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Abstract

We study inner obstacle problems for a class ofstrongly degenerateparabolic–hyperbolic quasilinear operators
associated with Dirichlet data in an open bounded subset ofRp, p ≥ 1.Wefirst give the definition of aweak entropy
solution that warrants uniqueness; the boundary conditions are expressed by using the framework ofdivergence
measure fields. The existence of such a solution is obtained through the vanishing viscosity method.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Mathematical setting

Obstacle problems in physics and mechanics have been described and studied by many authors
([1–3], and so on). This paper focuses on the mathematical analysis of a positiveness condition for
the quasilinear second-order operator stemmingfrom the theory of fluid flows through porous media:

P(t, x, .) : u → ∂t u +
p∑

i=1

∂xiχi (t, x,u) + ψ(t, x,u) −�φ(u),
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whereφ is anondecreasing function (in particular,φ′ may be equal to zero on non-empty intervals ofR).
Such a study within the context of petroleum engineering and for transport of pollutants in the subsoil
has been developed in [10]. Let T be a positive real,Ω a bounded subset ofRp, p ≥ 1, Q = ]0, T [×Ω
andΣ = ]0, T [×∂Ω ; theouter normal ofΩ is denoted asν. For a given nonnegative measurable and
bounded functionu0 we prove that the formal Cauchy–Dirichlet problem: find a bounded and measurable
functionu such that

u ≥ 0 in Q, P(t, x,u) ≥ 0 anduP(t, x,u) = 0 on Q, (1)

u = 0 onΣ , (2)

u(0, .) = u0 onΩ, (3)

has a unique solution. The special framework of astrongly degenerateoperatorP leads us to look for
a weak entropy formulation for (1)–(3) in the samespirit as Carrillo [4] or more recently as Mascia,
et al. [5], for some diffusion–convection equations. Such a formulation is motivated by the existence, in
the computational domain, of nondegenerate parabolic zones (corresponding toφ′ > 0) and hyperbolic
ones (in whichφ′ ≡ 0), glued together in a way that depends on the solution itself. Moreover, as
clearly mentioned in [5], in order to take into account possible boundary layers, the boundary conditions
should be interpreted as compatibility inequalities onΣ , as they are in thecase of quasilinear first-order
equations (see [6] in thecase ofBV(Q)∩ L∞(Q)-solutions or [7] for only L∞(Q)-solutions). Here, we
use the mathematical framework of divergence measure fields to provide a formulation that generalizes
F. Otto’s first-order relations to the second order.

1.2. Notation and main assumptions on data

The hypotheses onχ andψ are detailed in [8]. We simply mention thatχ ≡ (χ1, . . . , χp) andψ
have partial derivatives respectively to the second and first order and to deal with bounded solutions we
suppose that∂xiχi andψ are Lipschitzian with respect to their third variable, uniformly in(t, x), with
Lipschitz constantsM ′

∂xi χi
andM ′

ψ . We thus define, for anyt of [0, T ],

M(t) = K1

K2
(eK1t − 1)+ ‖u0‖L∞(Ω)e

K1t ,

whereK1 = ∑
i∈{1,...,p} M ′

∂i χi
+ M ′

ψ andK2 = ‖Divxχ(t, x,0) + ψ(t, x,0)‖∞.

• φ ∈ W1,+∞(] − M(T),M(T)[) andφ(0) = 0. Moreover, we setE = {l ∈ R, {l } = φ−1{φ(l )}}.
• ∂Ω is aC2-class frontier and is locally the graph of aC2-class function through aC2-covering with

open sets(Bi )i∈I , I � N. To simplify, we write B ∈ B whereB is the set of all possible recoverings
of ∂Ω (see [5]).

• For anyn in N∗, Hn denotes then-dimensional Hausdorff measure.
• DM2(Q) = {V ∈ (L2(Q))p+1,Div(t,x)V ∈ Mb(Q)}, whereMb(Q) is the space of bounded

Radon measures onQ, is the L2-space of the divergence measure field. The next generalized
Gauss–Green formula coming from the one stated in [9] holds for anyV in DM2(Q) and ξ in
H1(Q) ∩ L∞(Q) ∩ C(Q):

〈V, ξ 〉∂Q =
∫

Q
V.(∂tξ,∇ξ)dxdt +

∫
Q
ξ d[Div(t,x)V].

