Weak entropy solutions for degenerate parabolic-hyperbolic inequalities

L. Lévi*, E. Rouvre, G. Vallet
Laboratoire de Mathématiques Appliquées - FRE 2570 CNRS, Université de Pau et des Pays de l'Adour, BP 1155, 64013 PAU Cedex, France
Received 2 March 2004; accepted 9 March 2004

Abstract

We study inner obstacle problems for a class of strongly degenerate parabolic-hyperbolic quasilinear operators associated with Dirichlet data in an open bounded subset of $\mathbb{R}^{p}, p \geq 1$. We first give the definition of a weak entropy solution that warrants uniqueness; the boundary conditions are expressed by using the framework of divergence measure fields. The existence of such a solution is obtained through the vanishing viscosity method.

© 2005 Elsevier Ltd. All rights reserved.
Keywords: Parabolic degenerate inequalities; Obstacle problems; Divergence measure fields

1. Introduction

1.1. Mathematical setting

Obstacle problems in physics and mechanics have been described and studied by many authors ([1-3], and so on). This paper focuses on the mathematical analysis of a positiveness condition for the quasilinear second-order operator stemming from the theory of fluid flows through porous media:

$$
\mathbb{P}(t, x, .): u \rightarrow \partial_{t} u+\sum_{i=1}^{p} \partial_{x_{i}} \chi_{i}(t, x, u)+\psi(t, x, u)-\Delta \phi(u),
$$

[^0]where ϕ is a nondecreasing function (in particular, ϕ^{\prime} may be equal to zero on non-empty intervals of \mathbb{R}). Such a study within the context of petroleum engineering and for transport of pollutants in the subsoil has been developed in [10]. Let T be a positive real, Ω a bounded subset of $\left.\mathbb{R}^{p}, p \geq 1, Q=\right] 0, T[\times \Omega$ and $\Sigma=] 0, T[\times \partial \Omega$; the outer normal of Ω is denoted as v. For a given nonnegative measurable and bounded function u_{0} we prove that the formal Cauchy-Dirichlet problem: find a bounded and measurable function u such that
\[

$$
\begin{align*}
& u \geq 0 \text { in } Q, \mathbb{P}(t, x, u) \geq 0 \text { and } u \mathbb{P}(t, x, u)=0 \text { on } Q, \tag{1}\\
& u=0 \text { on } \Sigma \tag{2}\\
& u(0, .)=u_{0} \text { on } \Omega \tag{3}
\end{align*}
$$
\]

has a unique solution. The special framework of a strongly degenerate operator \mathbb{P} leads us to look for a weak entropy formulation for (1)-(3) in the same spirit as Carrillo [4] or more recently as Mascia, et al. [5], for some diffusion-convection equations. Such a formulation is motivated by the existence, in the computational domain, of nondegenerate parabolic zones (corresponding to $\phi^{\prime}>0$) and hyperbolic ones (in which $\phi^{\prime} \equiv 0$), glued together in a way that depends on the solution itself. Moreover, as clearly mentioned in [5], in order to take into account possible boundary layers, the boundary conditions should be interpreted as compatibility inequalities on Σ, as they are in the case of quasilinear first-order equations (see [6] in the case of $B V(Q) \cap L^{\infty}(Q)$-solutions or [7] for only $L^{\infty}(Q)$-solutions). Here, we use the mathematical framework of divergence measure fields to provide a formulation that generalizes F. Otto's first-order relations to the second order.

1.2. Notation and main assumptions on data

The hypotheses on χ and ψ are detailed in [8]. We simply mention that $\chi \equiv\left(\chi_{1}, \ldots, \chi_{p}\right)$ and ψ have partial derivatives respectively to the second and first order and to deal with bounded solutions we suppose that $\partial_{x_{i}} \chi_{i}$ and ψ are Lipschitzian with respect to their third variable, uniformly in (t, x), with Lipschitz constants $M_{\partial_{x_{i}} \chi_{i}}^{\prime}$ and M_{ψ}^{\prime}. We thus define, for any t of $[0, T]$,

$$
M(t)=\frac{K_{1}}{K_{2}}\left(e^{K_{1} t}-1\right)+\left\|u_{0}\right\|_{L^{\infty}(\Omega)} e^{K_{1} t}
$$

where $K_{1}=\sum_{i \in\{1, \ldots, p\}} M_{\partial_{i} \chi_{i}}^{\prime}+M_{\psi}^{\prime}$ and $K_{2}=\left\|\operatorname{Div}_{x} \chi(t, x, 0)+\psi(t, x, 0)\right\|_{\infty}$.

