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Abstract

We define a scale derivative for non-differentiable functions. It is constructed via quantum derivatives which take
into account non-differentiability and the existence of a minimal resolution for mean representation. This justify
heuristic computations made by Nottale in scale-relativity. In particular, the Schrodinger equation is derived via the
scale-relativity principle and Newton’s fundamental equation of dynamics.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The aim of this article is to give a complete proof that the Schrodinger equation can be obtained from Newton’s
fundamental equation of dynamics in the scale-relativity setting developed by Nottale [1,11,14]. The articles [1,11,14]
contain only a sketch of proof and are based on informal arguments.

The main “ingredient” of Nottale’s work is a new “derivative”, ! that he calls the scale derivative, which applies to
non-differentiable functions. Despite its importance, there exists no rigorous definition of this operator. In this article,
we give a precise definition of the scale derivative, as well as its geometric interpretation. As a consequence, we can
justify completely the computations made by Nottale in the articles [1,11,14].

The main problem is to define an extension of the classical differential calculus which has a clear physical meaning.

The starting point of our work is the following informal idea: Let y be a given curve. From the physical view-point,
we do not have access to 7, but to a “representation’ of it, denoted y,, which is always differentiable (up to a finite
number of points) at a given scale of observation 7, and such that y, converge to 7 in C° topology. Of course, 7}, is not
always sufficient in order to describe the underlying physical process. In particular, if y is non-differentiable, the
fluctuations of y, when 7 goes to zero become non-negligible * contrary to what happens in the differentiable case.

This transition from a differentiable behaviour to a non-differentiable one when we follow y, must be quantified. In
this article, we introduce several concepts in the special case of graphs of functions f(¢) and for a representation given
by the t-mean function f,(¢) = (1/27) [ f(s)ds.

In Section 2 we define the notion of z-differentiability, which leads to a natural transition quantity for the dif-
ferentiable-non-differentiable behaviour of f;(¢) with respect to f(¢), called minimal resolution and denoted t(f).
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' We will see that this terminology is not appropriate.

2 Following Greene [8, p. 149] this is the basic reason for which differentiable (Riemanian) manifolds of Einstein’s relativity theory
cannot be used to describe the structure of space-time in quantum mechanics.
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Heuristically, we can say that for t > t(f), the approximation of f'(¢) by f:(¢) is sufficient to describe the behaviour of f
up to t small perturbations, which is not the case for © < z(f).

When 7 < 7(f), we must take into account the non-differentiability of the limiting function /. We then define left and
right quantum derivatives, denoted O, f//00¢ and O_ f /Ot respectively, which are nothing else than the derivatives of the
right and left 7(f)-mean function of £, i.e. £,(1) = (a/<(f)) [7") f(s)ds, @ = +. The fact to consider separately f, (¢)
and f_(¢) is due to the non-differentiability of f.

The scale derivative, defined in Section 3 and denoted by Of /[, is a complex operator which takes into account the
two quantity O,/ /0¢, ¢ = +, in such a way that when f is differentiable O /0¢ = f7(¢). This “gluing” property of 0J/U¢
to d/d¢ on the set of differentiable functions is a necessary constraint to be satisfied by all extended “differential”
calculus. Paragraph 4 gives some properties of the scale derivative.

In Section 5, we generalize, following Nottale’s scale relativity principle, Newton’s fundamental equation of dy-
namics, by replacing the classical derivative by our scale derivative. We prove that the new equation leads to a gen-
eralized Schrodinger equation. This justify heuristic computations made by Nottale [1,11,14].

2. Non-differentiable functions and minimal resolution

In the following, f is a continuous function, defined on an open set I of R. For all t € R™*, we denote by f; the t-
mean function defined by

4T
f:(6) = (1/21)/ f(s)ds. (1)
t—t
We call z-oscillation of f the quantity
osc.f(t) = sup{f () — f(¢"), /1" € [t = 7,1 +1]}. 2)
We say that the graph of f is fractal according to Tricot [12] if the quantity
w — 400 when t — 0, (3)

uniformly with respect to ¢, contrary to the differentiable case.
For 0 < <1, we denote

/) = 1)

()], = sup E: 4
‘ ( )‘ 7 5.8/ €[t—1,141], 55’ |S - S ‘ ( )
Remark 1. We have

L <@l <If (5
where

. ) =1 t)—f(¢
U= ing VO=SOL G V0 =70 ©
L el |t — | £t €l |t =7

and 7 is the closure of 1.
For all ¢ € I, we define «(¢) such that
a(t; f,7) = sup{o > 0|/ (2)|,, # O} (7)

In the following, we do not write the explicit dependence of o(z; £, t) with respect to f and .
We denote

_osc.f(f)
O =2 0 ®
We have
() = FO < 22| (1)) .0 (2), )

so that a,f(¢) is a measure of the approximation of f by the differentiable function f;.
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Remark 2. For a differentiable function, we have «(f) = 1 for all # €  and a.f(¢) <1 for all ¢ and all =.