• ∀λ > 0, ∀x ∈ R+, sgnλ(x) = min
( x
λ
,1

)
andsgnλ(−x) = −sgnλ(x).
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2. Mathematical formulation and uniqueness property

Definition 1. A measurable bounded functionu is a weak entropy solution to (1)–(3) if

u ≥ 0 a.e. in Q, ∂tu ∈ L2(0, T; H−1(Ω)), φ(u) ∈ L2(0, T; H1
0 (Ω)), (4)

ess lim
t→0+

∫
Ω

|u(t, x) − u0(x)| dx = 0,

∀k ∈ R+,∀B ∈ B,∀ζ ∈ D(B), ζ ≥ 0, Ukζ ∈ DM2(Q), (5)

∀k ∈ R+,∀ξ ∈ H1
0 (Q) ∩ L∞(Q), ξ ≥ 0,

∫
Q

Uk.∇ξ dxdt −
∫

Q
sgn(u − k)G(u, k)ξ dxdt ≥ 0, (6)

∀B ∈ B,∀ζ ∈ D(B), ζ ≥ 0,
∫
Σ

F(k,0).νξζdHp ≤ 〈Ukζ, ξ 〉∂Q + 〈U0ζ, ξ 〉∂Q , (7)

∀ξ ∈ L∞(Q) ∩ H1(Q) ∩ C(Q), ξ(T, .) = ξ(0, .) = 0, ξ ≥ 0 and∀k ∈ R+ where

F(u, k) = sgn(u − k){χ(t, x,u) − χ(t, x, k)}, G(u, k) = Divxχ(t, x, k) + ψ(t, x,u),

Uk = (|u − k|,−∇|φ(u) − φ(k)| + F(u, k)), ∇ζ = (∂tζ,∇ζ ).
Remark 1. If u is a weak entropy solution to (1)–(3) then it is aweak solution in the sense that (4) holds
and the strong variational inequality is fulfilled∀v ∈ H1

0 (Ω), v ≥ 0 a.e. inΩ , for a.e.t of ]0, T [:

〈∂t u, v − φ(u)〉 +
∫
Ω
(∇φ(u)− χ(t, x,u)).∇(v − φ(u))dx

+
∫
Ω
ψ(t, x,u)(v − φ(u))dx ≥ 0. (8)

We first establish theuniqueness of a weak entropy solution. The proof uses a comparison theorem
which is a J. Carrillo extension to second-order equations of the classical hyperbolic method based on a
doubling of the time and space variables [4]. For the treatment of the boundary terms the demonstration
refers to [5]. However, numerous adaptations are necessary due to the framework of obstacle problems
and the argumentation relies on two lemmas. The first one is aninequality versionof the standardenergy
equalityowing to Carrillo [4] and is satisfied by any weak solution:

Lemma 1. Let u be a weak solution to(1)–(3). Then, ∀ξ ∈ D(Q), ξ ≥ 0, ∀k ∈ E, k ≥ 0,∫
Q
(Uk.∇ξ − sgn(u − k)G(u, k)ξ)dxdt ≥ lim sup

λ→0+

∫
Q

sgn′λ(φ(u)− φ(k))(∇φ(u))2ξ dxdt.

Proof. Wemay chooseφ(u)−λ/‖ξ‖∞ sgnλ(φ(u)−φ(k))ξ as a test function in (8). By integrating over
]0, T [ we obtain an inequality in which the convective term is integrated by parts in order to pass to the
limit with λ. By referring to the hypo-inverseφ−1

0 of φ and denoting

Hλ(t, x, r ) =
∫ r

φ(k)
[χ(t, x, φ−1

0 (τ ))− χ(t, x, k)]sgn′λ(τ − φ(k))dτ

we have∫
Q
(χ(t, x,u)− χ(t, x, k)).∇φ(u)sgn′λ(φ(u)− φ(k))ξ dxdt
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=
∫

Q
DivxHλ(t, x, φ(u))ξ dxdt − Oλ, (9)

where in the right-hand side of (9) the first integral is integrated by parts and

Oλ =
∫

Q

∫ φ(u)

φ(k)
(Divxχ(t, x, φ

−1
0 (τ ))− Divxχ(t, x, k)) sgn′λ(τ − φ(k))dτξ dxdt.

