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Abstract

We sudy inner obstacle problems for a classtbngly degeneratparabolic—hyperbolic quasilinear operators
associated with Dirichlet data in an open bounded subg®fpp > 1. Wefirst give the definition of aveak etropy
solutionthat warrants uniqueness; the boundary coondgiare expressed by using the frameworklivErgence
measire fields The existence of such a solution is obtained through the vanishing viscosity method.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction
1.1. Mathematical setting

Obstacle problems in physics and mechanics have been described and studied by many authors
([1-3, and so on). This paper focuses on the mathematical analysis of a positiveness condition for
the quasilinear second-order operator stemrftioign the theory of fluid flows through porous media:

p
P(t,X,.) U — du+ Y 3 xi (L X, U) + ¥ (t, X, u) — Ag(u),
i=1
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whereg is anondecreasing function (in particular,may be equal to zero on non-empty intervalRpf

Such a study within the context of petroleum engineering and for transport of pollutants in the subsail
has been developed it(]. Let T be a positive real(? abounded subset &P, p > 1,Q =10, T[x {2

andX = 10, T[xd{2; theouter normal off? is denoted as. For a given nonnegative measurable and
bounded functionig we prove that the formal Cauchy-Dirichlet problem: find a bounded and measurable
functionu such that

u=>0inQ, P, x,u) >0 anduP(t,x,u) =00nQ, Q)
u=0onXx, (2)
u(0,.) = ugon {2, 3)

has a unique solution. The special framework aftrngly degenerateperatorP leads us to look for

a weak entropy formulation forlj—(3) in the samespiiit as Carrillo ] or more ecently as Mascia,

et al. B, for some diffusion—convectioequations. Such a formulation is motivated by the existence, in

the computational domain, of nondegenerate parabolic zones (corresponding-t0) and hyperbolic

ones (in which¢’ = 0), glued together in a way that depends on the solution itself. Moreover, as
clearly mentioned ing], in order to take into account possible boundary layers, the boundary conditions
should be interpreted as compatibility inequalities’oras they are in thcase of quasilinear first-order
equations (sed] in the case ofBV(Q) N L*°(Q)-solutions or [7] for only L*°(Q)-solutions). Here, we

use the mathematical framework of divergence measure fields to provide a formulation that generalizes
F. Otto’s first-order relatins to the second order.

1.2. Notation and main assumptions on data

The hypotheses o andy are detailed in§]. We simply mention thal = (x1,..., xp) andy
have partial derivatives respectively to the second and first order and to deal with bounded solutions we
suppose thady, xi andy are Lipschitzian with respect to their third variable, uniformly(inx), with
Lipschitz constant!&/lgXi X and M{ﬁ. We tus define, for any of [0, T],

K1
M(®) = 22 (€ = 1) + luoll L)€,
2
whereKs = et MéiXi + Mx//f andKy = ||Divgx (t, X, 0) + ¥ (t, X, 0)]|so-

o ¢ € WL (] — M(T), M(T)[) and¢ (0) = 0. Moreover, we seE = {l € R, {I} = ¢ L{p()}}.

e 312 is aC?-class frontier and is locally the graph of’3-class function through &2-covering with
open setgBj)ici, | & N. To simplfy, we write B € B whereB3 is the set of all pssible recoverings
of 342 (see p)).

e For anyn in N*, H" denotes the@-dimensonal Hausdorff measure.

e DM2(Q) = {V e (L2(Q)P*L, DivixyV € Mp(Q)}, where Mp(Q) is the gace of bounded
Radon measures ofp, is the L2-space of the divergence measure field. The next generalized
Gauss—Green formula coming from the one stated]nhplds for anyV in DM»(Q) andé& in
HYQ) NL®(Q) NC(Q):

(V,&)s0 = va.(atg, VE) dxdt +‘/Q§d[DiV(t’X)V].

e VA >0, ¥x € RT, sgn (x) = min (¥, 1) andsgn, (—x) = —sgry (X).
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2. Mathematical formulation and uniqueness property