We then have the following notion of t-differentiability at a point

Definition 1. Let /' be a continuous function, defined on a compact set 7 of R, such that for all 7 € I,
1> af) > 0. (10)
Let 7 > 0 be given. We say that f is 7-differentiable at point ¢ € [ if

a.f(t) <1 (11)

A large class of continuous functions satisfy condition (10). At least, Holderian functions of order 0 < o < 1.
Moreover, there exists explicit construction of continuous functions with prescribed Holder regularity, as discussed in
[16]. The simplest case is that of continuous function such that «(z) = « for all # € 1. As an example, we can consider the
Weierstrass function which possesses a uniform Holder regularity [12].

Remark 3. The concept of z-differentiability can be understood as a way to characterize when the fluctuations of f" are
“small” with respect to the mean function f;. Of course, the notion of “smallness’ depends on a normalization, which is
fixed. In our case, this normalization is contained in the choice of the number 1 for the upperbound of a,,f in (11), by
comparison with the differentiable case. Different kinds of normalization can be taken, leading to different notions of
non-differentiability. This is just a matter of choice.

We denote by t(f)(¢) the minimal order of t-differentiability at point #:

©(f)(¢) = inf{z = 0| f is t-differentiable at point ¢}. (12)

Definition 2. Let / be a continuous real valued function defined on an open interval / C R. We call minimal resolution
the quantity

() = inf <()(0). (13)

We remark that for all A € R, we have
w(Af) =1(f) and (f + 1) =1(f). (14)
If f is a fractal function (see (3)), then 7(f) > 0. In fact, we have a more general result:
Lemma 1. If a continuous function f is differentiable then t(f) = 0.
Proof. This follows from Remark 2. [
As a consequence, if 7(f) > 0, then f is an everywhere non-differentiable function. Of course, if f is differentiable on

a given subset J of 7, then t(f)) = 0, despite the fact that 7(f)(¢) > 0 for all € I \ J. In the following, we consider only
continuous everywhere non-differentiable functions.

3. Quantum derivatives and the scale derivative
We define left and right quantum derivatives.

Definition 3. Let f : R — R be a continuous function such that its minimal resolution t(f) satisfies 7(f) > 0. We call
right and left quantum derivative the quantities
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a.f _f(t"‘f) _f(t)
(t) - )
Ot T (15)
O/ (10 =F=7)
O v T ’
respectively (where © = t(f)). If t = 0, then DD”f (1) = lim,_o M

For a differentiable function, we have ==/ (1) = ==L (¢) = f/(1).

Remark 4. We refer to [17] for a careful study of such kind of difference operators in the context of what they call time
scales calculus.

We define quantum functions f.(¢t) and f_(¢) as

ro=1 [ ros

ro=1 [ o
T Ji—
respectively.
We have
Uof o _
=)= 10, == (17)
Remark 5. As %/ (f) and =L (¢) are continuous, the functions /' (¢) and f(¢) are well defined.
Using the quantum functions f, (¢) and f_(¢), we can write f as
f@O)=f+E0), fO) =10+ @), (18)

where g{ and & are non-differentiable functions representing fluctuations with respect to the right (resp. left) mean
function. In the following, we will denote fﬁ and & by ¢, and &_ if no confusion is possible.

Lemma 2. Let f be a continuous function such that t1(f) > 0. Then for h sufficiently small, we have

Oaf

Flatoh) = 1) + 0L 04 (614 ) — &, (0) + o), (19)
where DD”[ (t) = 7“””;%};_"{(’), o=

Proof. We have f(t+ oh) = f,(t + ch) + &,(t + ah) + o(h) for ¢ = +. A first order Taylor’s expansion of f,(¢+ ch)
gives

fo(t+ah) = f.(¢) + af.(t)h + o(h). (20)
Using (17), we obtain for 4 sufficiently small,
0.f

S+ ) = o)+ L@+ £+ )+ olh),
S 1) = 10+ =L b+ & =)+ o)
Replacing f,(¢) by f(¢) — &,(¢), we obtain (19). O

