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Abstract

We consider non-parametric estimation of cumulative hazard functions and reliability func-
tions of progressively type-II right censored data. As shown in the book of Balakrishnan and
Aggarwala (Progressive Censoring, Birkh5auser, Basel, 2000), many results of classical order
statistics can be generalized to this kind of statistics. These authors proposed also many in-
ferential methods for parametric models. In this paper we show that non-parametric maximum
likelihood estimators (NPMLE) may also be derived under such censoring schemes. These esti-
mators are obtained in a reliability context but they can also be extended to arbitrary continuous
distribution functions. Since the large sample properties of the NPMLE depend on counting
processes based upon generalized order statistics that are generated by progressive censoring,
we need to establish some basic properties of these processes (e.g. martingales properties and
weak consistency). Finally, the non-parametric estimator of the reliability is compared with two
parametric estimators for a real data set and additionally, some Monte-Carlo simulations are
provided.
c© 2002 Elsevier B.V. All rights reserved.
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1. Introduction

Order statistics are widely used in statistical modeling and inference. In a paper
presenting a uni@ed approach for many models, based on order statistics and record
values, Kamps (1995) proposed a generalized form of the joint distribution of n ordered
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random variables. One of the models included in this general setup is the Type II
progressive censoring scheme as de@ned by Balakrishnan and Aggarwala (2000).
This scheme of censoring appears to be of great importance in planning duration

experiments in reliability studies. In many industrial experiments involving lifetimes
of machines or units, experiments have to be terminated early or the number of
experiments must be limited due to a variety of circumstances (e.g. when expensive
items must be destroyed, when experiments are time-consuming and expensive, etc.).
In addition, some lifetests require removals of functioning test specimens to collect
degradation related information to failure time data. The samples that arise from such
experiments are called censored. The planning of experiments with the aim of reducing
both the number of failures and the total duration of the experiment leads naturally to
the well-known type-I and type-II right censoring schemes. For many references and
historical notes on this subject we refer to Balakrishnan and Aggarwala (2000). The
progressive censoring scheme, as will be introduced hereafter, has the same objectives,
but it is constructed with the aim of moderating the loss of information by reducing the
number of failures with respect to the full sample approach. Montanari and Cacciari
(1988) reported results of progressively censored data aging tests on XLPE-insulated
cable models under combined thermal-electrical stresses. In this experiment, live
specimens were removed at selected times and/or at the time of breakdowns. The
progressive censoring sampling plans by Montanari and Cacciari (1988) are considered
in Balasoorya et al. (2000) with the aim of de@ning optimal sampling plans under
Weibull estimation.
In the classical type-II right censoring scheme only the @rst m failures are observed

for a sample of size n whereas for a progressively censored sample, the loss of in-
formation of n − m durations (as for the type-II plan) is organized sequentially as
it is described subsequently. Let X1; : : : ; Xn be independent and identically distributed
random lifetimes of n items. A type-II progressively right censored sample may be
obtained in the following way: at the time of the @rst failure, denoted with X1:m:n; r1
surviving items are removed at random from the n − 1 remaining surviving items, at
the time of the next failure, denoted with X2:m:n; r2 surviving items are removed at
random from the n− r1−2 remaining items, and so on. At the time of the mth failure,
all the remaining rm= n−m− r1− · · ·− rm−1 surviving items are censored. Therefore,
a progressively type-II right censoring scheme is speci@ed by integer numbers n, m
and r1; : : : ; rm−1 with the constraints n− m− r1 − · · · − rm−1¿ 0 and n¿m¿ 1.

Remark 1. If r1 = · · ·= rm−1 = 0 we get the usual type-II right censored sample; thus
we observe the @rst m order statistics X1:n; : : : ; Xm:n and the n−m remaining times are
right censored by Xm:n. If moreover m= n, the usual order statistic is obtained.

