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ABSTRACT. In dynamic reliability, the evolution of a system is modelled by a piecewise determin-
istic Markov process, which depends on different data. Assuming such data to depend on some
real parameter p, our aim is to compute the derivative with respect to p of the mathematical
expectation of some functions, in view of sensitivity analysis. Thanks to the use of an implicit
�nite volume scheme for approximating the marginal distributions of the piecewise determin-
istic Markov process, these derivatives can be calculated using the adjoint-state method. The
ef�ciency of the method is proven by a numerical example, where the derivatives are computed
both by �nite differences and by the adjoint state method.
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1. Introduction

In dynamic reliability, the time-evolution of a system is described by a piecewise
deterministic Markov process (PDMP) (It; Xt)t�0 (see [DAV 84]). The �rst com-
ponent It is discrete, with values in a �nite state space E. Typically, it indicates the
state (up/down) for each component of the system at time t. The second component
Xt, with values in a Borel set V � Rd, stands for environmental conditions, such as
temperature, pressure, and so on. Both components of the process interact with each
other: the process jumps at many countably isolated random times; by a jump from
(It� ; Xt�) = (i; x) to (It; Xt) = (j; y) (with (i; x), (j; y) 2 E � V ), the transition
rate between the discrete states i and j depends on the environmental condition x just
before the jump and is a function x 7�! a (i; j; x). Similarly, the environmental con-
dition just after the jump Xt is distributed according to a distribution �(i;j;x) (dy),
which depends on both components just before the jump (i; x) and on the post-jump
discrete state j. For the sake of simplicity, we here assume �(i;j;x) (dy) to be a Dirac
measure: �(i;j;x) (dy) = �F (i;j;x) (dy). Between jumps, the discrete component It



is constant, whereas the evolution of the environmental condition Xt 2 V � Rd is
deterministic, solution of a set of differential equations which depends on the �xed
discrete state: given that It(!) = i for all t 2 [a; b], we have d

dtXt(!) = v(i;Xt(!))
for all t 2 [a; b], where v is a mapping fromE�V to V . The jump rates a(i; j; x), the
jump function F (i; j; x), the velocity �elds v (i; x) are assumed to depend on some
family of parameters P 2 Rk, where k 2 N can be quite large.
Given such a PDMP (It; Xt)t�0, our aim is to provide information about the sens-
itivity with respect to the elements of P , of expressions given under the form of the
mathematical expectation of some bounded measurable functions h (which can also
depend on p 2 P ) of the process:

R�0(t) = E�0
�Z t

0

h(Is; Xs) ds

�
where �0 is the initial distribution of the process. Such expressions include e.g. cumu-
lative availability or production availability on some [0; t], mean number of failures
on [0; t], mean time spent by (Xs)0�s�t between two given bounds.
This sensitivity analysis can be guided by the knowledge of the �rst-order logarithmic
derivatives of R�0(t) with respect to p, where p 2 P . Indeed, one can order the
components of P , following the dimensionless expression

IFp =
p

R�0(t)

@R�0(t)

@p
; [1]

which we call the importance factor in R�0(t) of the parameter p 2 P . Note that
such an expression only makes sense when considering a never vanishing parameter
p, which we consequently assume to be positive. This kind of sensitivity analysis
has already been studied by Gandini [GAN 90] for pure jump Markov processes with
countable state space, and extended to PDMP in [MER 07], with a more restrictive
model than in the present paper, however.
Since the marginal distributions of the process (It; Xt)t�0 are, in some sense, the
weak solution of linear �rst order hyperbolic equations [3] [COC 06], the expressions
for the derivatives of the mathematical expectations can be obtained by resolving the
dual problem, as suggested in [LIO 68] for a wide class of partial differential equa-
tions. We show here that the resolution of the dual problem provides an ef�cient
numerical method, when the marginal distributions of the PDMP are approximated
using a �nite volume method.

2. Theoretical results

For p 2 P , exponent (p) is generally added to quantities depending on p, but is
sometimes omitted, in order to prevent too cumbersome expressions. All the paper
is written under the following assumptions (H): let O be an open subset of R+; for
each p in O, there is some neighbourhood N(p) of p in O such that, for all i; j 2
E � E, the function (x; p) 7�! a(p)(i; j; x) is bounded on V � N(p), continuously
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differentiable on V �O, with all partial derivatives uniformly bounded on V �N(p);
the function (x; p) 7�! F (p)(i; j; x) is continuously differentiable on V �O, bounded
on V � N(p), with all partial derivatives uniformly bounded on V � N(p); for all
i 2 E, the function (x; p) 7�! v(p)(i; x) is bounded on V �N(p) by some Cv;N(p) =
maxi2E sup(x;q)2V�N(p)

��v(q) (i; x)�� > 0, continuously differentiable on V � O,
with all partial derivatives uniformly bounded on V �N(p); for all i 2 E, the function
(x; p) 7�! h(p)(i; x) is bounded on V �N(p), continuously differentiable on V �O
with uniformly bounded partial derivatives on V �N (p).