Now let us come back to the definition ofsgn′λ and stress that, sincek belongs toE, the generalized
functionφ−1

0 is continuous atφ(k); therefore the right-hand side of (9) goes to zero withλ. �

This energy inequality is not sufficient for proving uniqueness: it is fulfilled by any weak solution
and is only true fork in E, k ≥ 0. So we complement it with the inner entropy inequality (6), which
is available for anyk in R+. This technique, adapted from Carrillo’s [4], leads to a Kruskov-type
relation between two weakentropy solutions. LetΨ be a nonnegative function ofD(Q)×D(Q). We set
d̄ = dxdtdx̃dt̃ and adda “tilde” superscript to any function in “tilde” variables.

Lemma 2. If u1 and u2 are bounded measurable functions satisfying(4) and(6), then

−
∫

Q×Q
{|u1 − ũ2|(Ψt + Ψt̃)+ sgn(φ(u1)− φ(ũ2))(∇xφ(u1)− ∇x̃φ(ũ2)).(∇xΨ + ∇x̃Ψ )}d̄

−
∫

Q×Q

{
F(u1, ũ2).∇xΨ + F̃(ũ2,u1).∇x̃Ψ

}
d̄ +

∫
Q×Q

sgn(u1 − ũ2)(G(u1, ũ2)

− G̃(ũ2,u1))Ψ d̄ ≤ 0.

Proof. On the one hand, inLemma 1written in variables(t, x) for u1, we choosek = u2(t̃, x̃) for a.e.
(t̃, x̃) in Qũ2

0 = {(t̃, x̃) ∈ Q, u2(t̃, x̃) ∈ E}. On theother hand, in (6) written in variables(t, x) for u1,

we choosek = ũ2(t̃, x̃) for a.e.(t̃, x̃) ∈ Q \ Qũ2
0 . Each inequality obtained in this way is integrated with

respect tot̃ andx̃ on the corresponding domain. By adding we obtain foru1∫
Q×Q

(
Uũ2.∇(t,x)Ψ − sgn(u1 − ũ2)G(u1, ũ2)Ψ

)
d̄

≥ lim sup
λ→0+

∫
Q×Q

ũ2
0

sgn′λ(φ(u1)− φ(ũ2))(∇φ(u1))
2Ψ d̄

≥ lim sup
λ→0+

∫
Q

u1
0 ×Q

ũ2
0

sgn′λ(φ(u1)− φ(ũ2))(∇φ(u1))
2Ψ d̄,

the last inequality being given by the fact that∇φ(u1) = 0 a.e. on Q \ Qu1
0 .

Moreover, we integrate overQ the Gauss–Green formula:∫
Q

∇xφ(u1).∇x̃[sgnλ(φ(u1)− φ(ũ2))Ψ ] dx̃dt̃ = 0.

We develop the partial derivatives and, sinceφ(ũ2) belongs toL2(0, T; H1
0 (Ω)), theλ-limit provides∫

Q×Q
∇x|φ(u1)− φ(ũ2)|.∇x̃Ψ d̄ = lim

λ→0+

∫
Q

u1
0 ×Q

ũ2
0

sgn′λ(φ(u1)− φ(ũ2))∇xφ(u1).∇x̃φ(ũ2)Ψ d̄.

We apply the same reasoning forũ2 and group all the results to obtain the desired inequality.�
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Now following [5], we state theT-Lipschitzian dependence inL1(Ω):

Theorem 1. The degenerate problem(1)–(3) admits at most one weak entropy solution. Moreover, if u1
and u2 are two weak entropy solutions associated with u0,1 and u0,2,

for a.e. t in ]0, T [,
∫
Ω

|u1(t, x)− u2(t, x)| dx ≤ eM ′
ψ t

∫
Ω

|u0,1(x)− u0,2(x)| dx.