In their book, Balakrishnan and Aggarwala (2000) developed many parametric meth-
ods to analyze progressively type-II right censored data. Our aim here is to develop a
non-parametric approach for this kind of censored data in order to estimate both relia-
bility and cumulative hazard functions. In Section 2 we show how to derive NPMLE
for both the cumulative hazard function and the reliability function for lifetime distribu-
tion. A simple transformation enables therefore to yield an estimator for any continuous
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distribution function. Section 3 is devoted to several known results for progressively
censored samples. We also give in this section an important martingale property of
the counting process based upon progressively censored data. In Section 4 we give
assumptions and preliminary results on the asymptotic behavior of a progressively
censored sample. Finally, the main asymptotic results are obtained by standard methods
for counting processes (Lenglart inequality, Rebolledo theorem); see Andersen et al.
(1993). Section 5 contains an application to a data set constructed from Nelson (1982,
p. 105, Table 1.1) and some simulations illustrating the behavior of the reliability
estimator for moderate sample size. Concluding remarks are given in Section 6.

2. Non-parametric estimation

We consider a type-II progressively censored sample X1:m:n; : : : ; Xm:m:n observed from
a sample X1; : : : ; Xn of independent and identically distributed non-negative random
variables with distribution function F , reliability function R, density function f, hazard
rate function 
 and cumulative hazard function �. From Balakrishnan and Aggarwala
(2000), the joint density of the progressively censored sample (p.c.s.) (X1:m:n; : : : ; Xm:m:n)
under the scheme (r1; : : : ; rm) where r1¿ 0; : : : ; rm−1¿ 0 and rm = n− m− r1 − · · · −
rm−1¿ 0 is given by

fX1:m:n;:::;Xm:m:n(x1; : : : ; xm) =
m∏
i=1

�mi f(xi)R
ri(xi)1(0¡x1¡ · · ·¡xm); (1)

where �mi =
∑m
j=i rj + m − i + 1 and 1(·) is the set indicator function. It follows

that if (x1; : : : ; xm) is an observation of (X1:m:n; : : : ; Xm:m:n) the likelihood function is
proportional to

L(x1 ;:::;xm)(
) =
m∏
i=1

f(xi)Rri(xi)

and then, the log-likelihood function, up to an additive (but non informative) term, is
equal to

l(x1 ;:::;xm)(
) =
m∑
i=1

(log 
(xi)− (ri + 1)�(xi)):

We are now looking for a discrete measure on the set (x1; : : : ; xm), under which the
log-likelihood function is maximized. The discrete measure is called 
̂ =

∑m
i=1 
̂i�xi ,

where �xi is the Dirac measure at point xi. We have

l(x1 ;:::;xm)(
̂) =
m∑
i=1

log 
̂i − (ri + 1) i∑
j=1


̂j

 :
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Now, seen as a function of (
̂1; : : : ; 
̂m) the above quantity has a gradient equal to

∇l(x1 ;:::;xm)(
̂) =



@

@
̂1
l(x1 ;:::;xm)(
̂)

...
@

@
̂m
l(x1 ;:::;xm)(
̂)

=


1


̂1
−

m∑
i=1

(ri + 1)

...

1


̂m
−

m∑
i=m

(ri + 1)


:

We take for 
̂ the one which maximizes l(x1 ;:::;xm)(
̂) and therefore the one which solves
∇l(x1 ;:::;xm)(
̂) = 0. We get


̂k =
1
�mk

(k = 1; : : : ; m):

An estimator of 
 may be obtained by smoothing 
̂. Finally, the corresponding estimator
for � is �̂ de@ned by

�̂(t) = 
̂([0; t]) =
m∑
k=1

1
�mk
1(xk6 t):

Using the standard relation between the reliability function and the cumulative hazard
function, we get R̂, the product limit estimator of R (see, e.g., Andersen et al., 1993)

R̂(t) =
∏

{16i6n;xi6t}

�mi − 1
�mi

:

Remark 2. If ri = 0 for 16 i6m, then, m= n and it is easy to see that

R̂(t) = 1− F̂(t); where F̂(t) =
∑

{16i6n;xi6t}
1=n;

i.e. F̂ is the standard empirical distribution function for a full sample.

Remark 3. If (Xi:m:n)16i6m is a p.c.s. from an arbitrary continuous distribution function
F on R, then, for X+i:m:n = exp(Xi:m:n) we have that (X+i:m:n)16i6m is a p.c.s. from
distribution function F+ = F ◦ log. It results that if R̂+ is the reliability estimator of
R+ = 1− F+, then a natural estimator for F is given by

F̂(x) = 1− R̂+(exp(x));
for x∈R.