- $\phi \in W^{1,+\infty}(]-M(T), M(T)[)$ and $\phi(0)=0$. Moreover, we set $E=\left\{l \in \mathbb{R},\{l\}=\phi^{-1}\{\phi(l)\}\right\}$.
- $\partial \Omega$ is a \mathcal{C}^{2}-class frontier and is locally the graph of a \mathcal{C}^{2}-class function through a \mathcal{C}^{2}-covering with open sets $\left(B_{i}\right)_{i \in I}, I \varsubsetneqq \mathbb{N}$. To simplify, we write $B \in \mathcal{B}$ where \mathcal{B} is the set of all possible recoverings of $\partial \Omega$ (see [5]).
- For any n in $\mathbb{N}^{*}, \mathcal{H}^{n}$ denotes the n-dimensional Hausdorff measure.
- $\mathcal{D} \mathcal{M}_{2}(Q)=\left\{V \in\left(L^{2}(Q)\right)^{p+1}, \operatorname{Div}_{(t, x)} V \in \mathcal{M}_{b}(Q)\right\}$, where $\mathcal{M}_{b}(Q)$ is the space of bounded Radon measures on Q, is the L^{2}-space of the divergence measure field. The next generalized Gauss-Green formula coming from the one stated in [9] holds for any V in $\mathcal{D M}_{2}(Q)$ and ξ in $H^{1}(Q) \cap L^{\infty}(Q) \cap \mathcal{C}(Q):$

$$
\langle V, \xi\rangle_{\partial Q}=\int_{Q} V \cdot\left(\partial_{t} \xi, \nabla \xi\right) \mathrm{d} x \mathrm{~d} t+\int_{Q} \xi \mathrm{~d}\left[D i v_{(t, x)} V\right]
$$

$\bullet \forall \lambda>0, \forall x \in \mathbb{R}^{+}, \operatorname{sgn}_{\lambda}(x)=\min \left(\frac{x}{\lambda}, 1\right)$ and $\operatorname{sgn}_{\lambda}(-x)=-\operatorname{sgn}_{\lambda}(x)$.

2. Mathematical formulation and uniqueness property

Definition 1. A measurable bounded function u is a weak entropy solution to (1)-(3) if

$$
\begin{align*}
& u \geq 0 \text { a.e. in } Q, \partial_{t} u \in L^{2}\left(0, T ; H^{-1}(\Omega)\right), \phi(u) \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \tag{4}\\
& \text { ess } \lim _{t \rightarrow 0^{+}} \int_{\Omega}\left|u(t, x)-u_{0}(x)\right| \mathrm{d} x=0 \\
& \forall k \in \mathbb{R}^{+}, \forall B \in \mathcal{B}, \forall \zeta \in \mathcal{D}(B), \zeta \geq 0, U_{k} \zeta \in \mathcal{D} \mathcal{M}_{2}(Q) \tag{5}\\
& \forall k \in \mathbb{R}^{+}, \forall \xi \in H_{0}^{1}(Q) \cap L^{\infty}(Q), \xi \geq 0, \int_{Q} U_{k} \cdot \bar{\nabla} \xi \mathrm{~d} x \mathrm{~d} t-\int_{Q} \operatorname{sgn}(u-k) G(u, k) \xi \mathrm{d} x \mathrm{~d} t \geq 0, \text { (6) } \\
& \forall B \in \mathcal{B}, \forall \zeta \in \mathcal{D}(B), \zeta \geq 0, \int_{\Sigma} F(k, 0) . \nu \xi \zeta d \mathcal{H}^{p} \leq\left\langle U_{k} \zeta, \xi\right\rangle_{\partial Q}+\left\langle U_{0} \zeta, \xi\right\rangle_{\partial Q} \tag{7}
\end{align*}
$$

$\forall \xi \in L^{\infty}(Q) \cap H^{1}(Q) \cap \mathcal{C}(Q), \xi(T,)=.\xi(0,)=0,. \xi \geq 0$ and $\forall k \in \mathbb{R}^{+}$where

$$
\begin{aligned}
& \boldsymbol{F}(u, k)=\operatorname{sgn}(u-k)\{\chi(t, x, u)-\chi(t, x, k)\}, G(u, k)=\operatorname{Div}_{x} \chi(t, x, k)+\psi(t, x, u), \\
& U_{k}=(|u-k|,-\nabla|\phi(u)-\phi(k)|+\boldsymbol{F}(u, k)), \bar{\nabla} \zeta=\left(\partial_{t} \zeta, \nabla \zeta\right) .
\end{aligned}
$$

Remark 1. If u is a weak entropy solution to (1)-(3) then it is a weak solution in the sense that (4) holds and the strong variational inequality is fulfilled $\forall v \in H_{0}^{1}(\Omega), v \geq 0$ a.e. in Ω, for a.e. t of $] 0, T$ [:

$$
\begin{align*}
& \left\langle\partial_{t} u, v-\phi(u)\right\rangle+\int_{\Omega}(\nabla \phi(u)-\chi(t, x, u)) \cdot \nabla(v-\phi(u)) \mathrm{d} x \\
& \quad+\int_{\Omega} \psi(t, x, u)(v-\phi(u)) \mathrm{d} x \geq 0 . \tag{8}
\end{align*}
$$

We first establish the uniqueness of a weak entropy solution. The proof uses a comparison theorem which is a J. Carrillo extension to second-order equations of the classical hyperbolic method based on a doubling of the time and space variables [4]. For the treatment of the boundary terms the demonstration refers to [5]. However, numerous adaptations are necessary due to the framework of obstacle problems and the argumentation relies on two lemmas. The first one is an inequality version of the standard energy equality owing to Carrillo [4] and is satisfied by any weak solution:
Lemma 1. Let u be a weak solution to (1)-(3). Then, $\forall \xi \in \mathcal{D}(Q), \xi \geq 0, \forall k \in E, k \geq 0$,

$$
\int_{Q}\left(U_{k} \cdot \bar{\nabla} \xi-\operatorname{sgn}(u-k) G(u, k) \xi\right) \mathrm{d} x \mathrm{~d} t \geq \limsup _{\lambda \rightarrow 0^{+}} \int_{Q} \operatorname{sgn}_{\lambda}^{\prime}(\phi(u)-\phi(k))(\nabla \phi(u))^{2} \xi \mathrm{~d} x \mathrm{~d} t .
$$