3. Existence result

Let us now establish the existence of aweak entropysolution to (1)–(3) through the vanishing viscosity
method. The latter consists in introducing some diffusion in the whole domain via a positive parameter
δ destined to tend to 0+. Then, we defineφδ = φ + δ I dR, a bi-Lipschitzian function, so as to obtain
the nondegenerate parabolic operatorPδ and the corresponding unilateral obstacle problem formally
described by: find a measurable and bounded functionuδ such that

uδ ≥ 0 a.e. in Q, Pδ(t, x,uδ) ≥ 0 anduδPδ(t, x,uδ) = 0 on Q, (10)

uδ = 0 onΣ . (11)

3.1. A regularization of the initial data

We look for a priori estimates of the sequence(uδ)δ>0 thatare sufficient for specifying its behaviour
whenδ goes to 0+. We seek Hilbertian estimates forφδ(uδ) andW1,1(Q)-estimates foruδ. This requires
smoothness assumptions on the gradient and on the Laplacian ofφδ of the initial datum for (10) and
(11). That is why we first introduce a regularizationuε0 of u0 obtained by meansof mollifiers, so that

uε0 ∈ D(Ω), uε0 ≥ 0 a.e. in Ω, ‖uε0‖L∞(Ω) ≤ ‖u0‖L∞(Ω),

lim
ε→0+ uε0 = u0 in Lq(Ω),1 ≤ q < +∞, and a.e. on Ω,

and secondly we consider for any positiveµ andδ the solution uµ,δ,ε0 of the problem

uµ,δ,ε0 − µ�φδ(u
µ,δ,ε
0 ) = uε0 in Ω, uµ,δ,ε0 = 0 on∂Ω .

In that way,

Lemma 3. uµ,δ,ε0 ∈ H1
0 (Ω)∩ L∞(Ω), φδ(uµ,δ,ε0 ) ∈ H2(Ω) and uµ,δ,ε0 ≥ 0 a.e. inΩ . Moreover,∃C > 0

independent fromδ, µ andε such that

‖uµ,δ,ε0 ‖L∞(Ω) ≤ ‖u0‖L∞(Ω), µ‖φδ(uµ,δ,ε0 )‖2
H 1

0 (Ω)
≤ C, ‖∇uµ,δ,ε0 ‖L1(Ω)p ≤ C + ‖∇uε0‖L1(Ω)p.

3.2. A priori estimates

Firstly we freezeε andµ. To simplify the writing, they will be dropped as indexes. In this context, we
first recall the property obtained in [10] by using the method of penalization:

Theorem 2. For a given uµ,δ,ε0 , the problem (10) and (11) has a unique solution uδ in L∞(Q) ∩
H1(Q) ∩ L∞(0, T; H1

0 (Ω)) ∩ C0([0, T ]; Lq(Ω)), 1 ≤ q < +∞, with φδ(uδ) in L∞(0, T; H1
0 (Ω)).

Furthermore, uδ is characterized through the strong variational inequality, for allv in L2(Ω), v ≥ 0,
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and a.e. on]0, T [,∫
Ω

Pδ(t, x,uδ)(v − φδ(uδ))dx ≥ 0,

and fulfils the a priori estimates:

∀t ∈ [0, T ], |uδ(t, .)| ≤ M(t) a.e. in Ω,
‖∂t uδ‖L2(0,T;H−1(Ω)) + ‖Fδ(uδ)‖L2(0,T;H 1

0 (Ω))
≤ C1,

∀s ∈ [0, T ], ‖∂t Fδ(uδ)‖2
L2(Qs)

+ ‖φδ(uδ)(s, .)‖2
H 1

0 (Ω)
≤ C2 + ‖φδ(uµ,δ,ε0 )‖2

H 1
0 (Ω)

,

‖∂t uδ‖L∞(0,T;L1(Ω))+‖∇uδ‖L∞(0,T;L1(Ω)p) ≤ A1 + A2(‖∇uµ,δ,ε0 ‖L1(Ω)p + ‖�φδ(uµ,δ,ε0 )‖L1(Ω)),

1

h
‖uδ(t + h, .)− uδ(t, .)‖L1(Ω) ≤ A3 + A4(‖∇uµ,δ,ε0 ‖L1(Ω)p + ‖�φδ(uµ,δ,ε0 )‖L1(Ω)),

∀h ∈ ]0, T [,∀t ∈ ]0, T − h[, where Ci and Ai are positive constants independent from any parameter
and

Fδ(x) =
∫ x

0
(φ′
δ(τ ))

1/2 dτ.