3. Some basic results

3.1. Simulation algorithm and a Markov property

Balakrishnan and Aggarwala (2000, p. 34) proposed (e.g.) the following algorithm
to simulate a type II p.c.s. of size m, from a distribution function F :

1. Simulate m independent and identically distributed (i.i.d.) exponential random
variables Z1; : : : ; Zm with mean 1;
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2. Set for i = 1; : : : ; m

Yi:m:n =
i∑
j=1

Zj=�mj : (2)

Then (Yi:m:n)i=1; :::;m is a p.c.s. from an exponential distribution function with
mean 1;

3. Set for i = 1; : : : ; m

Xi:m:n = F−1(1− exp(−Yi:m:n)) = �(Yi:m:n);
where F−1 is taken in the generalized inverse sense, and � is the cumulative hazard
rate function.

Remark 4. Steps 2 and 3 in the above algorithm will be of particular interest in the
sense that if (Xi:m:n)i=1; :::;m is a p.c.s. from distribution function F , (X̃ i:m:n)i=1; :::;m where
X̃ i:m:n = �(Xi:m:n) is a p.c.s. from an exponential distribution function with mean 1.

Another important result is the following.

Proposition 1 (Markov property). Let (Xi:m:n)i=1; :::;m a p.c.s. with underlying distribu-
tion function F and density f. Given X1:m:n = x1; : : : ; Xi:m:n = xi, the random variables
Xi+1:m:n; : : : ; Xm:m:n are jointly distributed as a p.c.s. of size �mi+1 with density function
g de>ned by

g(x) =
f(x)

1− F(xi) 1(x¿ xi):

Proof. See Balakrishnan and Aggarwala (2000, Theorems 2.4 and 2.5, pp. 14–15).

3.2. A martingale approach

Let N be the counting process de@ned by

N (t) =
m∑
i=1

1(Xi:m:n6 t);

and FN = (FN
t )t¿0 be the natural @ltration generated by N and (rn)n¿1, thus F

N
t =

�{Xi:m:n; ri; Xi:m:n6 t}.

Proposition 2. The process M de>ned on [0;+∞) by
M (t) = N (t)−

∫ t
0
Y (s)
(s) ds; (3)

where

Y (s) =
m∑
i=1

(ri + 1)1(Xi:m:n¿ s);

is a martingale with respect to the >ltration FN .
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Proof. De@ne Gk and gk by

Gk(t) = P(Xk:m:n − Xk−1:m:n6 t|FNXk−1:m:n) =
∫ t
0
gk(s) ds; t¿ 0;

where FNXk−1:m:n is the @ltration stopped at time Xk−1:m:n (we put X0:m:n ≡ 0). By
Theorem 11 of Aven and Jensen (1999, p. 55), the intensity of N is given by


̃(t) =
m∑
k=1

gk(t − Xk−1:m:n)∫ +∞
t−Xk−1:m:n gk(s) ds

1(Xk−1:m:n ¡ t6Xk:m:n):

Denote by L= the equality in law of two random variables. From Proposition 1, given
Xk−1:m:n = x, we have

Xk:m:n
L= min
16j6�mk

Yj;

where the Yj’s are �mk i.i.d. random variables with density function g de@ned by

g(t) =
f(t)
R(x)

1(t¿ x):

Then, noting x = Xk−1:m:n, we have

1− Gk(t) = P(Xk:m:n − Xk−1:m:n ¿ t|FNXk−1:m:n)

= P
(
min

16j6�mk
Yj − x¿ t

)
=
(∫ +∞

t+x
g(s) ds

)�mk
=
(
R(x + t)
R(x)

)�mk
:

We have for t¿ 0

gk(t) = �mk f(x + t)
R(x + t)�

m
k −1

R(x)�mk
;

then, for Xk−1:m:n ¡ t6Xk:m:n, we have
gk(t − Xk−1:m:n)∫ +∞
t−Xk−1:m:n gk(u) du

= �mk 
(t):

It is now easy to show that if Y denotes the process

Y (t) =
m∑
i=1

(ri + 1)1(Xi:m:n¿ t);

then, for t¿ 0, we have


̃(t) = Y (t)
(t):

Consequently the process M (t) = N (t)− ∫ t0 Y (s)
(s) ds is an FN -martingale.