Proof. We may choose $\phi(u)-\lambda /\|\xi\|_{\infty} s g n_{\lambda}(\phi(u)-\phi(k)) \xi$ as a test function in (8). By integrating over] $0, T$ [we obtain an inequality in which the convective term is integrated by parts in order to pass to the limit with λ. By referring to the hypo-inverse ϕ_{0}^{-1} of ϕ and denoting

$$
\mathbf{H}_{\lambda}(t, x, r)=\int_{\phi(k)}^{r}\left[\chi\left(t, x, \phi_{0}^{-1}(\tau)\right)-\chi(t, x, k)\right] \operatorname{sgn}_{\lambda}^{\prime}(\tau-\phi(k)) \mathrm{d} \tau
$$

we have

$$
\int_{Q}(\chi(t, x, u)-\chi(t, x, k)) \cdot \nabla \phi(u) \operatorname{sgn}_{\lambda}^{\prime}(\phi(u)-\phi(k)) \xi \mathrm{d} x \mathrm{~d} t
$$

$$
\begin{equation*}
=\int_{Q} \operatorname{Div}_{x} \mathbf{H}_{\lambda}(t, x, \phi(u)) \xi \mathrm{d} x \mathrm{~d} t-\mathcal{O}_{\lambda} \tag{9}
\end{equation*}
$$

where in the right-hand side of (9) the first integral is integrated by parts and

$$
\mathcal{O}_{\lambda}=\int_{Q} \int_{\phi(k)}^{\phi(u)}\left(\operatorname{Div}_{x} \chi\left(t, x, \phi_{0}^{-1}(\tau)\right)-\operatorname{Div}_{x} \chi(t, x, k)\right) \operatorname{sgn}_{\lambda}^{\prime}(\tau-\phi(k)) \mathrm{d} \tau \xi \mathrm{~d} x \mathrm{~d} t
$$

Now let us come back to the definition of $\operatorname{sgn} n_{\lambda}^{\prime}$ and stress that, since k belongs to E, the generalized function ϕ_{0}^{-1} is continuous at $\phi(k)$; therefore the right-hand side of (9) goes to zero with λ.

This energy inequality is not sufficient for proving uniqueness: it is fulfilled by any weak solution and is only true for k in $E, k \geq 0$. So we complement it with the inner entropy inequality (6), which is available for any k in \mathbb{R}^{+}. This technique, adapted from Carrillo's [4], leads to a Kruskov-type relation between two weak entropy solutions. Let Ψ be a nonnegative function of $\mathcal{D}(Q) \times \mathcal{D}(Q)$. We set $\overline{\mathrm{d}}=\mathrm{d} x \mathrm{~d} t \mathrm{~d} \tilde{x} \mathrm{~d} \tilde{t}$ and add a "tilde" superscript to any function in "tilde" variables.

Lemma 2. If u_{1} and u_{2} are bounded measurable functions satisfying (4) and (6), then

$$
\begin{aligned}
& -\int_{Q \times Q}\left\{\left|u_{1}-\tilde{u}_{2}\right|\left(\Psi_{t}+\Psi_{\tilde{t}}\right)+\operatorname{sgn}\left(\phi\left(u_{1}\right)-\phi\left(\tilde{u}_{2}\right)\right)\left(\nabla_{x} \phi\left(u_{1}\right)-\nabla_{\tilde{x}} \phi\left(\tilde{u}_{2}\right)\right) \cdot\left(\nabla_{x} \Psi+\nabla_{\tilde{x}} \Psi\right)\right\} \overline{\mathrm{d}} \\
& -\int_{Q \times Q}\left\{\boldsymbol{F}\left(u_{1}, \tilde{u}_{2}\right) \cdot \nabla_{x} \Psi+\tilde{\boldsymbol{F}}\left(\tilde{u}_{2}, u_{1}\right) \cdot \nabla_{\tilde{x}} \Psi\right\} \overline{\mathrm{d}}+\int_{Q \times Q} \operatorname{sgn}\left(u_{1}-\tilde{u}_{2}\right)\left(G\left(u_{1}, \tilde{u}_{2}\right)\right. \\
& \left.\quad-\tilde{G}\left(\tilde{u}_{2}, u_{1}\right)\right) \Psi \overline{\mathrm{d}} \leq 0 .
\end{aligned}
$$

