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The aim of this paper is to model degradation phenomena in a multi-unit context taking into account stochastic

dependence between the units. Here, we intend to propose a model structure that allows in the same time enough

complexity for the representation of phenomena and enough simplicity for the analytical calculations. More precisely,

a multi-unit system is considered, which is submitted to a random stressing environment which arrives by shocks. The

model takes into account two types of dependence between the components: firstly, a shock impacts all components

at the same time; secondly, for a given shock, the deterioration increments of the different components are considered

to be correlated. The intrinsic deterioration of the n (say) units is modeled through independent stochastic processes

(Z
(i)
t )t≥0, with 1 ≤ i ≤ n. Given the usual nature of the degradation phenomena, is it seems reasonable to

suppose that each (Z
(i)
t )t≥0 should be a monotone process with continuous state space. Accordingly, the shocks

are classically assumed to arrive independently, according to a Poisson process (Nt)t≥0. The parameter estimation

(moment method) and the reliability assessment are presented for any multi-unit systems with coherent structure.

At last a numerical results is presented with a 3 units system.
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1 Introduction

The aim of this paper is to model multivariate degradation phenomena in a multi-unit context taking into

account stochastic dependence between the units. This kind of model is not so widely studied in the

framework of reliability assessment, prognostics and maintenance optimization since the mathematical

developments associated to such cases lead to cumbersome numerical computations. Here, we intend

to propose a model structure that allows in the same time enough complexity for the representation of

phenomena and enough simplicity for the analytical calculations. Starting from given multivariate stochastic

processes with given stochastic dependence, we investigate which quantities are tractable and show that

we have a relevant set of analytical solutions for both the estimation step and the reliability assessment

step. As far as we know this precise structure has not been studied previously in such a context and gives

enough latitude to model a large class of realistic situations. Hence it turns to be a good candidate to

model stochastic dependence and degradation phenomena in a systems engineering context, especially for

reliability assessment and prognostics.

More precisely, a multi-unit system is considered, which is submitted to a random stressing environment

which arrives by shocks. These shocks may be due to some external specific demand, some significative

change of the operational condition, of the environments, etc... These shocks simultaneously affect all the

components of the system and make them dependent. Without any shock, the intrinsic deteriorations of

all components are independent. A shock is assumed to increase the deterioration of each component by a

random amount. The model takes into account two types of dependence between the components: firstly,
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a shock impacts all components at the same time; secondly, for a given shock, the deterioration increments

of the different components are considered to be correlated.

The intrinsic deterioration of the n (say) units is modeled through independent stochastic processes(
Z

(i)
t

)
t≥0

, with 1 ≤ i ≤ n. Given the usual nature of the degradation phenomena, is it seems reason-

able to suppose that each
(
Z

(i)
t

)
t≥0

should be a monotone process with continuous stat space. Accordingly,

the shocks are classically assumed to arrive independently, according to a Poisson process (Nt)t≥0. By a

shock, the deterioration of each component is increased. This is modeled assuming that all components

are aging at once at each shock arrival of a random amount, say U
(i)
j for the j−th shock and for the i−th

component. The deterioration level of the i−th component at time t hence is

X
(i)
t = Z

(i)

t+Y
(i)
t

where Y
(i)
t =

∑Nt
j=1 U

(i)
j stands for the accumulated jumps in the age of i−th component due to the shocks.

This leads to a multivariate model Xt =
(
X

(1)
t , · · · , X(n)

t

)
, where all the dependence between the X

(i)
t ’s is

induced by Yt =
(
Y

(1)
t , · · · , Y (n)

t

)
, namely by the shocks. Note that process (Xt)t≥0 is obtained through

Xt =

(
Z

(1)

t+Y
(1)
t

, · · · , Z(n)

t+Y
(n)
t

)
, (1)

so that the model corresponds to some multivariate time change in Zt =
(
Z

(1)
t , · · · , Z(n)

t

)
.

Due to its tractability and its ability to fit a large kind of data sets in the context of monotone paths, a uni-

variate Gamma process has been chosen for each
(
Z

(i)
t

)
t≥0

. We will see in the following that time changes

at shock times is just equivalent to some sudden change in the shape parameters of the initial underlying

Gamma processes. Between jumps, the shape parameters evolve linearly with time, just as for ordinary

Gamma processes. This means that between jumps, the components evolve independently as homogeneous

Gamma processes. From a practical point of view, it means that we have n degradation phenomena

whose speed is not changed by the shocks, but whose level can be significantly increased at each shock event.