Remark 5. Proposition 2 makes it possible to retrieve the previous cumulative hazard
estimator. Using the following classical heuristic

dN (t) ≈ Y (t)
(t) dt
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we get by neglecting the martingale part in (3), an estimator �̂ of the cumulative
hazard function �

�̂(t) =
∫ t
0

dN (s)
Y (s)

; t¿ 0;

which is the same as �̂ of Section 2.

It is also clear that the properties of the estimators will strongly depend on properties
of processes N and Y or their normalized versions N (m) = N=m and Y (m) = Y=m.

4. Asymptotics for the estimators

The main purpose of this section is to study the asymptotic behavior of the
processes �̂(m) and R̂(m). This is achieved by using the now classical martingale
and counting processes approach developed in Andersen et al. (1993). These methods
require some knowledge about uniform consistency of the processes N (m) and Y (m).
The next subsection contains preliminary results on N (m) and Y (m). This part enables
us to understand that under the assumptions below, a p.c.s. with distribution function
F behaves asymptotically like the usual order statistic of a m-sample with distribution
function 1 − (1 − F)r+1 (r is given in A2 below; note that the result holds for @nite
m when the ri’s are constant equal to r).
Let us consider the following assumptions. In the sequel, all limits are taken with

respect to m tending to in@nity.

A1. supm¿1 rm6K ¡+∞;
A2.

∑m
i=1 ri=m→ r;

A3. # is a real number such that F(#)¡ 1.

Remark 6. In the sequel we assume that the sequence (ri)i¿ is deterministic. However,
it could be a random sequence (this is the case in our simulation results) and then,
results involving (ri)i¿1 should be understood in the almost sure sense. This is also
the reason why the ri’s are included in the @ltration of the previous section.

4.1. About the processes N (m) and Y (m)

Lemma 1. Let (rm)m¿1 satisfy A1–A2 and let � be a real such that 0¡�¡ 1. Then

sup
16j6[�m]

∣∣∣∣ �mj
(r + 1)(m− j + 1) − 1

∣∣∣∣→ 0:

Proof. It is suPcient to show that

sup
06j6[�m]

∣∣∣∣∣∣ 1
m− j

m∑
i=j+1

ri − r
∣∣∣∣∣∣→ 0:
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Let $¿ 0 be a real number and put um = m−1∑m
i=1 ri − r. Then there exist:

(i) m0 such that if m; j¿m0, then |um − uj|¡ $(1−�)
2� (Cauchy);

(ii) m1 such that if m¿m1, then |um|¡$=2 (A2);
(iii) m2 such that if m¿m2, then j=(m− j)6 $=4(K + 1) if 06 j6m0.

Let us de@ne

vj;m =
1
m− j

m∑
i=j+1

ri − r;

we have

vj;m = um +
j
m− j (um − uj):

Then, for m¿max(m0; m1; m2), using (i)–(iii), we have:

• if 06 j6m0:

|vj;m|6 $=2 +
(
j
m− j

)
2(K + 1)6 $;

• if m0¡j6 [�m]:

|vj;m|6 $=2 + [�m]
m− [�m]

$(1− �)
2�

6 $:

The lemma is proved.

Let us now remark that by inverting steps 2 and 3 of the algorithm of Section 3.1
we have the following almost sure representation result:

Yi:m:n = �(Xi:m:n) =
i∑
j=1

Zj
�mj
; i = 1; : : : ; m;

where the Zj’s are i.i.d. exponentially distributed random variables with mean 1. Intro-
ducing the random variables (Ỹ i:m:n)16i6m, where for 16 i6m

Ỹ i:m:n =
i∑
j=1

Zj
(r + 1)(m− j + 1) ;

we get the following lemma.

Lemma 2. Under A1–A3, for 06 �¡ 1, we have

sup
16i6[�m]

|Ỹ i:m:n − Yi:m:n| → 0; a:s:
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Proof. Note that for 16 i6 [�m], we have

|Ỹ i:m:n − Yi:m:n|6
i∑
j=1

∣∣∣∣∣ 1
(r + 1)(m− j + 1) −

1
�mj

∣∣∣∣∣ Zj
6 sup

16j6[�m]

1
�mj

∣∣∣∣ �mj
(r + 1)(m− j + 1) − 1

∣∣∣∣ [�m]∑
k=1

Zk

6 sup
16j6[�m]

∣∣∣∣ �mj
(r + 1)(m− j + 1) − 1

∣∣∣∣
× [�m]
(m− [�m]) ×

1
[�m]