In the following, we denote
KLt h) = EL(t + ah) — EL(0) (21)

for ¢ = +, or r,(¢,h) if no confusion is possible.
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Definition 4. Let / : R — R be a continuous function and 7(f) its minimal resolution. We call scale derivative of f at
point ¢ the quantity

Lo-3(Eo+Fo)-5(Fo+Fo) 2-- @

Dt()zf Ot Or O¢ Or

Remark 6. We use the terminology of scale derivative for the operator £ only to be coherent with Nottale’s terminology
[1,11]. However, as quantum derivatives, the scale derivative is not a derivation on the set of continuous functions, i.e. it
does not satisfy the Liebniz rule. *

When £ is differentiable, we obtain the classical derivative. The real part of the scale derivative is the derivative of the
t-mean function of f, f;. We have

SO+ /()

2 .

In our computations about the Schrodinger equation, we will need the following definition of the scale derivative for
complex valued functions:

Let f: R — C, t+— f(¢), be a continuous function. We have f(¢) = Re(f(¢)) + iIm(f(¢)) where Re and Im are the
real and imaginary part of f(¢) respectively. The functions Re(f(¢)) and Im(f(¢)) are continuous real valued functions.
We define the scale derivative of 1 as
Of . ORe(f) .OIm(f)(¢)
o= WHi—g (23)

4. Consequences of non-differentiability
We keep the notations of Section 3.
4.1. Main lemma

In order to derive the Schrodinger equation from Newton’s fundamental equation of dynamics in Section 5, we need
to compute the scale derivative of a composed function of the form f(x(¢),¢) where f(x,¢) is a differentiable function,
and x(¢) is not. The following lemma gives the formula.

Lemma 3. Let f(x,t) be a C? function. Let x(t) be a continuous function such that t(x) > 0 and

Cox

Ot

Sfor h > 0 sufficiently small, ¢ = +.
We consider the function g(t) = f(x(t),t). We have

(i) (g) > 0.
For all h sufficiently small, we denote

x(t+oh)=x(t)+0

(O +r,(1) (24)

g(t+ah) =g(t)+ GDDG;g (h+ré(t,h), o=+ (25)

We assume that for ¢ = %+, we have
(*) the function (r:(t, h))‘2 admits a right derivative at point h = 0 for all t,
(**) we have [r(t,h) — a-—fr‘(t,h)} /h— 0 when h — 0°.

x' o

3 An operator D on an algebra 4 is a derivation if Vx,y € 4 we have D(x -y) = Dx - y +x - Dy which is usually called Liebniz identity
(see [10]).
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Then, we have

) =2 = L (0.0 =50 + L (x0).0) + 3 22 (1), 00 0), (26)

where a. (1) (resp. a_(t)) is the right derivative at point h =0 of 12 (1, h) (resp. r* (, h)).

Remark 7. If f is a flat function at point (x(¢),#) then (0f/0x)(x(¢),#) = 0 and assumption (**) is equivalent to the
differentiability of r,(¢,4), 0 = £ at & = 0, which is not possible as z(x) > 0.

Proof. For (i) this follows easily from Lemma 1. For (ii), we have

gt+h)=f(x(t+h),t+h) :j( (¢ )+DD—+( t)h +o(h) +r’§(t,h),t+h)7 (27)
using (19).
As 7 (t,h) — 0 when h — 0, we have, doing a Taylor’s expansion of f in the neighborhood of (x(¢), 1),
o+ =) + S 6000 TEOh-+0lh) +110.8)) + 5 (00
1({@ O. 2
+3 (a—xf (x(0), 1) (EX ()h + o) + r;(t,h))
0 O, g
+2©xgt( (t),t)<?tx(t)h +o(h) +r‘+(t,h))h +a—t];( (1), 0)h ) +-- (28)

As (ri)2(t, h) is differentiable at point #, we have (ri)z(t, h) = a.(t)h+ o(h). By factorizing terms of order 1 in A, we
obtain

s+ =0+ ( L0 Z0 + Lx0.0) +5 L 6000 0) )+ 00h) + B! 1), (29)
where
By () = 2L (x(0), 073 1) (30)
is non-differentiable and # (,0) = 0.
We deduce
s, - (L 0.0 L0+ Lown+5 5L 60.00.0)
:%(rg(z,hwo(h) CRE(6R) V>0, (31)
By replacing R, (,4) by (30) and taking the limit in (31), we obtain, using (**),
£e).0 = L ix).0 250 + L (x0.0) + 5 T w00, 0. 0), (32)

where a, (¢) is the derivative of (rj)z(t, h) at point & = 0.
Similar computations allow us to prove that