Proof. On the one hand, in Lemma 1 written in variables (t, x) for u_{1}, we choose $k=u_{2}(\tilde{t}, \tilde{x})$ for a.e. (\tilde{t}, \tilde{x}) in $Q_{0}^{\tilde{u}_{2}}=\left\{(\tilde{t}, \tilde{x}) \in Q, u_{2}(\tilde{t}, \tilde{x}) \in E\right\}$. On the other hand, in (6) written in variables (t, x) for u_{1}, we choose $k=\tilde{u}_{2}(\tilde{t}, \tilde{x})$ for a.e. $(\tilde{t}, \tilde{x}) \in Q \backslash Q_{0}^{\tilde{u}_{2}}$. Each inequality obtained in this way is integrated with respect to \tilde{t} and \tilde{x} on the corresponding domain. By adding we obtain for u_{1}

$$
\begin{aligned}
& \int_{Q \times Q}\left(U_{\tilde{u}_{2}} \cdot \bar{\nabla}_{(t, x)} \Psi-\operatorname{sgn}\left(u_{1}-\tilde{u}_{2}\right) G\left(u_{1}, \tilde{u}_{2}\right) \Psi\right) \overline{\mathrm{d}} \\
& \quad \geq \limsup _{\lambda \rightarrow 0^{+}} \int_{Q \times Q_{0}^{\tilde{u}_{2}}} \operatorname{sgn}_{\lambda}^{\prime}\left(\phi\left(u_{1}\right)-\phi\left(\tilde{u}_{2}\right)\right)\left(\nabla \phi\left(u_{1}\right)\right)^{2} \Psi \overline{\mathrm{~d}} \\
& \quad \geq \limsup _{\lambda \rightarrow 0^{+}} \int_{Q_{0}^{u_{1}} \times Q_{0}^{\tilde{u}_{2}}} \operatorname{sgn}_{\lambda}^{\prime}\left(\phi\left(u_{1}\right)-\phi\left(\tilde{u}_{2}\right)\right)\left(\nabla \phi\left(u_{1}\right)\right)^{2} \Psi \overline{\mathrm{~d}},
\end{aligned}
$$

the last inequality being given by the fact that $\nabla \phi\left(u_{1}\right)=0$ a.e. on $Q \backslash Q_{0}^{u_{1}}$. Moreover, we integrate over Q the Gauss-Green formula:

$$
\int_{Q} \nabla_{x} \phi\left(u_{1}\right) \cdot \nabla_{\tilde{x}}\left[\operatorname{sgn}_{\lambda}\left(\phi\left(u_{1}\right)-\phi\left(\tilde{u}_{2}\right)\right) \Psi\right] \mathrm{d} \tilde{x} \mathrm{~d} \tilde{t}=0 .
$$

We develop the partial derivatives and, since $\phi\left(\tilde{u}_{2}\right)$ belongs to $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$, the λ-limit provides

$$
\int_{Q \times Q} \nabla_{x}\left|\phi\left(u_{1}\right)-\phi\left(\tilde{u}_{2}\right)\right| . \nabla_{\tilde{x}} \Psi \overline{\mathrm{~d}}=\lim _{\lambda \rightarrow 0^{+}} \int_{Q_{0}^{u_{1}} \times Q_{0}^{\tilde{u}_{2}}} \operatorname{sgn}_{\lambda}^{\prime}\left(\phi\left(u_{1}\right)-\phi\left(\tilde{u}_{2}\right)\right) \nabla_{x} \phi\left(u_{1}\right) \cdot \nabla_{\tilde{x}} \phi\left(\tilde{u}_{2}\right) \Psi \overline{\mathrm{d}} .
$$

We apply the same reasoning for \tilde{u}_{2} and group all the results to obtain the desired inequality.

Now following [5], we state the T-Lipschitzian dependence in $L^{1}(\Omega)$:
Theorem 1. The degenerate problem (1)-(3) admits at most one weak entropy solution. Moreover, if u_{1} and u_{2} are two weak entropy solutions associated with $u_{0,1}$ and $u_{0,2}$,

$$
\text { for a.e. } t \text { in }] 0, T\left[, \int_{\Omega}\left|u_{1}(t, x)-u_{2}(t, x)\right| \mathrm{d} x \leq e^{M_{\psi}^{\prime} t} \int_{\Omega}\left|u_{0,1}(x)-u_{0,2}(x)\right| \mathrm{d} x\right. \text {. }
$$

3. Existence result

Let us now establish the existence of a weak entropy solution to (1)-(3) through the vanishing viscosity method. The latter consists in introducing some diffusion in the whole domain via a positive parameter δ destined to tend to 0^{+}. Then, we define $\phi_{\delta}=\phi+\delta I d_{\mathbb{R}}$, a bi-Lipschitzian function, so as to obtain the nondegenerate parabolic operator \mathbb{P}_{δ} and the corresponding unilateral obstacle problem formally described by: find a measurable and bounded function u_{δ} such that

$$
\begin{align*}
& u_{\delta} \geq 0 \text { a.e. in } Q, \mathbb{P}_{\delta}\left(t, x, u_{\delta}\right) \geq 0 \text { and } u_{\delta} \mathbb{P}_{\delta}\left(t, x, u_{\delta}\right)=0 \text { on } Q, \tag{10}\\
& u_{\delta}=0 \text { on } \Sigma . \tag{11}
\end{align*}
$$