[�m]∑
k=1

Zk :

The above inequality together with

• sup
16j6[�m]

∣∣∣∣ �mj
(r + 1)(m− j + 1) − 1

∣∣∣∣→ 0 for all 06 �¡ 1 from Lemma 1,

• [�m]
(m− [�m])6

�
(1− �)¡+∞,

• 1
[�m]

[�m]∑
k=1
Zk → 1 a.s. from the strong law of large numbers,

give the expected convergence result

sup
16i6[�m]

|Ỹ i:m:n − Yi:m:n| → 0; a:s:

Lemma 3. Under A1 and A3 we have limm→+∞ P(Xm:m:n ¿#) = 1.

Proof. By A3 we have �(#)¡+∞ and by A1

P(Xm:m:n ¿#) = P(Ym:m:n ¿�(#)) = P

 m∑
j=1

Zj
�mj
¿�(#)



¿ P

 m∑
j=1

Zj
m− j + 1¿ (K + 1)�(#)

= P(Zm:m¿ (K + 1)�(#))
= 1− (1− exp(−(K + 1)�(#)))m = 1− Fm(K+1)(#)→ 1;

where Zm:m =max16i6m Zi.
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Proposition 3. Under A1–A3 we have

sup
06t6#

|N (m)(t)− (1− Rr+1(t))| → 0; a:s:; (4)

sup
06t6#

|Y (m)(t)− (r + 1)Rr+1(t)| → 0; a:s: (5)

Proof. Let us show (4). We have N (m)(t)− (1− Rr+1(t)) = I (m)(t) + II (m)(t), where

I (m)(t) =
1
m

m∑
i=1

(1(Yi:m:n6�(t))− 1(Ỹ i:m:n6�(t)))

and

II (m)(t) =
1
m

m∑
i=1

1(Ỹ i:m:n6�(t))− (1− Rr+1(t)):

Using the fact that the Ỹ ′
i:m:ns have the same joint distribution as an order statistic

of a m-sample exponentially distributed with mean 1=(r + 1), it results that II (m)(t)
is the centered empirical distribution function of a sample of m exponential random
variables with mean 1=(r + 1). Then the Glivenko–Cantelli theorem (see e.g. Shorack
and Wellner, 1986) gives

sup
06t6�−1(#)

|II (m)(t)| → 0; a:s:

Let $ be a real number in (0; 1). We have

I (m)(t)6

∣∣∣∣∣ 1m
[(1−$)m]∑
i=1

(1(Yi:m:n6�(t))− 1(Ỹ i:m:n6�(t)))
∣∣∣∣∣+ 2$= III (m)(t) + 2$:

Moreover, for �= $=(2(r + 1)) we have, for all 16 i6 [(1− $)m]:
|1(Yi:m:n6�(t))− 1(Ỹ i:m:n6�(t))|
6 1(|Ỹ i:m:n − �(t)|6 �) + 1(|Ỹ i:m:n − Yi:m:n|¿�);

and then

III (m)(t)6
1
m

m∑
i=1

1(|Ỹ i:m:n − �(t)|6 �) + 1
(

sup
16i6[(1−$)m]

|Ỹ i:m:n − Yi:m:n|¿�
)
:

By applying Lemma 2 and using again the strong law of large numbers, the right-hand
side of the above inequality converges almost surely to

exp(−(r + 1)(�(t)− �))− exp(−(r + 1)(�(t) + �))6 $
and the convergence is uniform for t ∈ [0; #]. Result (4) is proved.
It remains to show (5). Note that

Y (m)(t) =
1
m

m∑
i=1

(ri − r) + (r + 1)(1− N (m)(t)) + 1
m

m∑
i=1

(ri − r)1(Xi:m:n6 t):



L. Bordes / Journal of Statistical Planning and Inference 119 (2004) 171–189 181

From A3 and (i), respectively, the @rst and second term on the right hand side of the
above equality converge, respectively, to 0 and (r + 1)Rr+1(t) (a.s. and uniformly in
t ∈ [0; #]). Let $¿ 0 be a real number and choose (∈ (0; #), such that (K+ r)(1−Rr+1
(())6 $. For the third term, denoted IV (m)(t), observe that

|IV (m)(t)|6 (K + r)N (m)(() + sup
(6t6#

∣∣∣∣∣ 1N (t)
N (t)∑
i=1

(ri − r)
∣∣∣∣∣ :

From (i), on a set of probability 1, we have limm→+∞ (K+r)N (m)(()6 $ and N (()→
+∞, and then, on the same set, we have

lim
m→+∞ sup

06t6#
|IV (m)(t)|6 $:

Since $ is arbitrary we get

sup
06t6#

|IV (m)(t)| → 0; a:s:;

which achieves the proof of (5).