Definition 1. A measurable bounded functions a weak entropy solution tal§—(3) if

u>0aeinQ, &ue L30,T; H1(2), ¢(u) € L0, T; H3(12)), (4)
esslim / [u(t, X) — ug(X)|dx =0,

t—0t Jn
vk e RT,VB € B,V¢ € D(B), ¢ > 0, U € DM2(Q), (5)

Vk e RT,VE € H}(Q) NL>®(Q), & > o,/ Uk.VE dxdt — / sgn(u — k)G(u, k)& dxdt > 0, (6)
Q Q

VB € B.V¢ € D(B), ¢ = O, fE F(k, 0.vECdHP < (Ui, &)y + (UoZ, £)ag )

YE € L®°(Q) N Hl(Q) NC(Q),&(T,.)=¢&(0,.)=0,& > 0andvk e R+ where
F(u,k) =sgnu— K {xt, x,u) — x(,x, K}, G(u,k)=Divyx(t,x, k) + ¥(t, X, u),
Uk = (Ju — K|, =V]p(u) — ¢((K)| + F(u, k), V¢ = (3¢, VI).

Remark 1. If uis a weak entropy solution tal§—(3) then it is aweak solution in the sense thd) holds
and the strong variational inequality is fulfill&th Hol((z), v>0a.e.inf, fora.etof 10, T[:

(B, v — B(W)) + fQW(“) X X, ).V (0 — p (W) dx

+ f Y, X, w)(v —¢(u))dx > 0. (8)
Q

We first estalish theuniqueness of a weak entropy solution. The proof uses a comparison theorem
which is a J. Carrillo extension to second-order dipune of the classical hyperbolic method based on a
doubling of the time and space variabldg [For the treatment of the boundary terms the demonstration
refers to p]. However, numerous adaptations are necessary due to the framework of obstacle problems
and the argumentatiardies on two lemmas. The first one is srequality versiorof the standarénergy
equalityowing to Carrillo [4] and is s#éisfied by any weak solution:

Lemma 1. Let u be a weak solution {d)—(3). Then, V& € D(Q), & >0,vk e E, k>0,
/ (Uk.VE — sgnu — k)G(u, k)&) dxdt > lim sup sgr (¢ (u) — ¢(k))(V¢(u))2§ dxdt.
Q r—0t JQ

Proof. We may choose (u) —1/[|£ |l Sgn. (¢ (u) — ¢ (k))& as atest function irg). By integrating over
10, T[ we obtain an inequality in which the convective term is integrated by parts in order to pass to the
limit with A. By referring to the hypo—inversﬁgl of ¢ and denoting

r

H,.(t, x,r) = f I()[x(t, X, ¢>0_1(r)) — x(t, x, Ksgn (r — ¢ (k) dr
@
we have

/Q(X(t, X, U) — x(t, X, K). Vo (u)sgri (¢ (u) — ¢ (k))& dxalt
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=/ DivyH, (t, X, ¢ (0))& dxdt — O, 9)
Q

where in the right-hand side d®)the first irtegral is integated by parts and
(0
O, = / f (Divy x (t, X, ¢0_1(1:)) — Divyx (t, X, k) sgni (z — ¢ (k)) dz& dxdt.
QJoK

Now let us come back to the definition efri and stress that, sindebelongs toE, the generalized
functionqbo_1 is continuous ab (k); therdore the right-hand side 0B goes to zero with.. [

This energy inequality is not sufficient for proving uniqueness: it is fulfilled by any weak solution
and is only true fok in E, k > 0. So we complement it with the inner entropy inequal@y, (vhich
is available for anyk in R™. This tehnique, adapted from Carrillo's4], leads to a Kruskov-type
relation between two weadntropy solutions. Let be a nonnegative function @f(Q) x D(Q). We set

d = dxdtdxdt and add a “tilde” superscript to any function in “tilde” variables.

Lemma2. If u; and w are bounded measurable functions satisfyigand (6), then

- / Q{Iul — 2| (¥t + %) + Sgn¢p (U) — ¢ (02))(Vxgp (U1) — Vg (02)).(Vx ¥ + Vz ¥)}d

[ (P vr s Pz up var]ds [ sonus - 0G0
QxQ i QxQ
—G(lp,up)¥d <.