3.1. A regularization of the initial data

We look for a priori estimates of the sequence $\left(u_{\delta}\right)_{\delta>0}$ that are sufficient for specifying its behaviour when δ goes to 0^{+}. We seek Hilbertian estimates for $\phi_{\delta}\left(u_{\delta}\right)$ and $W^{1,1}(Q)$-estimates for u_{δ}. This requires smoothness assumptions on the gradient and on the Laplacian of ϕ_{δ} of the initial datum for (10) and (11). That is why we first introduce a regularization u_{0}^{ϵ} of u_{0} obtained by means of mollifiers, so that

$$
\begin{aligned}
& u_{0}^{\epsilon} \in \mathcal{D}(\Omega), u_{0}^{\epsilon} \geq 0 \text { a.e. in } \Omega,\left\|u_{0}^{\epsilon}\right\|_{L^{\infty}(\Omega)} \leq\left\|u_{0}\right\|_{L^{\infty}(\Omega)}, \\
& \lim _{\epsilon \rightarrow 0^{+}} u_{0}^{\epsilon}=u_{0} \text { in } L^{q}(\Omega), 1 \leq q<+\infty, \text { and a.e. on } \Omega
\end{aligned}
$$

and secondly we consider for any positive μ and δ the solution $u_{0}^{\mu, \delta, \epsilon}$ of the problem

$$
u_{0}^{\mu, \delta, \epsilon}-\mu \Delta \phi_{\delta}\left(u_{0}^{\mu, \delta, \epsilon}\right)=u_{0}^{\epsilon} \text { in } \Omega, u_{0}^{\mu, \delta, \epsilon}=0 \text { on } \partial \Omega
$$

In that way,
Lemma 3. $u_{0}^{\mu, \delta, \epsilon} \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega), \phi_{\delta}\left(u_{0}^{\mu, \delta, \epsilon}\right) \in H^{2}(\Omega)$ and $u_{0}^{\mu, \delta, \epsilon} \geq 0$ a.e. in Ω. Moreover, $\exists C>0$ independent from δ, μ and ϵ such that

$$
\left\|u_{0}^{\mu, \delta, \epsilon}\right\|_{L^{\infty}(\Omega)} \leq\left\|u_{0}\right\|_{L^{\infty}(\Omega)}, \mu\left\|\phi_{\delta}\left(u_{0}^{\mu, \delta, \epsilon}\right)\right\|_{H_{0}^{1}(\Omega)}^{2} \leq C,\left\|\nabla u_{0}^{\mu, \delta, \epsilon}\right\|_{L^{1}(\Omega)^{p}} \leq C+\left\|\nabla u_{0}^{\epsilon}\right\|_{L^{1}(\Omega)^{p}}
$$

3.2. A priori estimates

Firstly we freeze ϵ and μ. To simplify the writing, they will be dropped as indexes. In this context, we first recall the property obtained in [10] by using the method of penalization:

Theorem 2. For a given $u_{0}^{\mu, \delta, \epsilon}$, the problem (10) and (11) has a unique solution u_{δ} in $L^{\infty}(Q) \cap$ $H^{1}(Q) \cap L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap \mathcal{C}^{0}\left([0, T] ; L^{q}(\Omega)\right), 1 \leq q<+\infty$, with $\phi_{\delta}\left(u_{\delta}\right)$ in $L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right)$. Furthermore, u_{δ} is characterized through the strong variational inequality, for all v in $L^{2}(\Omega), v \geq 0$,
and a.e. on $] 0, T[$,

$$
\int_{\Omega} \mathbb{P}_{\delta}\left(t, x, u_{\delta}\right)\left(v-\phi_{\delta}\left(u_{\delta}\right)\right) \mathrm{d} x \geq 0
$$

and fulfils the a priori estimates:

$$
\begin{aligned}
& \forall t \in[0, T],\left|u_{\delta}(t, .)\right| \leq M(t) \text { a.e. in } \Omega, \\
& \left\|\partial_{t} u_{\delta}\right\|_{L^{2}\left(0, T ; H^{-1}(\Omega)\right)}+\left\|F_{\delta}\left(u_{\delta}\right)\right\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)} \leq C_{1}, \\
& \forall s \in[0, T],\left\|\partial_{t} F_{\delta}\left(u_{\delta}\right)\right\|_{L^{2}\left(Q_{s}\right)}^{2}+\left\|\phi_{\delta}\left(u_{\delta}\right)(s, .)\right\|_{H_{0}^{1}(\Omega)}^{2} \leq C_{2}+\left\|\phi_{\delta}\left(u_{0}^{\mu, \delta, \epsilon}\right)\right\|_{H_{0}^{1}(\Omega)}^{2}, \\
& \left\|\partial_{t} u_{\delta}\right\|_{L^{\infty}\left(0, T ; L^{1}(\Omega)\right)}+\left\|\nabla u_{\delta}\right\|_{L^{\infty}\left(0, T ; L^{1}(\Omega)^{p}\right)} \leq A_{1}+A_{2}\left(\left\|\nabla u_{0}^{\mu, \delta, \epsilon}\right\|_{L^{1}(\Omega)^{p}}+\left\|\Delta \phi_{\delta}\left(u_{0}^{\mu, \delta, \epsilon}\right)\right\|_{L^{1}(\Omega)}\right), \\
& \frac{1}{h}\left\|u_{\delta}(t+h, .)-u_{\delta}(t, .)\right\|_{L^{1}(\Omega)} \leq A_{3}+A_{4}\left(\left\|\nabla u_{0}^{\mu, \delta, \epsilon}\right\|_{L^{1}(\Omega)^{p}}+\left\|\Delta \phi_{\delta}\left(u_{0}^{\mu, \delta, \epsilon}\right)\right\|_{L^{1}(\Omega)}\right),
\end{aligned}
$$