0. of Ox,. of %
S0, 0) = 2 (600, ) 550+ e (x(0), 1) 3 2 (600, (1), (33
where a_(¢) is the derivative of (+*)*(z, ) at point # =0. [

About Ito’s stochastic calculus. As a consequence, the non-differentiability of x(¢) introduces additional spatial terms
in the derivative of f(x(¢),¢) with respect to the differentiable case. This formula is similar to Ito’s formula in stochastic
calculus [15]. However, Ito’s formula is obtained under probabilistic assumptions. In Lemma 4, this follows from the
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geometric assumption that f is non-differentiable. For more details about our scale derivative and Ito’s formula, we
refer to [2,3].

4.2. The complex case

Let
C: RxR — C
) = Clr)’
We denote 4(x,¢) = ReC(x,?) and B(x, ) = ImC(x, ), then C(x,?) = A(x, ) + iB(x, ).
Let
x: R —- R
t o~ x()

be a continuous function such that its minimal resolution (/) satisfies 7(f) > 0. We define the functions x(¢), x_(¢),
¢, (¢) and &_(¢) as in Section 3.
We denote by a,(7) the right derivative of (¢,(t 4 oh) — &,(1))* at point h = 0.

Lemma 4. The scale derivative of the function

€. R — C
(e C0,0)

is

O¢ oC OxoC 1 o*C

B o 2% 34
where

a(t): (aﬁ»(t);a*(t)) _l(a+(t)_£a*(t)> (35)

Proof. We denote by .o/(¢) and #(¢) the functions A(x(¢),¢) and B(x(¢), ) respectively. By Lemma 4, we have

O,/ 040x 04 1 04

Or ox O¢ aﬁ“i“”(t)@'

We deduce

Dt+Dt

O« 041 /0x Ox 04 19%4 1 041 /0Ox Ox 13%4 1
Ut Lt

O ol = NURPRO R 3 5m 3 @0+ a)
that is

O« 040x 04 1 %4
== =t +3a

SR TR T O e

with a(f) = (20e0) _j(e0ren),

We obtain a similar formula for’ %4(¢). Hence, by definition, we have

%_g aA+ia£ + aﬁ+laﬁ +l (t) 627A+16273
Or  Or\ox ' ox o o) 2%\ e e )

We then obtain

%_Qaic+la(t)azic+a£
O O ox 2 ox2 o’

which concludes the proof. [
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4.3. About the regularity assumption (*)

Feynman and Hibbs [7] have proved that generic trajectories of quantum particles are continuous non-differentiable
curves. However, there exists a quadratic velocity, that is, the quantity

i V00 = 1))

x—x! X —X

exists. (36)

Hence, the following quantities

. 2 2
D SO g YOG R) -
keep sense when # > 07, and are equals.
For all 4 > 0, we have
PR (fle+h) = f0) = (BLh+o(h)’ (38)
o h '
When & — 0T, we obtain
CRwh) (R — 1) 39)

h—0+ h h—0+ h
Similar computations prove that

P ) O A G0

h—0— h h—0- h

We denote by a.(r) (resp. a_ (1)) the right derivative of 2 (¢, k) (resp. r2(,h)). As the quadratic velocity is well
defined, we must have

a.(t) = a_(1). (40)

Assumption (*) is then satisfied by functions describing quantum trajectories.

Remark 8

e For the Browninan motion, Einstein [9] has proved that /(¢ + k) — f(t) ~ h'/? for h > 0, which is in accordance with
(*).

o The existence of a quadratic velocity is equivalent to 1/2-right differentiability of f* following [4].

5. Scale relativity principle and Schrodinger equation

In [1,11,14], Nottale announce that the Schrodinger equation can be obtained from the classical Newton’s equation
of dynamics using a quantization procedure which comes from the scale relativity theory. The scale relativity theory is
developed by Nottale since 1980. Its aim is to generalize Einstein’s relativity principle in order to derive quantum
mechanics from a first principle. We refer to his work for more details [1]. The quantization procedure is based on a
generalized Euler—Lagrange equation coming from Nottale’s theory and the use of the scale derivative instead of the
classical derivative. The computations made by Nottale in [1,11,14] are informal and based on heuristic arguments.
Using the scale derivative defined in the previous paragraph, we give a complete and detailed proof of his approach.