4.2. Asymptotics

We now present the main results concerning the asymptotic behavior of the
estimators.

Theorem 1 (weak consistency). Suppose that A1–A3 are satis>ed. Then

(i) sup
06s6#

|�̂(s)− �(s)| P→ 0,

(ii) sup
06s6#

|R̂(s)− R(s)| P→ 0.

Proof.
(i) Firstly note that for t ∈ [0; #] we have

�̂(t)− �(t) =
∫ t
0

J (s)
Y (s)
M (ds) +

∫ t
0
(1− J (s))
(s) ds;

where J (t) = 1(Y (t)¿ 0). Following the lines of Andersen et al. (1993, p. 190)
we get, with both the Lenglart inequality and Proposition 3, for $¿ 0,

lim
m→+∞P

(
sup
t∈[0;#]

∣∣∣∣∫ t
0

J (s)
Y (s)
M (ds)

∣∣∣∣¿$
)
= 0:

On the other hand, we have

sup
t∈[0;#]

∣∣∣∣∫ t
0
(1− J (s))
(s) ds

∣∣∣∣6�(#)− �(# ∧ Xm:m:n) P→ 0; (6)

from Lemma 3. So we have proved that

sup
06s6#

|�̂(s)− �(s)
∣∣∣ P→ 0:
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(ii) Denote R∗(t) =
∫ t
0 J (s)
(s) ds. By the Duhamel equation (see Andersen et al.,

1993, pp. 90–91) we have

R̂(t)
R∗(t)

− 1 =−
∫ t
0

R̂(s−)J (s)
R∗(s)Y (s)

M (ds)

which converges uniformly to 0 in probability on [0; #] by the Lenglart inequality
and Proposition 3. Furthermore, it is easy to see that∣∣∣∣ R(t)R∗(t)

− 1
∣∣∣∣6 (R(#))−1

∫ #
0
(1− J (s))
(s) ds:

Hence from (6) we get

sup
t∈[0;#]

∣∣∣∣ R(t)R∗(t)
− 1
∣∣∣∣ P→ 0;

which achieves the proof of (ii).

Theorem 2 (weak convergence). Suppose that A1–A3 hold and let B be the standard
Brownian Motion on [0;+∞). Then we have

(i)
√
m(�̂(t)− �(t)) D→B ◦ v(t) in D[0; #];

where the covariance function v is de>ned by

cov(B ◦ v(s); B ◦ v(t)) = v(s ∧ t) = 1− Rr+1(s ∧ t)
(r + 1)2Rr+1(s ∧ t) ;

for s; t ∈ [0; #].
(ii) In addition, v may be consistently (uniformly) estimated on [0; #] by

v̂(t) = m
∫ t
0

dN (s)
Y 2(s)

:
(iii)

√
m(R̂(t)− R(t)) D→R(t)B ◦ v(t) in D[0; #];

with cov(R(t)B ◦ v(t); R(s)B ◦ v(s)) = R(t)R(s)v(s ∧ t) for s; t ∈ [0; #].
(iv)

sup
06s6#

(
m
v̂(s)

)1=2 |R̂(s)− R(s)|
R̂(s)

D→ sup
06s61

|B(s)|:

Remark 7. Results of Theorems 1 and 2 ((i), (ii) and (iii)) allow us to construct
pointwise con@dence intervals for � and R. By result (iv) in Theorem 2 we can
construct Gill type (see, e.g., Fleming and Harrington, 1991, p. 240) con@dence bands.
However, better con@dence band results should be obtained by using the method of
Hall and Wellner (1980).
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Proof. (i) Using the decomposition
√
m(�̂(t)− �(t)) =√

m
∫ t
0

J (s)
Y (s)
M (ds) +

√
m
∫ t
0
(1− J (s))
(s) ds

we get for $¿ 0

P

(
sup
t∈[0;#]