$\forall h \in] 0, T[, \forall t \in] 0, T-h\left[\right.$, where C_{i} and A_{i} are positive constants independent from any parameter and

$$
F_{\delta}(x)=\int_{0}^{x}\left(\phi_{\delta}^{\prime}(\tau)\right)^{1 / 2} \mathrm{~d} \tau
$$

3.3. The degenerate problem: existence of a weak entropy solution

A priori estimates of Lemma 3 and a compactness argument ensure that as δ goes to $0^{+}\left(\mathrm{u}_{0}^{\mu, \delta, \epsilon}\right)_{\delta>0} L^{q}(\Omega)$-converges, $1 \leq q<+\infty$, toward $u_{0}^{\mu, \epsilon} \in B V(\Omega) \cap L^{\infty}(\Omega)$, the weak entropy solution in the sense of [4] or [5] to the degenerate elliptic problem

$$
u_{0}^{\mu, \epsilon}-\mu \Delta \phi\left(u_{0}^{\mu, \epsilon}\right)=u_{0}^{\epsilon} \text { in } \Omega, \phi\left(u_{0}^{\mu, \epsilon}\right)=0 \text { on } \partial \Omega .
$$

Furthermore, $\exists C(\epsilon)>0$ such that $\left\|u_{0}^{\mu, \epsilon}\right\|_{B V(\Omega) \cap L^{\infty}(\Omega)} \leq C(\epsilon)$. Besides this, Theorem 2 (with Lemma 3) ensures that $\left(u_{\delta}\right)_{\delta>0}$ remains in a fixed bounded subset of $W^{1,1}(Q) \cap L^{\infty}(Q)$. Thus, a compactness argument and Ascoli's lemma prove the existence of a function u in $B V(Q) \cap L^{\infty}(Q) \cap$ $\mathcal{C}^{0}\left([0, T], L^{1}(\Omega)\right)$ with $\partial_{t} u \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ satisfying $u \geq 0$ a.e. in Q and such that up to a subsequence, when $\delta \rightarrow 0^{+}$,

$$
\begin{aligned}
& u_{\delta} \rightarrow u \text { in } \mathcal{C}^{0}\left([0, T] ; L^{q}(\Omega)\right), 1 \leq q<+\infty, \\
& \phi_{\delta}\left(u_{\delta}\right) \rightharpoonup \phi(u) \text { in } H^{1}(Q) \text { weak. }
\end{aligned}
$$

Therefore we can state:
Theorem 3. For μ and ϵ fixed, the degenerate obstacle problem (1) and (2) admits a unique weak entropy solution $u_{\mu, \epsilon}$ associated with $u_{0}^{\mu, \epsilon}$. This solution belongs to $B V(Q) \cap L^{\infty}(Q) \cap \mathcal{C}\left([0, T] ; L^{1}(\Omega)\right)$ and is the limit of the whole sequence $\left(u_{\delta}\right)_{\delta>0}$ of solutions to problems $((10),(11))_{\delta>0}$ - with initial data $\left(u_{0}^{\mu, \delta, \epsilon}\right)_{\delta>0}-\operatorname{in} L^{q}(Q)$, in $\mathcal{C}\left([0, T] ; L^{q}(\Omega)\right), 1 \leq q<+\infty$, and a.e. on Q.

Idea of the proof. The key point is the proof of (5) whose demonstration is inspired by the one presented in [5], by coming back to the penalized problem associated with (10) and (11), which consists in introducing a positive parameter η and the nondegenerate parabolic operator $\mathbb{P}_{\delta, \eta}(t, x,):. u \rightarrow$ $\mathbb{P}_{\delta}(t, x, u)-u^{-} / \eta$. The convergence properties of $\left(u_{\delta, \eta}\right)_{\eta>0}$ toward u_{δ}, as η goes to 0^{+}, are widely described in [10]. We take the $L^{2}(Q)$-scalar product between the viscous-penalized equation fulfilled by
$u_{\delta, \eta}$ and $\operatorname{sgn}_{\lambda}\left(\phi_{\delta}\left(u_{\delta, \eta}\right)-\phi_{\delta}(k)\right) \zeta \xi$ where ξ belongs to $\mathcal{C}^{\infty}(\bar{Q})$ and $k \geq 0$. Accordingly, by passing to the limit with respect to λ we ensure the existence of a nonnegative $\kappa_{\delta, \eta}$ in $\mathcal{C}^{\prime}(\bar{Q})$ (involving the penalized term) such that for any ξ of $\mathcal{C}^{\infty}(\bar{Q})$

$$
\begin{align*}
\left\langle\kappa_{\delta, \eta}, \xi\right\rangle= & \int_{Q} U_{k}^{\delta, \eta} \cdot \bar{\nabla}(\zeta \xi) \mathrm{d} x \mathrm{~d} t-\int_{\Sigma} \mathbf{F}(0, k) . \nu \zeta \xi \mathrm{d} \mathcal{H}^{p}-\int_{Q} G\left(u_{\delta, \eta}, k\right) \operatorname{sgn}\left(u_{\delta, \eta}-k\right) \zeta \xi \mathrm{d} x \mathrm{~d} t \\
& -\int_{\Omega}\left|u_{\delta, \eta}(T, .)-k\right| \zeta \xi(T) \mathrm{d} x+\int_{\Omega}\left|u_{0}^{\mu, \delta, \epsilon}-k\right| \zeta \xi(0) \mathrm{d} x-\operatorname{sgn}(k) J_{\delta, \eta}(\zeta \xi) \\
& +\int_{\Sigma}\{\chi(t, \sigma, 0)-\chi(t, \sigma, k)\} . \nu \zeta \xi \mathrm{d} \mathcal{H}^{p} \tag{12}
\end{align*}
$$