We denote by �(p)t (i; dx) the distribution of the Markov process
�
I
(p)
t ; X

(p)
t

�
t�0

at time t with initial distribution �0 (independent on p). We then have

R(p)�0 (t) =

Z t

0

X
i2E

Z
V

h(p) (i; x) �(p)s (i;dx) ds: [2]

In order to express @
@pR

(p)
�0 (t), we �rst introduce the in�nitesimal generator H(p) of

the Markov process (Is; (Xs; s))s�0 :

De�nition 1 LetDH be the set of functions '(i; x; s) fromE�V �R+ toR, such that
for all i 2 E the function (x; s) 7�! '(i; x; s) is bounded, continuously differentiable
on V � R+ and such that the function x 7�! @'

@s (i; x; s) + v
(p)(i; x) � r'(i; x; s) is

bounded on V � R+. For ' 2 DH , we de�ne

H(p)'(i; x; s) =
X
j2E

a(p)(i; j; x)'(j; F (p)(i; j; x); s) +
@'

@s
(i; x; s)

+ v(p)(i; x) � r'(i; x; s)

where F (p)(i; i; x) = x and a(p)(i; i; x) = �
P

j 6=i a
(p)(i; j; x) for all (i; x) 2 E�V .

It is then known from [COC 06] that
�
�
(p)
s (i;dx)

�
s�0

is the unique family of
measures solution to:

�(p)s ' (�; �; s) = �(p)0 ' (�; �; 0) +
Z s

0

�(p)u H(p)' (�; �; u) du [3]

for all ' 2 DH and all s 2 R+ (Chapman-Kolmogorov equation).

For example, in case F (p)(i; j; x) = x and assuming regular enough data, the
solution is expected to have a density with respect to Lebesgue measure: �(p)t (i;dx) =
r(p)(i; x; t)dx. The Chapman-Kolmogorov equation then is a weak form of

@r(p)

@t
(i; x; t) + div

�
r(p)(i; x; t)v(p)(i; x)

�
=
X
j2E

a(p)(j; i; x)r(p)(j; x; t):

Next we introduce some functions, called importance functions:
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Proposition 2 Let t > 0. Under assumptions H, there exists one and only one func-
tion'(p)t 2 DH such that'(p)t is solution of the differential equationH(p)'

(p)
t (i; x; s) =

h(p) (i; x) for all (i; x; s) 2 E � V � [0; t[, with the initial condition '(p)t (i; x; t) =

0 for all (i; x) 2 E�V . The function '(p)t is called the importance function associated
with

�
h(p); t

�
.

The following theorem provides an expression for
@R(p)

�0

@p (t) based on [3], thus
extending [GAN 90] and adapting the classical works inspired by [LIO 68] to the
probabilistic framework. The proof is not given here due to the reduced size of the
present paper but will be provided in a forthcoming paper.

Theorem 3 Under assumptionsH, the function p 7�! R
(p)
�0 (t) is continuously differ-

entiable with respect to p and

@R
(p)
�0

@p
(t) =

Z t

0

�(p)s
@h(p)

@p
ds�

Z t

0

�(p)s
@H(p)

@p
'
(p)
t ds [4]

where, for all ' 2 DH and all (i; x; s) 2 E � V � R+, we set:

@H(p)

@p
' (i; x; s) :=

X
j2E

@a(p)

@p
(i; j; x) '(j; F (p)(i; j; x); s) +

@v(p)

@p
(i; x) � r'(i; x; s)

+
X
j2E

a(p)(i; j; x)

�
r'(j; F (p)(i; j; x); s) � @F

(p)

@p
(i; j; x)

�
:

3. The �nite volume scheme

We now want to provide a numerical approximation for
@R(p)

�0

@p (t), writing a dis-
crete counterpart of expression [4]. With that aim, we �rst calculate �s(i;dx) using the
implicit �nite volume scheme from [EYM] (which is known to converge to the unique
solution of [3]). The adjoint state method applied to the discrete setting will then also
provide an approximation for '(p)t (i; x; s) for all 0 � s � t and all (i; x) 2 V . Let
us �rst recall the implicit �nite volume scheme: letM be a given partition of V satis-
fying regularity properties (details in [EYM]) and for N(p) �xed, let " 2 [0; Cv;N(p)]
be �xed too. We then set:

w
(i)
K;L = max(jv

(i)
K;Lj; ") with v

(i)
K;L =

1

m(KjL)

Z
KjL

v(i)(x) � nKLds(x);

for all K 2 M, all L 2 NK and all i 2 E, where KjL stands for the interface
between K and L, ds(x) is the N � 1 dimensional measure on KjL, and m(KjL) is
the measure ofKjL.
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Note: The condition " > 0 is used in the convergence proof in [EYM]. Nevertheless,
in the practical cases presented here, we let " = 0 in order to avoid an increase of the
numerical diffusion.