√
m
∣∣∣∣∫ t
0
(1− J (s))
(s) ds

∣∣∣∣¿$
)
6P(Xm:m:n ¡#)→ 0;

from Lemma 3. It follows that the processes
√
m(�̂(t)− �(t)) and

√
m
∫ t
0

J (s)
Y (s)

M (ds);

are asymptotically equivalent on [0; #]. Using Proposition 3 and following the lines
of Andersen et al. (1993, p. 191), we get by Rebolledo’s theorem that

√
m
∫ t
0

J (s)
Y (s)
M (ds) D→B ◦ v(t) in D[0; #];

where B is a standard Brownian Motion on [0;+∞) and the covariance function
v is de@ned by

cov(B ◦ v(s); B ◦ v(t)) = v(s ∧ t) =
∫ s∧t
0


(u)
(r + 1)Rr+1(u)

du

=−1− R
−(r+1)(s ∧ t)
(r + 1)2

;

for s; t ∈ [0; #], if:
(a) 〈√m ∫ ·

0

J (s)
Y (s)

M (ds)〉(t) P→ v(t), for all t ∈ [0; #], and
(b) for all $¿ 0, 〈√m ∫ ·

0
J (s)
Y (s) 1(

J (s)
√
m

Y (s) ¿$)M (ds)〉(t)
P→ 0, for all t ∈ [0; #].

Condition (a) is satis@ed since we have〈√
m
∫ ·

0

J (s)
Y (s)

M (ds)
〉
(t) =

∫ t
0

J (s)
(s)
Y (m)(s)

ds;

and the strong uniform convergence of Y (m) towards (r + 1)Rr+1, which is uni-
formly bounded away from 0 on [0; #] (see Proposition 3). Moreover, for -¿ 0
we have

P
(〈√

m
∫ ·

0

J (s)
Y (s)

1
(
J (s)

√
m

Y (s)
¿$
)
M (ds)

〉
(t)¿-

)

=P
(∫ t

0

J (s)
Y (m)(s)

1
(
J (s)√
m$
¿Y (m)(s)

)

(s) ds¿-

)
6P(Y (m)(#)¡m−1=2$−1)→ 0;

by Proposition 3.
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(ii) Write

v̂(t) =
1
m

∫ t
0
J (s)

(
m
Y (s)

)2
M (ds) +

∫ t
0
J (s)

m
Y (s)

(s) ds:

Consistency of v̂ follows from an application of Lenglart’s inequality (see e.g.
Andersen et al., 1993) and our Proposition 3, to the @rst term on the right-hand
side of the above equation (then we get its uniform convergence in probability to
0) and we show, using once again Proposition 3, that the second term converges
uniformly to v on [0; #].

(iii) The weak convergence of
√
m(R̂−R) in D[0; #] follows immediately from compact

diQerentiability of product integral (see Andersen et al., 1993, Proposition II.8.7),
the functional �-method (see Andersen et al., 1993, Theorem II.8.1) and the weak
convergence of

√
m(�̂− �) in D[0; #] obtained in (i) of this theorem.

(iv) Finally, from (iii) and Slutsky’s Lemma we have the following weak convergence
result (

m
v̂(s)

)1=2 R̂(s)− R(s)
R̂(s)

D→B(s):

By continuity of x → sups∈[0; #]|x(s)| on the space of continuous functions and the
continuous mapping theorem (see e.g. Shorack and Wellner, 1986), we get the
expected result.

Remark 8. Let F̂ be the estimator of an arbitrary distribution function F (with density
f) de@ned in Remark 3. Suppose that A1–A2 are satis@ed and that # is a real number
such that F(#)¡ 1. Let B be the standard Brownian Motion on [0;+∞). Then we have
the uniform weak consistency of F̂ on (−∞; #], √m(F̂(t)− F(t)) D→(1− F(t))B ◦ v(t)
in D(−∞; #], where

v(t) =
1− (1− F(t))r+1

(r + 1)2(1− F(t))r+1 ;

and v may be consistently estimated on (−∞; #] by

v̂(t) = m
∫ exp(t)

0

N+(ds)
(Y+(s))2

;

where N+(s) =
∑m
i=1 1(Xi:m:n6 log(s)) and Y+(s) =

∑m
i=1(ri + 1)1(X

+
i:m:n¿ log(s)).