The term including the normal derivative of $\phi_{\delta}\left(u_{\delta, \eta}\right)$ has been expressed by taking the $L^{2}(Q)$-scalar product between the viscous-penalized equation and $\zeta \xi$, thus leading to

$$
\begin{aligned}
J_{\delta, \eta}(\zeta \xi)= & -\int_{Q} u_{\delta, \eta} \zeta \partial_{t} \xi \mathrm{~d} x \mathrm{~d} t+\int_{\Omega} u_{\delta, \eta}(T, x) \zeta \xi(T, x) \mathrm{d} x \\
& -\int_{\Omega} u_{0}^{\mu, \delta, \epsilon} \zeta \xi(0, x) \mathrm{d} x-\int_{Q}\left\{\chi\left(t, x, u_{\delta, \eta}\right)-\chi(t, x, 0)\right\} . \nabla(\zeta \xi) \mathrm{d} x \mathrm{~d} t \\
& +\int_{Q}\left(\operatorname{Div}_{x} \chi(t, x, 0)+\psi\left(t, x, u_{\delta, \eta}\right)\right) \zeta \xi \mathrm{d} x \mathrm{~d} t+\int_{Q} \nabla \phi_{\delta}\left(u_{\delta, \eta}\right) . \nabla(\zeta \xi) \mathrm{d} x \mathrm{~d} t .
\end{aligned}
$$

From a priori estimates of $u_{\delta, \eta}$ and $u_{0}^{\mu, \delta, \epsilon}$, we deduce the existence of a constant C independent from any parameter such that

$$
\left|\left\langle\kappa_{\delta, \eta}, \xi\right\rangle\right| \leq C\|\xi\|_{\infty}
$$

Now we are in the mathematical framework exposed in [5]: $\left(\kappa_{\delta, \eta}\right)_{\eta>0}$ is a bounded sequence in $\mathcal{C}^{\prime}(\bar{Q})$ used with the weak-* topology. The latter and the previous inequality provide a bound for the limit in $\mathcal{C}^{\prime}(\bar{Q})$ at each step when η and δ tend to 0^{+}. Besides this, the convergence properties of $\left(u_{\eta, \delta}\right)_{\eta>0, \delta>0}$ permit one to pass to the limits in the right-hand side of (12). Consequently, there exists κ in $\mathcal{C}^{\prime}(\bar{Q})$ such that $|\langle\kappa, \xi\rangle| \leq C\|\xi\|_{\infty}$ and

$$
\begin{equation*}
\forall \xi \in \mathcal{C}^{\infty}(\bar{Q}), \int_{Q} U_{k} \zeta \cdot \bar{\nabla} \xi \mathrm{~d} x \mathrm{~d} t=\langle\kappa, \xi\rangle+I+\operatorname{sgn}(k) J(\zeta \xi)-\int_{\Sigma} \mathbf{F}(0, k) \cdot \nu \zeta \xi \mathrm{d} \mathcal{H}^{p} \tag{13}
\end{equation*}
$$

where I is an integral bounded by $C\|\xi\|_{\infty}$. In (13) for $k=0$ and ξ in $\mathcal{D}(Q)$, we deduce that $\operatorname{Div} v_{(t, x)}\left(U_{0} \zeta\right)$ belongs to $\mathcal{M}_{b}(Q)$. For $k>0$, the positiveness of u ensures that for any ξ in $\mathcal{D}(Q)$,

$$
\begin{aligned}
J(\zeta \xi)= & -\int_{Q}\left(U_{0} \zeta \cdot \bar{\nabla} \xi-\xi\left(\operatorname{Div}_{x} \chi(t, x, 0) \zeta+\psi(t, x, u) \zeta\right.\right. \\
& +\{\chi(t, x, u)-\chi(t, x, 0)-\nabla \phi(u)\} . \nabla \zeta)) \mathrm{d} x \mathrm{~d} t
\end{aligned}
$$

As a consequence $|J(\zeta \xi)| \leq C\|\xi\|_{\infty}$ and $U_{k} \zeta$ is in $\mathcal{D} \mathcal{M}_{2}(Q)$, for any k in \mathbb{R}^{+}. The other statements of Theorem 3 are detailed in [8] and are developed directly from (10) and (11) with typical arguments for obtaining (6) and those exposed in [5] for (7).

