursively defined in the following way (all n € N*):

o If Xg =j€{l,..,q}, the system is in a "good” up-state. We do nothing but choosing the time
to next inspection: next inspection will take place at time Sy,+1 = S, + U, where U, is a random
variable with p; for distribution, independent of the previous evolution of the system before S5,,.
(The random variable U,, only depends on the state Xg = j of the system at time of inspection

Sp).

o If Xg, =7 € {q+1,...,m}, the system is in a ?degraded” up-state. The system is stopped and
a maintenance action is instantaneously begun. This maintenance action leaves the system in a
state which is assumed to be independent of the previous evolution of the system before S, and the
system starts again in the up-state k(1 < k < m) with probability D (4, k). Given that the system
starts again in state k, the duration of the maintenance action has the same distribution w; ; as a
random variable M; j, independent of the previous evolution of the system. The system cannot fail
during a maintenance action.

After a preventive maintenance action, a new sequence of inspections is begun, recursively defined in
the same way as from the beginning.

The time to failure of the maintained system is represented by 71" so that the reliability of the main-
tained system leaving from state i (all 1 <i <m)is R; (t) =P; (T > t).

3 Markov renewal equations

Let * represent the convolution between two measures and let P. (i, ) p; be the measure with density
P, (i, 7) with respect to p; (ds) (namely: (P. (i,7) p;) (ds) = Ps (3, 7) p; (ds)). Using some renewal property
according to what happens by time S of the first inspection (whenever it takes place), we get the following
result:



Theorem 1 The reliability of the maintained system R; (t) leaving from state i fulfills the following
Markov renewal equations:

R ( )+ Z/ s) vy ; (ds) (all 1 <i<m) (1)

with
vij(ds) = 1p<j<qyPs(i,5) p; (ds) Z D (k,5) ((P.(i,k) p;) * puy, ;) (ds) (2)
k=q+1
Gi(t) = RM™(t)P;(S1 >t)+ Z Z/ pi (ds) puy ; (Jt — s,400[) Ps (i, k) D (k,5)  (3)
k=q+1 j=1

4 Asymptotic behaviour of the reliability

From those Markov renewal equations, we now derive some indications on the asymptotic behaviour of
the reliability of the maintained system. We first note that symbol v; ; (ds) that appears in (1) is not a
semi-Markov kernel in the sense that > 1 O+Oo v; ; (ds) < 1. The results of this Section are then based
on Asmussen (1987), Chapter X, Thm 2.6: the idea is to transform equations (1) to boil down to new
equations associated to a true semi-Markov kernel, and then apply the key renewal theorem (or some

generalization). In that aim, we define, following Asmussen, the matrix A® = (a‘f ) such that
1<i,5<m

+oo m
ay; :/0 e”'v; i (du) = 1i<j<gyBi (6% Ps, (1,5)) + > Ei(e”® Py, (4,k)) E (M) D (k, j)
k=q+1

and we get:

Theorem 2 Let us assume that:

(Hy) Matriz A° has got an irreducible component I,

(H3) The Laplace transform of p; is convergent on R (all i € I),
(H3) The Laplace transform of . ; s convergent on R
(allq+1<k<m,jel such that D (k,j) > 0),

(Hy) There is some jo in I and some kg (¢+1 < ko < m)

such that D (ko, jo) > 0 and such that measure piy, ;.

admits a density towards Lebesgue measure.

60)
v ger?”
such a By, let n° and 5/60 positive componentwise such that A%on% = nb and E/BOAﬁO = E/BO. Then:

J€I£ foo PG (u) du
Zie]ZjeIgi 775 fo u.ebouy; j (du)

Then, there is some By such that AP has spectral radius 1 (By > 0), where AP0 = ( For

lim efo!R; (t) = nﬁo

t——+o0 H

=(say) L;,all i€l

with
O0< L; < +00

As irreducibility of A is required for the key renewal theorem, we are lead to assume the existence
of an irreducible component I for A° (H;) and to apply the results of Asmussen (1987) on the set I.
Assumptions (Hs) and (H3) ensures us with the existence of 3, such that A% has spectral radius 1. To
apply the key renewal theorem, we actually use alternative conditions to those used by Asmussen and
we show that, under (Hy_3), the function eBOtG‘fU (t) is bounded, Lebesgue-integrable and tends to zero
when t goes to infinity. Under (Hz_4), it may also be shown that the condition of aperiodicity is checked
too.

Under assumptions (Hy_3), we will now refer to symbol 3y in the following without any more precision.



5 Asymptotic failure rate

Under (Hy_4) and for i € I, we write the asymptotic failure rate in the following way:

. . 1 limt_)_mo GBUtRH_ (t)
Im lm =P, (T <t+h|T>t)=—— L
t—too hsot B (T=<t+n] ) limy; , oo €Po?R; (t)

whenever the right-hand derivative R." () of R;(.) and limit in numerator exist.
In order to prove the existence and to compute this expression, we first show the existence of Rﬁ (t)

and get Markov renewal equations for R[T (t). We then derive lim;_ 4 0! R/T () in the same way as
for R; (t) (with the same ;). We get:

Theorem 3 Under assumptions (Hy_4): if the system starts from a state i in I, By is the asymptotic
failure rate for the maintained system, namely:

1
B =, lim  lim —P; (T <t+hT > 1) allicl

t——+00 h—0+
6 Comparison between the initial and the maintained system

We show here that, as expected, if the system is in a ”better” state after a maintenance action than before
(see (5) just below), then, the preventive maintenance policy improves the reliability of the system (any
time). Symbol <, stands for the usual stochastic ordering. Symbol D (k, .) is the k™ row of matrix D
and represents the distribution of the random state in which the system starts again after a maintenance
action that began in state k, whereas symbol 6y is the Dirac measure on {1,...,m} at state k.

Theorem 4 Under assumptions (Hy_4) and with the same notations, if, addingly:

R (1) <> D, j) Ry (1), allg+1<i<m (5)
j=1
or if both
RM™(t) > RM™ (), allt >0,1<i<m—1 (6)
and
D(k7> <sto 6k; a”9+1§k§m (7)
are true, then:
RM(t) <R;(t), allie It >0 (8)

Besides, if 3™ exists such that limy_ o0 €® 'R (t) is finite and positive (all i € I), then: B, < 3

If the states are ranked according to their increasing degradation degree according to (6), assumption
(7) then is an alternative to (5), somewhat easier to check.
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