The remaining of the paper is organized as follows: in section 2, the model is presented and the Laplace

transform of the degradation process is given. In section 3 an estimation scheme is proposed in case of

periodic inspections based on a method of moments. In section 4, the reliability is calculated for any coherent

system structure and the influence of the shock model parameters is studied. The results of sections 3 and 4

are illustrated by numerical examples in a case of three-unit system.

2 Degradation modeling

2.1 Definition of the model

Let us consider the following hypotheses and notations:

• Y = (Yt)t≥0 : a compound Poisson process, in Rn+, with

Yt =

Nt∑
j=1

Uj =
(
Y

(1)
t , · · · , Y (n)

t

)
and Y

(i)
t =

Nt∑
j=1

U
(i)
j

where:

– Uj =
(
U

(1)
j , , · · · , U(n)

j

)
,
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– U1, ..., Uj , ... : i.i.d. independent from (Nt)t≥0,

– U =
(
U(1), · · · , U(n)

)
is a generic version of Uj with distribution ν,

– N = (Nt)t≥0 : a Poisson process with parameter λ.

• Zt =
(
Z

(1)
t , · · · , Z(n)

t

)
t≥0

, where
(
Z

(i)
t

)
t≥0

are univariate independent Gamma processes with the

same distribution. With no loss of generality, ∀ ≤ s < t and ∀i ∈ {1, . . . , n}, Z(i)
t −Z

(i)
s is supposed to

be gamma-distributed with shape t − s and scale 1. Hence the intrinsic deterioration can be restated

as Zat =
(
Za1t , . . . , Za2t

)
where a = (a1, · · · , an).

• Y and Z are supposed to be independent.

Then we can define the whole degradation process Xt as follows:

Xt = Zat+Yt =

(
Z

(1)

a1t+Y
(1)
t

, · · · , Z(n)

ant+Y
(n)
t

)
, with a = (a1, · · · , an) .

We can also see Xt as the sum of two independent processes: Xt = X⊥t + X
‖
t where

X⊥t =
(
X

(1)⊥
t , ..., X

(n)⊥
t

)
, and X

‖
t =

(
X

(1)‖
t , ..., X

(n)‖
t

)
, with X

(i)⊥
t

d
= Z

(i)
ai t

and X
(i)‖
t

d
= Z

(i)

Y
(i)
t

.

where
d
= stands for the equality in distribution. X⊥ consists in n independent Gamma processes with

parameters (ai , 1). The whole dependence between the components of X is included in the dependence

between the components of X‖.

We should notice here that since gamma processes are Lévy processes, (Zt)t≥0 is the conjonction of n

independent Lévy process and hence is a multivariate Lévy process. Also, Yt is a multivariate compound

Poisson process and hence is a non decreasing Lévy process. Based on (1), the process (Xt)t≥0 is obtained

through multivariate subordination of the Lévy process (Zt)t≥0 and hence is a (multivariate) Lévy process.

2.2 Laplace transform

For x = (x1, · · · , xn) , y = (y1, , · · · , yn) ∈ Rn, let’s note 〈x, y〉 =
∑n

i=1 xiyi . The Laplace transform can be

calculated analytically and is given by the following proposition.

Proposition 2.1 For s = (s1, · · · , sn) ∈ Rn+, we get

LXt (s) = E
(
e−〈s,Xt 〉

)
=

n∏
i=1

(1 + si)
−ai t e−λt (1−LU(ln(1+s)))

with

LU (ln (1 + s)) = E

 n∏
j=1

(1 + sj)
−U(j)

 .

Using the Laplace transform, it is possible to show that the process is theoretically identifiable.