3.3.1. Statement for the initial data in $L^{\infty}(\Omega)$

We first observe that, the parameter ϵ being fixed, $\left(u_{0}^{\mu, \epsilon}\right)_{\mu>0}$ remains in a bounded set of $B V(\Omega)$. The compact embedding of the latter space $L^{1}(\Omega)$ ensures that, up to a subsequence when μ goes to 0^{+},
$\left(u_{0}^{\mu, \epsilon}\right)_{\mu>0}$ goes to u_{0}^{ϵ} in $L^{q}(\Omega)$, for any finite q. On the other hand, by construction, $\left(u_{0}^{\epsilon}\right)_{\epsilon>0}$ goes to u_{0} in $L^{q}(\Omega), 1 \leq q<+\infty$. Thus by using a diagonal extraction process, we construct a sequence $\left(u_{0}^{\omega}\right)_{\omega>0}$ extracted from $\left(u_{0}^{\mu, \epsilon}\right)_{\mu>0, \epsilon>0}$ such that $\lim _{\omega \rightarrow 0^{+}} u_{0}^{\omega}=u_{0}$ in $L^{q}(\Omega), 1 \leq q<+\infty$, and a.e. on Ω.

Now we consider u_{ω}, the weak entropy solution to (1) and (2) associated with the initial data u_{0}^{ω} thanks to Theorem 3. If we refer to ω-uniform estimates developed in Theorem 2 we have:

Proposition 1. There exists a positive constant C, independent from ω, such that

$$
\forall t \in[0, T],\left|u_{\omega}(t, .)\right| \leq M(t) \text { a.e. in } \Omega,\left\|\partial_{t} u_{\omega}\right\|_{L^{2}\left(0, T ; H^{-1}(\Omega)\right)}+\left\|\phi\left(u_{\omega}\right)\right\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)} \leq C .
$$

Besides the uniqueness, Theorem 1 warrants
Proposition 2. If $u_{\omega_{1}}$ and $u_{\omega_{2}}$ are weak entropy solutions to (1) and (2) related to $u_{0}^{\omega_{1}}$ and $u_{0}^{\omega_{2}}$, then

$$
\forall t \in[0, T],\left\|u_{\omega_{1}}(t, .)-u_{\omega_{2}}(t, .)\right\|_{L^{1}(\Omega)} \leq e^{M_{\psi} t}\left\|u_{0}^{\omega_{1}}-u_{0}^{\omega_{2}}\right\|_{L^{1}(\Omega)} .
$$

Let us remark that the $L^{1}(Q)$-estimates in Theorem 2 are not ω-uniform since $\left\|\nabla u_{0}^{\mu, \delta, \epsilon}\right\|_{L^{1}(\Omega)^{p}}$ and $\left\|\Delta \phi_{\delta}\left(u_{0}^{\mu, \delta, \epsilon}\right)\right\|_{L^{1}(\Omega)}$ depend on ϵ (through $\left.\left\|\nabla u_{0}^{\epsilon}\right\|_{L^{1}(\Omega)^{p}}\right)$ and $\frac{1}{\mu}$.

So $\left(u_{\omega}\right)_{\omega>0}$ is a Cauchy sequence in $\mathcal{C}\left([0, T] ; L^{1}(\Omega)\right)$ and up to a subsequence, Convergence (12), (13) also holds for $\left(u_{\omega}\right)_{\omega>0}$. By starting from (5)-(7) for u_{ω} and taking the ω-limit, we prove:

Theorem 4. Let u_{0} be in $L^{\infty}(\Omega)$ with $u_{0} \geq 0$ a.e. in Ω. The degenerate parabolic-hyperbolic obstacle problem (1)-(3) admits at least a weak entropy solution in $\mathcal{C}\left([0, T] ; L^{q}(\Omega)\right)$ for any finite q.

References

[1] G. Duvaut, J.L. Lions, Les Inéquations en Mécanique et en Physique, Travaux et Recherches Mathématiques, vol. 21, Dunod, Paris, 1972.
[2] J.L. Lions, Quelques Méthodes de Résolutions des Problèmes Aux Limites Non Linéaires, Etudes mathématiques, Dunod-Gauthier-Villars, Paris, 1969.
[3] J.F. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland Mathematics Studies, vol. 134, Elsevier Sciences Publishers B.V., 1987.
[4] J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal. 147 (1999) 269-361.
[5] C. Mascia, A. Porretta, A. Terracina, Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations, Arch. Ration. Mech. Anal. 163 (2002) 87-124.
[6] C. Bardos, A.Y. LeRoux, J.C. Nedelec, First-order quasilinear equations with boundary conditions, Commun. Partial Differential Equations 4 (9) (1979) 1017-1034.
[7] F. Otto, Initial-boundary value problem for a scalar conservation law, C. R. Acad. Sci. Paris Sér. I 322 (1996) 729-734.
[8] L. Lévi, E. Rouvre, G. Vallet, Entropy Solutions to Degenerate Inequations, Preprint 0242 Laboratory of Applied Mathematics, FRE 2570, CNRS, 2002.
[9] G.Q. Chen, H. Frid, On the theory of divergence-measure fields and its applications, Bol. Soc. Brasil. Mat. 32 (2) (2001).
[10] L. Lévi, Problèmes unilatéraux pour des équations de convection-réaction, Ann. Fac. Sci. Toulouse IV (3) (1995) 593-631.

[^0]: * Corresponding author.

 E-mail address: laurent.levi@univ-pau.fr (L. Lévi).