3.3. The degenerate problem: existence of a weak entropy solution

A priori estimates of Lemma 3 and a compactness argument ensure that asδ goes to
0+(uµ,δ,ε0 )δ>0Lq(Ω)-converges, 1≤ q < +∞, towarduµ,ε0 ∈ BV(Ω) ∩ L∞(Ω), the weak entropy
solution in thesense of [4] or [5] to thedegenerate elliptic problem

uµ,ε0 − µ�φ(uµ,ε0 ) = uε0 in Ω, φ(uµ,ε0 ) = 0 on∂Ω .

Furthermore, ∃C(ε) > 0 such that ‖uµ,ε0 ‖BV(Ω)∩L∞(Ω) ≤ C(ε). Besides this,Theorem 2(with
Lemma 3) ensures that(uδ)δ>0 remains in a fixed bounded subset ofW1,1(Q) ∩ L∞(Q). Thus, a
compactness argument and Ascoli’s lemma prove the existence of a functionu in BV(Q) ∩ L∞(Q) ∩
C0([0, T ], L1(Ω)) with ∂t u ∈ L2(0, T; H1

0 (Ω)) satisfyingu ≥ 0 a.e. in Q and such that up to a
subsequence, whenδ → 0+,

uδ → u in C0([0, T ]; Lq(Ω)),1 ≤ q < +∞,

φδ(uδ) ⇀ φ(u) in H1(Q) weak.

Therefore we can state:

Theorem 3. For µ and ε fixed, the degenerate obstacle problem(1) and (2) admits a unique weak
entropy solution uµ,ε associated with uµ,ε0 . This solution belongs to BV(Q)∩L∞(Q)∩C([0, T ]; L1(Ω))
and is the limit of the whole sequence(uδ)δ>0 of solutions to problems((10), (11))δ>0 – with initial data
(uµ,δ,ε0 )δ>0 – in Lq(Q), in C([0, T ]; Lq(Ω)), 1 ≤ q < +∞, and a.e. on Q.

Idea of the proof. The key point is the proof of (5) whose demonstration is inspired by the one presented
in [5], by coming back to the penalized problem associated with (10) and (11), which consists in
introducing a positive parameterη and the nondegenerate parabolic operatorPδ,η(t, x, .) : u →
Pδ(t, x,u) − u−/η. The convergence properties of(uδ,η)η>0 towarduδ, asη goes to 0+, are widely
described in [10]. We take theL2(Q)-scalar product between the viscous-penalized equation fulfilled by
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uδ,η andsgnλ(φδ(uδ,η)−φδ(k))ζ ξ whereξ belongs toC∞(Q) andk ≥ 0. Accordingly, by passing to the
limit with respect toλ we ensure the existence of a nonnegativeκδ,η in C′(Q) (involving the penalized
term) such that for anyξ of C∞(Q)

〈κδ,η, ξ 〉 =
∫

Q
U δ,η

k .∇(ζ ξ)dxdt −
∫
Σ

F(0, k).νζ ξdHp −
∫

Q
G(uδ,η, k)sgn(uδ,η − k)ζ ξ dxdt

−
∫
Ω

|uδ,η(T, .)− k|ζξ(T)dx +
∫
Ω

|uµ,δ,ε0 − k|ζξ(0)dx − sgn(k)Jδ,η(ζ ξ)

+
∫
Σ

{χ(t, σ,0) − χ(t, σ, k)}.νζ ξdHp. (12)

The term including the normal derivative ofφδ(uδ,η) has been expressed by taking theL2(Q)-scalar
product between the viscous-penalized equation andζξ , thus leading to

Jδ,η(ζ ξ) = −
∫

Q
uδ,ηζ ∂tξ dxdt +

∫
Ω

uδ,η(T, x)ζ ξ(T, x)dx

−
∫
Ω

uµ,δ,ε0 ζξ(0, x)dx −
∫

Q
{χ(t, x,uδ,η)− χ(t, x,0)}.∇(ζ ξ)dxdt

+
∫

Q

(
Divxχ(t, x,0) + ψ(t, x,uδ,η)

)
ζξ dxdt +

∫
Q

∇φδ(uδ,η).∇(ζ ξ)dxdt.

From a priori estimates ofuδ,η anduµ,δ,ε0 , we deduce the existence of a constantC independent from
any parameter such that

|〈κδ,η, ξ 〉| ≤ C‖ξ‖∞.