3 Estimation

3.1 Moments

Using the Laplace transform, the moments can also be calculated and are given by the following proposition.
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Proposition 3.1

E
(
X

(i)
t

)
= t m(i) with m(i) = ai + λ E

(
U

(i)
1

)
var

(
X

(i)
t

)
= t µ

(i)
2 with µ

(i)
2 = ai + λ E

(
U(i)

)
+ λ E

(
U(i)2

)
= m(i) + λ E

(
U(i)2

)
cov

(
X

(i)
t , X

(j)
t

)
= t ci ,j with ci ,j = λ E

(
U(i)U(j)

)
E
((
X

(i)
t − E

(
X

(i)
t

))3
)

= t µ
(i)
3 with µ

(i)
3 = 2ai + λ E

(
U(i)

(
U(i) + 1

)(
U(i) + 2

))
3.2 Estimation in case of periodic inspections

Consider M paths which are periodically and perfectly inspected every ∆t unit of time. Multivariate ob-

servations xm,j =
(
x1
m,j , . . . , x

n
m,j

)
are available where m is the path number m ∈ {1, . . .M}, j stands

for the inspection time tj = j∆t and xm,j is an observation of Xtj . From the observed degradation lev-

els a collection of degradation increments (∆xi)1≤i≤N is obtained for the random vector(∆Xi)1≤i≤N , with

∆Xi = Xi∆t − X(i−1)∆t . Let’s note m(j) = E
(
X

(j)
1

)
, v (j) = var

(
X

(j)
1

)
, cj,k = cov

(
X

(j)
1 , X

(k)
1

)
. The

following unbiaised estimators can be obtained [1], [3]:

m̂(j) =

∑N
k=1 ∆X

(j)
k

N∆t
, v̂ (j) =

∑N
k=1

(
∆X

(j)
k − m̂(j) ∆t

)2

(N − 1)∆t
, ĉj,k =

∑N
i=1

(
∆X

(j)
i − m̂j ∆t

)(
∆X

(k)
i − m̂(k) ∆t

)
(N − 1)∆t

.

(2)

An additional equation may be required for the estimation, so we propose an unbiased estimator of the

third-order moment µ
(j)
3 .

Proposition 3.2 Let’s note µ̂
(i)
3 =

∑N
k=1

(
X

(i)
k −m̂

(i) ∆t
)3

∆t (N−3+ 4
N )

then E
(
µ̂

(i)
3

)
= µ

(i)
3 .

3.3 Numerical Illustration

Consider a special case with:

• V (i), i = 1, 2, 3 are independent and their law is E (λi),

• U(1) = V (1) + V (3), U(2) = V (2) + V (3).

For i ∈ {1, 2}, we get:

m(i) = ai + λ E
(
U(i)

)
, µ

(i)
2 −m

(i) = λ E
(
U(i)2

)
, c1,2 = λ E

(
U(1)U(2)

)
,

µ
(i)
3 = 2ai + λ E

(
U(i)

(
U(i) + 1

)(
U(i) + 2

))
= 2ai + λ E

(
U(i)3

)
+ 3λ E

(
U(i)2

)
+ 2λ E

(
U(i)

)
so: µ

(i)
3 = 2ai + λ E

(
U(i)3

)
+ 3λ E

(
U(i)2

)
+ 2λ E

(
U(i)

)
= λ E

(
U(i)3

)
+ 3µ

(i)
2 −m(i)

The following equations are obtained for i = 1, 2 : m(i) = ai +λ E
(
U(i)

)
, µ

(i)
2 −m(i) = λ E

(
U(i)2

)
, µ

(i)
3 −

3µ
(i)
2 +m(i) = λ E

(
U(i)3

)
, and we have also: c1,2 = λ E

(
U(1)U(2)

)
.

Then, we get :

E
(
U(i)

)
= E

(
V (i)

)
+ E

(
V (3)

)
,

E
(
U(i)2

)
= E

((
V (i)

)2
)

+ 2 E
(
V (i)

)
E
(
V (3)

)
+ E

((
V (3)

)2
)
,

E
(
U(i)3

)
= E

((
V (i)

)3
)

+ 3 E
(
V (i)2

)
E
(
V (3)

)
+ 3 E

(
V (i)

)
E
(
V (3)2

)
+ E

((
V (3)

)3
)
,

E
(
U(1)U(2)

)
= E

(
V (1)

)
E
(
V (3)

)
+ E

(
V (2)

)
E
(
V (3)

)
+ E

(
V (3)2

)
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Moreover for an exponential law we have E
(
V (i)n

)
= n!