We also set:

a
(i;j)
K;L =

1

m(K)

Z
K

a(i;j) (x)

�Z
L

�(i; j; x) (dy)

�
dx [5]

for allK;L 2M, i; j 2 E. For a given time step k > 0, the scheme then writes:

�
(0)
i;K =

1
m(K)

R
K
�0(i; dx); 8K 2M;8i 2 E

and

m(K)(�
(n+1)
i;K � �(n)i;K)

+k
P

L2NK
m(KjL)

�
v
(i)
K;L

�
(n+1)
i;K +�

(n+1)
i;L

2 +
w
(i)
K;L

2 (�
(n+1)
i;K � �(n+1)i;L )

�
= �k m(K)�(n+1)i;K

P
j2E

P
L2M a

(i;j)
K;L + k

P
j2E

P
L2Mm(L)a

(j;i)
L;K�

(n+1)
j;L ;

[6]
for allK 2M, all i 2 E and all n 2 N.

For (i;K) 2 E �M, we now set:

�hi;K =
1

m(K)

Z
K

h(p) (i; x) dx: [7]

For t = N�t, with N � 1, a discrete approximation of R(p)�0 (t) is given by:

�R
(p)
N =

NX
n=1

X
i2E

X
K2M

�tm(K)�
(n)
i;K
�hi;K

By imitating the procedure used to evaluate @
@pR

(p)
�0 (t) in [4], we introduce discrete

versions of H and of the importance function 't (respectively �H and �'):

Lemma 4 Let D �H be the set of the families � =
�
�
(n)
i;K

�
(i;K;n)2E�M�N

such that

sup(i;K)

����(n)i;K

��� < +1 for all n 2 N, and let �H be the operator de�ned on D �H by
�H (�) =

�
�H (�)

(n)
i;K

�
(i;K;n)2E�M�N

with

�
�H (�)

�(n)
i;K

=
�
(n+1)
i;K � �(n)i;K

�t
+

1

2m(K)

X
L2NK

�
�
(n)
i;L � �

(n)
i;K

�
m(KjL)

�
v
(i)
K;L + w

(i)
K;L

�
+
X
j2E

X
L2M

a
(i;j)
K;L

�
�
(n)
j;L � �

(n)
i;K

�
for all (i;K; n) 2 E �M� N:
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Given �h =
�
�hi;K

�
(i;K)2E�M where �hi;K is de�ned by [7], there exists a unique

family �' =
�
�'
(n)
i;K

�
(i;K;n)2E�M�N

2 D �H solution of:

�
�H ( �')

�(n)
i;K

= �hi;K for all (i;K; n) 2 E �M� f0; :::; N � 1g [8]

with �'(n)i;K = 0 for all (i;K) 2 E �M, all n � N .

We then have the following result, which gives an expression for @
@p

�
�R
(p)
N

�
.

Theorem 5 The following relation holds:

@

@p

�
�R
(p)
N

�
= �t

X
i2E

X
K2M

NX
n=1

m(K)�
(n)
i;K

 
@

@p
�hi;K �

�
@ �H

@p

�(n�1)
i;K

( �')

!
[9]

where, for all (i;K; n) 2 E �M� N and � 2 D �H :�
@ �H

@p

�(n)
i;K

(�) =
1

2m(K)

X
L2NK

�
�
(n)
i;L � �

(n)
i;K

�
m(KjL) @

@p

�
v
(i)
K;L + w

(i)
K;L

�
+
X
j2E

X
L2M

�
@

@p
a
(i;j)
K;L

��
�
(n)
j;L � �

(n)
i;K

�

We show on the numerical example the classical properties resulting from the use
of this adjoint method for the sensitivity analysis.