Proof. On the one hand, ihemma lwritten in variablegt, x) for u;, we choosek = ux(t, X) for a.e.
&, %) in ng = {({, X) € Q, ux(f, X) € E}. On theother hand, in§) written in variables(t, x) for uy,

we choosd = U(f, X) fora.e.(, X) € Q\ ng. Each inequality obtained in this way is integrated with
resgect tof andX on the corresponding domain. By adding we obtairufor

/ o (Usz-V(t,x) ¥ — sgn(ug — U2)G(uz, Uy) Q’) d

> limsup . 59 (¢ (U1) — ¢ (02)) (Ve (U1))? ¥d
r—0+t JQxQy?

> limsup | l~JSQM(d’(Ul)—¢>(l~12))(V¢>(U1))2W<_i
r—0+ JQplxQy?

the last inequality being given by the fact thap (u1) = 0 ae.on Q \ le.
Moreover, we integrate oveD the Gawss—Green formula:

/Q Vb (Un).Vx[SG, (6 (Ug) —  (0z)) ¥] e = O.
We develophe partial derivatives and, sing&i») belongs toL2(0, T H(}(Q)), the A-limit provides
A—0t

f Vxl$(UD) — $(02).Vx ¥ d = lim f L SOr (@(UD) — ¢(02) Yk (Up). Vg (0) ¥ d.
QxQ QolXQOZ

We gpply the same reasoning fdp and group all the results to obtain the desired inequality]
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Now following [5], we state théT -Lipschitzian &pendence i.1(£2):

Theorem 1. The degenerate proble(®)—(3) admits at most one weak entropy solution. Moreover if u
and w, are two weak entropy solutions associated wigh @and p 2,

fora.e.tin]O, T[, / [ug(t, X) — ua(t, X)|dx < eM(/ft/ [Up 1(X) — Ug,2(X)| dX.
Q Q

3. Existenceresult

Let us now establlsthe exisence of aveak entropgolution to (1)—(3) through the vanishing viscosity
method. The latter consists in introducing some diffusion in the whole domain via a positive parameter
8 dedined to tend to 0. Then, we definaps = ¢ + §1dg, a bi-Lipsditzian function, so as to obtain
the nondegenerate parabolic operalfgrand the corresponding unilateral obstacle problem formally
described by: find a measurable and bounded functjsuch that

us > 0ae in Q, Ps(t, X, us) > 0 andusPs(t, X, us) =0 onQ, (10)
us=0onXt. (12)

3.1. Aregularization of the initial data

We look for a priori estimates of the sequen(og)s- o thatare sufficient for specifying its behaviour
whens goes to . We ek Hilbertian estimates faf; (us) andW-1(Q)-estimaes forus. This reguires
smoothness assumptions on the gradient and on the Laplacignadfthe initial datum for £0) and
(11). That is why we first introduce a regularizatiaf of up obtained by means of mollifiers, so that

ug € D(£2), ug > 0ae in 2, [JugliLe) < lUolliLe),
Iim+ ug=uoin L9(£2),1 < q < +oo, and ae. on £,

€—>

and secondly we consider for any positiveandé the soltion ug"s’6 of the problem

Up> — wAgs US> = ugin 2, ul® = 0onan.
In that way,

Lemma 3. ug’“"s’6 € HI(DNL>®(9), ¢3(u6’“’8’6) e H2(2) and L{’)"‘S’e > Oa.e.inf2. Moreover,3C > 0
independent from, u ande such that

,8, 0,672 .8,
lug™™ “llLee(o) < llUollLoe (), mllds(uy e)||H&(Q) < C, [IVug™™ Nl 1gyp < C + VUGl L1(0)p-

3.2. A priori estimates

Firstly we freeze- andu. To amplify the writing, they will be dropped as indexes. In this context, we
first recall the property obtained id{] by using the mehod of penalization:

Theorem 2. For a given Lg’s’e, the problem (10) and (11) has a unique solution suin L°(Q) N
H(Q) N L0, T; HJ(12)) N CO([0, TT; L9(2)), 1 < g < +00, With ¢5(Us) in L>(0, T; H (12)).
Furthermore, y is characterized through the strong variational inequality, for alln L2(£2), v > 0,
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and a.e. o0, T,

/Q]P’a(t, X, Us) (v — ¢s(us)) dx > O,

and fdfils the a priori estimates:
vt € [0, T], Jus(t, )| < M(t) a.e in {2,
||atU3|||_2(o,T;H—1(Q)) + I FS(U3)|||_2(0,T;H01(Q)) < Cy,

.8,
VS € [0, T1, 1tFs (U)IE2qq) + 195(Us)(S, IIFa ) = Cot s (UG VEa

,8, ,8,
18eUs Il oo (0,7:L1(2y) T IVUs Il Loo(0,7:L1(2)p) < A1+ Ax([[Vug 6|||_1(Q)p + || Adps (ug 6)|||_1(Q)),
1 n,8,€ n,0,€
HHUa(t +h, ) —ust, Il < As+ AalliVUy ™ Il e + 18G5 (Ug D llL1c))

vYh e 10, T[,Vt € 10, T — h[, where G and A are positive constants independent from any parameter
and

F3(x) = /O (@}(0)) 2 dr.

3.3. The degenerate problem: existence of a weak entropy solution

A priori edimates of Lemma3 and a compactness argument ensure thatdagoes to
O+(ug"s’é)boLq(Q)—converges, 1< q < +oo, towardug™® € BV(£2) N L*®(£2), the weak entropy
soluion in thesense of4] or [5] to thedegenerate elliptic problem

U = AU ) = Upin 2, §( ) = 0 ono

Furthemore, 3C(e) > 0 such hat |Juy“[lBv(o)nLe < C(e). Besites this, Theorem 2(with
Lemma 3 ensires that(us)s-o remains in a fixed bounded subset Wf-1(Q) N L>°(Q). Thus, a
compactness argument and Ascoli’s lemma prove the existence of a fungtioBV(Q) N L*°(Q) N
CO([0, T1, L1(2)) with du e L2(0, T; H}(2)) satisfyingu > 0 a.e. inQ and such that up to a
subsequence, wheén— 0,

s — uin C%([0, T1; L9(2)), 1 < q < +oo,
$s(Us) — ¢(u) in HY(Q) weak
Therefore we can state:

Theorem 3. For 1 and ¢ fixed, the degenerate obstacle probl€hh and (2) admits a unique weak
entropy solution y . associated with @’6. This solution belongs to BMQ)NL>®(Q)NC([0, T1; L1(2))
and is the limit of the whole sequen@g)s- o of solutions to problemg10), (11))s-o — with initial data

(ug’8’6)5>o— in L9(Q), inC([0, T]; L9(2)),1 < q < +00,and a.e. on Q.

Idea of the proof. The key pointis the proof o&) whose demonstration is inspired by the one presented
in [5], by coming back to the penalized problem associated wit®) @nd (1), which consists in
introducing a positive parameter and the nondegenerate parabolic operdtgp(t,x,.) : u —
Ps(t, x, u) — u~ /5. The conergence properties akis ,),-0 towardus, asn goes to 0, are widely
described in10]. We take thel.2(Q)-scalar product between the viscous-penalized equation fulfilled by
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Us,, andsgn, (¢s(Us,,) — ¢5(K))¢ & where belongs ta’>°(Q) andk > 0. Accordingly, by passing to the
limit with respect tox we ensure the existence of a nonnegatiyg in C'(Q) (involving the penalized
term) suchhat for anyz of C>°(Q)

(ks.ns €) :/ Ulf’”ﬁ(gs)dxdt —f F(0, k).vcEdHP —f G(Us,,, K)sgn(us,, — k)¢ & dxdt
Q X Q
- /Q lUs, (T, .) —KIZE(T) dx + /Q IUS’S’G —K|¢&(0) dx — sgn(k) J5 ,(¢§)

+ / {(xt,0,00—x(t,0,K}.vcEdHP. (12)
5

The term including the normal derivative @f(us ,) has been expressed by taking th®& Q)-scalar
product between the viscous-penalized equationzgndhus leading to

I (CE) = — /Q Us. 0 cxdlt + /Q s (T, X)LE(T, X) X
_ /ng*“;g(o, X) dx—/Q{x(t,x, Us.n) — x(t, X, 0)}.V(¢§) dxdt

+fQ(Diva(t,x, 0) + ¥ (t, X, Us ) £& dxdt+va¢5(u5,,7).V(;g)dxdt.