λni
. So:

E
(
U(i)

)
=

1

λi
+

1

λ3
,E
(
U(i)2

)
= 2

(
1

λ2
i

+
1

λiλ3
+

1

λ2
3

)
,

E
(
U(i)3

)
= 6

(
1

λ3
i

+
1

λ2
i λ3

+
1

λ2
3λi

+
1

λ3
3

)
,E
(
U(1)U(2)

)
=

1

λ1λ2
+

1

λ1λ3
+

1

λ2λ3
+

2

λ2
3

.

If we consider θi = 1
λi

then for i ∈ {1, 2, 3}, we have:

m(i) = ai + λ (θi + θ3) , x (i) :=
1

2

(
µ

(i)
2 −m

(i)
)

= λ
(
θ2
i + θiθ3 + θ2

3

)
,

y (i) :=
1

6

(
µ

(i)
3 − 3µ

(i)
2 +m(i)

)
= λ

(
θ3
i + θ2

i θ3 + θiθ
2
3 + θ3

3

)
, c1,2 = λ

(
θ1θ2 + θ1θ3 + θ2θ3 + 2θ2

3

)
.

Let’s note y (i) − θix (i) − λθ3
3 = 0 then the following function is minimized:

2∑
i=1

(
x (i) − λ

(
θ2
i + θiθ3 + θ2

3

))2

+

2∑
i=1

(
y (i) − θix (i) − λθ3

3

)2

+
(
c1,2 − λ

(
θ1θ2 + θ1θ3 + θ2θ3 + 2θ2

3

))2
.

This give an estimation
(
λ̂, θ̂1, θ̂2, θ̂3

)
of (λ, θ1, θ2, θ3), then for i = 1, 2 et j = 1, 2, 3:

âi = m(i) − λ̂
(
θ̂i + θ̂3

)
, λ̂j =

1

θ̂j

In Table bellow, a numerical example is given for 1000 paths at times 1, 2, 3, ..., 100, and the confidence

intervals are calculated with 500 simulations.

parameter a1 a2 λ λ1 λ2 λ3

true value 1 2 5 2 1 3

mean 0.97749 1.9687 5.0558 2.0102 1.0057 3.0189

standard déviation 0.12285 0.16467 0.27253 0.058268 0.028479 0.1352

CI 95% [0.96672,0.98826] [1.9543,1.9831] [5.0319,5.0796] [2.0051,2.0153] [1.0032,1.0082] [3.007,3.0307]

4 Reliability Assessment

4.1 General expression in case of any coherent system structure

We consider a system with a coherent structure Φ and n components whose degradation is modeled by

(Xt)t≥0. For each component i , the failure threshold is noted Li . D̄ is the failure area, i.e.

D̄ =
{
x ∈ Rn+ : Φ (x) = 1

}
.

Since Φ is increasing, if x ≤ y and Φ (x) = 1, then Φ (y) = 1. Hence if x ≤ y and x ∈ D̄, then y ∈ D̄: the

failure area D̄ is an upper set.

Proposition 4.1 The reliability of the system R(t) is equal to: R (t) = E
[∫
D̄C

(∏n
i=1 f

(Γ)

ai t+Y
(i)
t

(zi)

)
dz

]
where f

(Γ)
θ is the Gamma probability density fonction with shape θ and scale 1.

Proof:

R (t) = P
(
Xt /∈ D̄

)
= E

[
E
(
1Zat+Yt /∈D̄|Yt

)]
= E [G (Yt)]
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with:

G (x) = E
(
1Zat+x /∈D̄

)
= P

(
Zat+x /∈ D̄

)
=

∫
D̄C

(
n∏
i=1

f
(Γ)
ai t+xi

(zi)

)
dz

2

Apart from particular cases, the law of Yt is not tractable analytically. The goal in the following is to show

some general properties of R(t) based on the above expression.

4.2 Impact of the shocks frequency

The main goal here is to study the impact of the shocks frequency on the system lifetime.

Proposition 4.2 Consider two systems S and S̃ with the same structure, and the same parameters except

the ones of the Poisson processes that triggers the shock arrivals. We note them respectively λ and λ̃

for S and S̃. We have for example: λ ≤ λ̃. If we note R(t) and R̃ (t) the associated reliabilities, then

R (t) ≥ R̃ (t) for any t ≥ 0 and the lifetime of S̃ is stochastically lower than the one of S .