5. Example and Monte-Carlo simulations

5.1. An example

Here we compare our non-parametric estimator with two parametric ones, proposed
by Balakrishnan and Aggarwala (2000). The comparison is done on a data set extracted
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Table 1
Progressively censored sample generated from times to break-down data on insulating Ruid tested at 34 kV
by Nelson (1982)

i 1 2 3 4 5 6 7 8

xi:8:19 0.19 0.78 0.96 1.31 2.78 4.85 6.5 7.35
ri 0 0 3 0 3 0 0 5

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

NONPARAMETRIC
EXPONENTIAL

WEIBULL

Fig. 1. Three estimators of the reliability function.

(see Table 1) by Viveros and Balakrishnan (1994) from a sample by Nelson (1982,
p. 105, Table 1.1: 3 values between 2.78 and 4.85 and 8 values greater than 7.35 are
omitted which gives the total number of 11 progressively censored items).
Fig. 1 gives a comparison of our non-parametric estimator with both an exponential

estimator (see Balakrishnan and Aggarwala, 2000, p. 95) and a Weibull estimator
(see Balakrishnan and Aggarwala, 2000, p. 102; this estimator is denoted Weibull, but
estimation is done via an extreme value estimation based on a log-time transformation).
It is interesting to note that our estimator can help to choose between the two parametric
estimators. For example we note that the non-parametric estimator seems closer to the
Weibull estimator than to the exponential one.
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Lower 95% Confidence Interval
Upper 95% Confidence Interval

Fig. 2. Uncensored data, m = 100.

5.2. Monte-Carlo simulations

The following Monte-Carlo simulations have been obtained for two kinds of data:

(i) uncensored data (u.d.): r1 = · · ·= rm = 0;
(ii) progressively censored data (p.c.d.): the ri’s are i.i.d. with P(ri=0)= · · ·=P(ri=

4) = 0:2, then E(ri) = 2 and since n= r1 + · · ·+ rm + m, we have E(n) = 3m.

We simulated lifetimes with Weibull distribution function F de@ned by

F(t) = (1− exp(−(t=3)4))1(t¿ 0):

Each of the four @gures contains:

(i) R(t) = 1− F(t) the true reliability function;
(ii) R̂(t) for m u.d. or p.c.d;
(iii) 95% pointwise con@dence interval for the reliability.

The comparison of Fig. 3 with Figs. 2 and 4 shows the poor performance of the
NPMLE for the reliability function under progressive censoring in estimating small
reliability values. This result is not surprising since this sequential censoring scheme
makes the probability of removing large values in the initial sample larger than that of
removing small ones.
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Fig. 3. Progressively censored data, m = 100, E(n) = 3m.

Otherwise, it is interesting to note that estimation (from a con@dence interval point
of view) works well for moderate to high reliability values. For such reliability values,
we note that performances of the NPMLE under progressive censoring (see Fig. 3) are
closer to those of the NPMLE for 300 uncensored data (see Fig. 4) than those of the
NPMLE for 100 uncensored data (see Fig. 2).

6. Concluding remarks

We proposed a non-parametric estimator for the reliability function. In fact, it is a
Kaplan–Meier type estimator, in the sense that a p.c.s may be viewed as a sample
of size n in which m failures are observed whereas other observations are exactly
censored by the times-to-failure (Xi:m:n)i=1; :::;m. However, this fact makes the study of
our estimators non obvious in the sense that the classical assumption of independence
between times-to-failure and censoring times is not true here.
Another issue of this work could be another way to bootstrap an empirical distribu-

tion function: obtain N sub-p.c.s from an initial sample by choosing randomly several
sequences (r( j)i )

j=1; :::;N
i=1; :::;mj (satisfying A1–A2), for each sequence (r

( j)
i )i=1; :::;mj de@ne the

corresponding estimator R̂( j), then estimate F by

F̂(t) = 1− 1
N

N∑
j=1

R̂( j)(t):
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Fig. 4. Uncensored data, m = 300.

Finally, note that from Proposition 3 there is another “natural” estimator of the
distribution function F . Indeed, from this proposition we have

lim
n→+∞EN

(m)(t) = 1− (1− F)r+1(t):

Then, de@ning r̂ =
∑m
i=1 ri=m, a consistent (under A1–A3) estimator of F is given by

F̃(t) = 1− (1− N (m)(t))1=(r̂+1):
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