From a priori estimates af; , and ug"s’é, we dealuce the existence of a const&hindependent from

any parameter such that

[(k5,n,6) = Cll&lloo-

Now we are in the mathematical framework exposedbin (ks ,),~0 is @a bounded sequence #H(Q)
used with the weakx topology. The latter and the previous inequality provide a bound for the limit in
C'(Q) at each step whem ands tend to 0. Besics this, the convergence propertieSof 5),-0,5=0
permit one to pass tie limits in the right-hand side oi@). Consequently, there existsin C’(Q) such
that|(«, £)| < C||§|loc and

VE € C*(Q), f Uke. VE dxdt = (k, £) + | +sgr(k)J(§§)—f F(0, k).vcEdHP. (13)
Q b))

wherel isanintegral bounded b || ||«. In (13) for k = 0 andé in D(Q), we deluce thaDiv(t,x)(Uo?)
belongs taMp(Q). Fork > 0, the positiveness af ensures that for any in D(Q),

IcE) = fQ (Uoz. ¥ — £(Divx (t, X, 0)¢ + W (t, X, U)¢

+{xt, x,u) — x(t,x,0) — Vop(u)}.V¢)) dxdt.

As a consequendd (££)| < Cll£|leo andUg¢ is in DM (Q), for anyk in R*. Theother statements of
Theorem 3are detailed in§] and are degloped directly from 10) and (L1) with typical arguments for
obtaining 6) and those exposed ib] for (7). O

3.3.1. Statement for the initial data irf(f2)
We first observe that, the parameteibeing fixed,(ug’e),»o remains in a bounded set &V (12).
The compact embedding of the latter spaéeés?) ensures that, up to a subsequence wheoes to G,
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(ug’e)po goes toug in L9(£2), for ary finite g. On theother hand, by constructiofyg).-o goes toug
in L9(£2), 1 < g < +oo. Thus by using a diagonal extraction process, we construct a sequghgeo
extracted from(ug“’e)poﬁo such that lim,_, o+ ug = U in L9(£2), 1 < g < 400, and ae. on (.

Now we consideu,,, the weak entropy solution tolf and @) associated with the initial dataf
thanks toTheorem 3If we refer tow-uniform estimé&es devebped inTheorem 2ve have:

Proposition 1. There exists a positive constant C, independent tiosud that

VEe [0, TT Uo(t, )l = M) ae.in £, [[3tUsllL2,1;H-1(0)) + 1€ Ul 200 7:12(2)) = C-
Besides the uniquenesheorem lwarrants
Proposition 2. If u,,, and u,, are weak entropy solutions {d) and(2) related to ng’l and L{;’Z, then

VE € [0, T Uy (t, ) — Uay (8, D1 < eM'/'tHU(é)l - U(6)2|||_1(Q)-

Let us remark that the 1(Q)-estimates inTheorem 2are notw-uniform since||Vug’3’€||L1(Q)p and
8,
1A®s Uy ) 1) depend or (through| Vug|l 1oy») and%.

S0 (Uy)w-0 is a Cawhy sequence i ([0, T]; L1(£2)) and up to a subsequence, Converged@, (
(13) alsoholds for(u,).>0. By stating from (5)—(7) for u,, and taking thev-limit, we prove:

Theorem 4. Let ug be in L>°(£2) with ug > O a.e. in{2. The degenerate parabolic-hyperbolic obstacle
problem(1)—(3) admits at least a weak entropy solutiond{0, T]; L9(£2)) for any finite q.
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