Proof:

Since λ ≤ λ̃, Nt ≺sto Ñt , where ≺sto states the usual stochastic order [2]. We can deduce from [4] that:

Yt =

Nt∑
i=1

Ui ≺sto Ỹt =

Ñt∑
i=1

Ui ,

Moreover we have: FZat+Yt (z) =
∫
Rn+

∏n
i=1 F

(Γ)
ai t+yi

(zi)PYt (dy) where FZat+Yt denote the cumulative density

functions of Zat+Yt and F
(Γ)
ai t+yi

is the c.d.f. of a Gamma r.v. with shape ai t + yi and scale 1.

Let us note Ryi a random variable with a cumulative density function F
(Γ)
ai t+yi

. If xi ≤ yi , then Rxi ≺sto Ryi .
Since Yt ≺sto Ỹt , we can deduce from Thm 6B18 of [4] that Zat+Yt ≺sto Zat+Ỹt . At last, D̄ is an upper set,

so we know that P
(
Zat+Yt ∈ D̄

)
≤ P

(
Zat+Ỹt ∈ D̄

)
and that R (t) = P

(
Zat+Yt /∈ D̄

)
≥ R̃ (t). 2

This proposition means that the lifetime of the system stochastically decreases when the shock frequency

increases.

4.3 Impact of the dependence between the shocks increments

The main goal here is to study the impact of the dependence between the shocks increments U(j) on the

system lifetime. Consider two systems S and S̃ with the same structure, and the same parameters except

that the dependence between the increments Ũ(j) is higher than the dependence between the increments

U(j). The marginal laws of the increments Ũ(j) and U(j) are the same. This hypothesis can be formalized by

the [4], [2] :

• ”lower orthant order”, where Ũ ≺l .o. U if and only if FU ≤ FŨ ,

• ”upper orthant order”, where U ≺u.o. Ũ if and only if F̄U ≤ F̄Ũ ,

• ”positive quadrant dependence (PQD) order” where U ≺PQD Ũ if and only if (Ũ ≺l .o. U and U ≺u.o.
Ũ).

Proposition 4.3 Considering the previous notations, the following results hold:

1. If Ũ ≺l .o. U and if the system is a series structure then R (t) ≤ R̃ (t) for any t ≥ 0. Hence, for a series

structure, the lifetime is stochastically higher as the dependence between the components increases.
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2. If U ≺u.o. Ũ and if the system is a parallel structure, then R (t) ≥ R̃ (t) for any t ≥ 0. Hence, for a

parallel structure, the lifetime is stochastically higher as the dependence between the components is

decreases.

3. If U ≺PQD Ũ, then R (t) ≤ R̃ (t) for a series structure and R (t) ≥ R̃ (t) for a parallel one.

Proof:

1. Considering that Ui �l .o. Ũi for any i ≥ 1 and that Nt and Ũi are independent, we know according to

Thm 6.G.7 in[4] that:

Yt =

Nt∑
i=1

Ui �l .o. Ỹt =

Nt∑
i=1

Ũi .

Moreover, FZat+Yt (z) = E
(∏n

i=1 ϕi

(
Y

(i)
t

))
with ϕi (yi) = F

(Γ)
ai t+yi

(zi) . According to the previous

proof, we know that ϕi (yi) is decreasing as a function of yi (since Ryi with c.d.f. F
(Γ)
ai t+yi

stochastically

increases with yi). According to Thm 6.G.1(b) in [4], we can deduce that:

FZat+Yt (z) = E

(
n∏
i=1

ϕi

(
Y

(i)
t

))
≤ FZat+Ỹt (z) = E

(
n∏
i=1

ϕi

(
Ỹ

(i)
t

))
and that:

R (t) = P
(
Zat+Yt ∈ D̄c

)
= FZat+Yt (L) ≤ R̃ (t)

since for a series system, we have D̄c = [0, L1[× · · · × [0, Ln[.

2. Considering that Ui ≺u.o. Ũi for any i ≥ 1, we show in the same way: Yt ≺u.o. Ỹt . Moreover

F̄Zat+Yt (z) = E
(∏n

i=1 ψi

(
Y

(i)
t

))
with ψi (yi) = F̄

(Γ)
ai t+yi

(zi) , where ψi increases as a function of yi .