4. Numerical results

The following example is a simpli�ed version of a benchmark studied in [DUF 06]
and [EYM 08]. A gas production device is considered. It is composed of one produc-
tion unit, which can be adjusted up or down. When up, the production rate of the unit
varies between nominal and maximal rates, with nominal rate �nom = 7; 500 m3/h
and maximal rate �max = 10; 000 m3/h. When down, the production rate of the unit
is zero. The device is required to produce gas at the nominal rate �nom. In order to
prevent the device production being stopped due to failures of the unit, a reservoir R
is used, with maximal capacity R = 2 � 106 m3: when the unit is down, the device
production is achieved by taking in R the required production, at least as long as the
level in R is not too low. When the unit is up, its production rate is nominal as long
asR is full. When the level inR is lower, the unit produces at a higher rate (maximal
rate, as long as the level in R is not too high) and the complementary production is
used to re�ll R. The device production rate is then a function of the unit state and of
the level inR. The repair time of the unit is log-normally distributed, with p.d.f.:
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f(t0;�) (t) =
1

t �
p
2�
exp

�
� 1
2

�
ln(t=t0)

�

�2�
for t > 0,

where t0 = 1:26 h, � = 2:25 h, mean = 15.8 h, standard deviation = 198 h.
The associated hazard rate function is:
a(t0;�)(t) = f(t0;�) (t) =

R +1
t

f(t0;�) (s) ds for t > 0.
The time to failure of the unit is Weibull distributed with the associated hazard rate
function: a(�;�) = ��t��1 for t > 0, where � = 1

103 h, � = 1:01, mean = 930 h,
standard deviation = 921 h.
We set E = f0; 1g, where 0, 1 are the down and up states for the unit, respectively.
The time-evolution of the system is then described by a PDMP (It; Xt)t�0 with val-
ues in E �R2 whereXt = (X1;t; X2;t) : componentX1;t stands for the time elapsed
in the current discrete state; component X2;t stands for the level in the reservoir. The
initial state of the system is (I0; X0) = (1; (0; R)). The data for the PDMP are:

a (1; 0; x) =

�
a(�;�) (x1) if x1 � 0
a(�;�) (0) = 0 if x1 < 0

; a (0; 1; x) =

�
a(t0;�) (x1) if x1 � 0
a(t0;�) (0) = 0 if x1 < 0

�(1; 0; x) (dy) = � (0; 1; x) (dy) = �(0;x2) (dy)

where x = (x1; x2) 2 R2. We assume the speed of �lling / emptying the reservoir to
be as follows: we set r1 = r0 = R

10 and, for x = (x1; x2) 2 R
2, we take:

v (1; x) =

 
1; (�max � �nom)min

 
(R� x2)+

r1
; 1

!!

v (0; x) =

�
1;��nommin

�
x+2
r0
; 1

��
The device production rate function is given by: � (i; x) = �nomh(i; x)with h (1; x) =
1 and h (0; x) = min

�
x+2
r0
; 1
�
.

For this benchmark, we focus on the cumulative production availability at time t =
100; 000 h, obtained by plugging the function h in [2], and on its derivative with re-
spect of p 2 P with P = ft0; �; �; �; �nom; �max; r0; r1; Rg.
Since the discretization of R2 needs to be �nite to implement the numerical scheme,
we consider some gridded domain of the shape [0; Li] � [0; R] (with i = 0; 1),
where Li is chosen large enough to ensure most of the probability mass will lie in
[0; Li] � [0; R]: hence we take L0 = 2:5 106 h and L1 = 1 106 h, which leads
to � (fig � Rn[0; Li]� [0; R]) ' 0 for i = 0; 1 at the precision of the results dis-
played just below. In both states, the domain is gridded with 500 � 40 grid blocks;
the steps are in geometric progression in the �rst direction, which corresponds to the
repair/working times, and are constant in the second direction, which corresponds to
the level of gas in the reservoir. The time step is equal to �t = 1; 000 h. With these
data, we �nd that R�0(100; 000) ' 99463:2. The importance factors de�ned by [1]
are approximated by [9], in which the derivatives of the coef�cients are approximated
by �nite differences resulting from a variation " of p. We then provide the value e,
which is the relative error between the variation predicted by the importance factor,

7



and that which is observed by two simulations with a small variation of p. We also
provide the importance factor for each parameter.

p t0 � � �

e 6:53E�5 2:43E�4 1:90E�5 1:18E�4
IFp �7:70E�3 �5:39E�2 �5:30E�3 �3:87E�2

p �nom �max r0 r1 R

e 5:56E�5 4:75E�9 3:88E�3 4:97E�3 1:62E�3
IFp �2:71E�3 1:75E�4 �3:15E�5 �4:43E�6 2:55E�3

We can see in these results that the relative error between the importance factors
computed by the method presented here and by �nite differences is very small, which
shows the accuracy of the method. We can also notice that the most important para-
meters measured by their decreasing importance factors are �, �, t0, �, �nom, R,
whereas �max, r0 and r1 seem somewhat less important. Finally, let us give the com-
puting times: 19 s for the computation of both [6] and [8] and 10 s for [6] only. The
computation of all derivatives hence requires (9 + 1) � 10 = 100 s by �nite differ-
ences, to be compared to the 19 s required by the method presented here, showing the
ef�ciency of the method.
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