Now we are in the mathematical framework exposed in [5]: (κδ,η)η>0 is a bounded sequence inC′(Q)
used with the weak-∗ topology. The latter and the previous inequality provide a bound for the limit in
C′(Q) at each step whenη andδ tend to 0+. Besides this, the convergence properties of(uη,δ)η>0,δ>0

permit one to pass tothe limits in the right-hand side of (12). Consequently, there existsκ in C′(Q) such
that|〈κ, ξ 〉| ≤ C‖ξ‖∞ and

∀ξ ∈ C∞(Q),
∫

Q
Ukζ.∇ξ dxdt = 〈κ, ξ 〉 + I + sgn(k)J(ζ ξ) −

∫
Σ

F(0, k).νζ ξdHp. (13)

whereI isan integral bounded byC‖ξ‖∞. In (13) for k = 0 andξ in D(Q), we deduce thatDiv(t,x)(U0ζ )

belongs toMb(Q). Fork > 0, the positiveness ofu ensures that for anyξ in D(Q),

J(ζ ξ) = −
∫

Q

(
U0ζ.∇ξ − ξ(Divxχ(t, x,0)ζ + ψ(t, x,u)ζ

+{χ(t, x,u)− χ(t, x,0)− ∇φ(u)}.∇ζ )) dxdt.

As a consequence|J(ζ ξ)| ≤ C‖ξ‖∞ andUkζ is in DM2(Q), for anyk in R+. Theother statements of
Theorem 3are detailed in [8] and are developed directly from (10) and (11) with typical arguments for
obtaining (6) and those exposed in [5] for (7). �

3.3.1. Statement for the initial data in L∞(Ω)
We first observe that, the parameterε being fixed,(uµ,ε0 )µ>0 remains in a bounded set ofBV(Ω).

The compact embedding of the latter spaceL1(Ω) ensures that, up to a subsequence whenµ goes to 0+,



504 L. Lévi et al. / Applied Mathematics Letters 18 (2005) 497–504

(uµ,ε0 )µ>0 goes touε0 in Lq(Ω), for any finite q. On theother hand, by construction,(uε0)ε>0 goes tou0
in Lq(Ω), 1 ≤ q < +∞. Thus by using a diagonal extraction process, we construct a sequence(uω0 )ω>0

extracted from(uµ,ε0 )µ>0,ε>0 such that limω→0+ uω0 = u0 in Lq(Ω),1 ≤ q < +∞, and a.e. onΩ .
Now we consideruω, the weak entropy solution to (1) and (2) associated with the initial datauω0

thanks toTheorem 3. If we refer toω-uniform estimates developed inTheorem 2we have:

Proposition 1. There exists a positive constant C, independent fromω, such that

∀t ∈ [0, T ], |uω(t, .)| ≤ M(t) a.e. in Ω, ‖∂t uω‖L2(0,T;H−1(Ω)) + ‖φ(uω)‖L2(0,T;H 1
0 (Ω))

≤ C.

Besides the uniqueness,Theorem 1warrants

Proposition 2. If uω1 and uω2 are weak entropy solutions to(1) and(2) related to uω1
0 and uω2

0 , then

∀t ∈ [0, T ], ‖uω1(t, .)− uω2(t, .)‖L1(Ω) ≤ eMψ t‖uω1
0 − uω2

0 ‖L1(Ω).

Let us remark that theL1(Q)-estimates inTheorem 2are notω-uniform since‖∇uµ,δ,ε0 ‖L1(Ω)p and

‖�φδ(uµ,δ,ε0 )‖L1(Ω) depend onε (through‖∇uε0‖L1(Ω)p) and 1
µ

.

So (uω)ω>0 is a Cauchy sequence inC([0, T ]; L1(Ω)) and up to a subsequence, Convergence (12),
(13) alsoholds for(uω)ω>0. By starting from (5)–(7) for uω and taking theω-limit, we prove:

Theorem 4. Let u0 be in L∞(Ω) with u0 ≥ 0 a.e. inΩ . The degenerate parabolic–hyperbolic obstacle
problem(1)–(3) admits at least a weak entropy solution inC([0, T ]; Lq(Ω)) for any finite q.
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