According to Thm 6.G.1(a) in [4], we deduce that:

F̄Zat+Yt (z) = E

(
n∏
i=1

ψi

(
Y

(i)
t

))
≤ F̄Zat+Ỹt (z)

and that

1− R (t) = P
(
Zat+Yt ∈ D̄

)
= F̄Zat+Yt (L) ≤ 1− R̃ (t)

since for a parallel structure: D̄ = [L1,∞[× · · · × [Ln,∞[.

3. If U ≺PQD Ũ, then Ũ ≺l .o. U and U ≺u.o. Ũ.

2

4.4 Numerical illustration

4.4.1 Model of dependence for a three units system

Let us consider a system of 3 units, with one in series (C1), and two in parallel (C2 and C3), see Figure 1.

[Fig. 1 about here.]

Then:

D̄ =
(

[L1,∞[×R2
+

)
∪ {R+ × [L2,∞[×[L3,∞[}

and

R (t) = E
[
F

(Γ)

a1t+Y
(1)
t

(L1)

(
1− F̄ (Γ)

a2t+Y
(2)
t

(L2) F̄
(Γ)

a3t+Y
(3)
t

(L3)

)]
To focus on the dependence, lets take ai = 0. Concerning the dependence, we choose the following model:

for i ∈ {1, 2, 3} and Ui = Vi + V4. The laws of the variables Vi is Γ (αi , 1) for i ∈ {1, · · · 4} and are

independent. So for i = 1 : 3, the law of Vi is Γ (Ai , 1), with Ai = αi + α4 and the dependence is directly

controlled by the parameter α4.
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4.4.2 Impact of the dependancies

The aim is to change the dependence but keeping the same marginal laws (Ai is fixed for i = 1 : 3). As the

dependence is controlled by the parameter α4, let it vary between 0 and min (Ai , i = 1 : 3), and consider

αi = Ai − α4.

Figures 2 and 3 show the evolution of FU (u) and F̄U (u) as a function of α4 with Ai = 1, for i = 1 : 3 and

for u = (1, 1, 1). When α4 is increasing, FU (u) and F̄U (u) are increasing, which means that the dependence

increases according to ≺l .o. and ≺u.o. with α4, and so increases according to ≺PQD.

[Fig. 2 about here.]

Let now take λ = 10, α4 = [0 : 0.1 : 1] while keeping Ai = 1, for i = 1 : 3. The evolution of R (t0) as a

function of α4 is considered for t0 = 10. Two cases are studied and depicted respectively in Figures 4 and 5:

case 1 corresponds to L = [1000, 100, 100] and case 2 to L = [100, 10, 100]. In case 1, R (t0) is decreasing

with the dependence, whereas in the second one, it is increasing. A possible interpretation is the following

one: in case 1, unit C1 is much more reliable than the other ones such that the system behavior is closed

to a parallel structure, and in case 2, unit 2 is much less reliable than the other ones, such that the system

behavior is closed to a series structure. From a more general point of view, it can be noticed that when

there is neither pure series nor pure parallel structure, it is impossible to exhibit general rules concerning the

impact of the dependence on the system reliability.

Finally the evolution of R (t0) is given in Figure 6 for λ varying from 5 to 10 and for Ai = 1, for i = 1 : 3,

α4 = 0.5, L = [100, 100, 100] and t0 = 10. It shows the decreasing of the system reliability as the shocks

frequency increases as stated in Prop. 4.2.

[Fig. 3 about here.]

5 Conclusion

The proposed model allows to consider stochastic dependencies in a multi-unit context with tractable cal-

culation for the reliability. Further work is necessary to investigate some different topics: the correct use

of the additional equation in the estimation step, the non-periodic inspection policy, the calculation of the

remaining useful lifetime and the use of the above results in a maintenance context. At last, we are looking

for more precise applications with suitable form of dependencies to enhance the interest of the proposed

model.
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Fig. 2: Evolution of FU (u) with respect of α4.
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Fig. 3: Evolution of F̄U (u) with respect of α4.
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Fig. 4: Evolution of R (t0) with respect

of α4, case 1.
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Fig. 5: Evolution of R (t0) with respect

α4, case 2.
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Fig. 6: Evolution of R (t0) with respect

of λ.