5.1. Action functional and wave function

Letx: R — R, t—x(¢), be a continuous, non-differentiable function, describing the trajectory of a quantum particle
of mass m. Let
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be its velocity. Let

®: RxR — C

(x,8)  +—  D(x,1) (41)

be a differentiable function, called scalar potential.
The action functional is then defined by

Z: RxCxR — C
1 .
(x,v,1) — zmv2 — P(x,1)

(42)
We note that the map & (x,v,¢) is differentiable with respect to x and v.
Scale assumption. We assume, following Nottale [1], that equation of motion for particles is given by the following

Euler—Lagrange generalized equation:
0 /0% 0¥
O <a_) = (43)

Nottale deduce this equation informally via his scale relativity principle. We refer to his work [1,5,6] for more details.
We then have

Ov 0o

— = 44
" Ox (44)
We call this equation, fundamental equation of dynamics, by analogy with Newton’s classical equation.
The momentum is defined by p = %, which gives p = mv. We introduce an action A as
A: RxR — C
(,f)  —  A(x,1) (45)
which is a differentiable function, related to the momentum via the relation p = %ﬁ’) We then obtain v = i %’:
We can introduce a function
y: RxR — C
() e D) (46)
differentiable, such that
ux)
Y(x,t) =emm, (47)
where y € R is a normalization constant to be determined.
This function is of course the wave function of a particle. We note that A(x,¢) = —2myilny(x,¢) and v =
v(x, 1) = —i2y ag;w’ where In is the complex logarithm.

Remark 9. We obtain the classical correspondence principle of quantum mechanics for momentum and energy, that is

oy 1 a1

p:—2imyaw, E:2imy§E. (48)
5.2. Schrodinger equation
Using the wave function, the fundamental equation of dynamics looks like
2%% ( %(m l//)) = %f. (49)
Lemma 5. The fundamental equation of dynamics is equivalent to
—i2ym <iy + ?) (%)2 % +12ym élar:// + iya(t) aasz % = &+ o(x). (50)
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Proof. The fundamental equation of dynamics is

O /oy oo

We denote Z(¢) = &(x(2),¢) = ag:p (x(2),7). We have, using Lemma 5,
4
E(@ | 1//)>=DH of0x o¢ 1 t@g

& 5 oo o 20

A simple computation gives & = 2 (2I'¥) and

ot ot
oty . 0¢
ox Ot Y ox

<

by definition of v = & as function of 1. We then have
¢ Ox iy o0& L o (1 (oY
o Or o /ax zp o
Moreover, we have
e Pyl o\ L
o ax a2y \ox v

We deduce, by gathering these terms

B (D@ )
s

By replacing in the fundamental equation of dynamics, we obtain

2 a(t)\ (oY azllll oy 20

We conclude the proof by integration. O

As a particular case, when the non-differentiability of x(¢) is uniform, we obtain the classical Schrodinger equation.

Corollary 1. Let x(t) be a continuous, non-differentiable function such that

a(t) = —i2y. (51)
Then the fundamental equation of dynamics takes the form
) 2
12yma—lp +29’m o f = (D + ax))y. (52)
We can always choose a solution of (52) such that a(x) = 0. In this case, when
h
where h is the Planck constant, we obtain the classical Schrodinger equation
oy WY
hat +E§—@l//. (54)

Proof. The choice of a(¢) allows us to cancel the term (%)2 L. In this case, by replacing a(¢f) and remarking that

1
Y _ oy 1 ;
ar; = ‘a—t 5 we obtain Eq. (52).
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Let i be a solution of (52). We search for a function |/; solution of the equation

12ymaa—l//+2y l// = oy (55)
of the form

b=~y (x )6(), (56)
where

O(x) ='W,

That is, we modify the phase of the wave function .
We then have

oy ,

o ox O +y0,

62‘// 62[// al// / " (57)
ax2’62@+2a 0 +yo’,

oy oY

F AT

where ©'(x) and ©"(x) are the first and second derivative of @(x).
By replacing in (55), we obtain

D D (O N
12)m§@+2ym(62@+26 +yO PY0o. (58)

We deduce an ordinary differential equation in ® of the form

0 o? 0
@(12 yma—l//+2y m— (Plﬁ) +4y2ma—lﬁ@' +2y’my@" = 0. (59)
As  is a solution of (52), we have
0
Ou(x)y + 4yzma—f 0 +2y’my@" = 0. (60)

This differential equation has always a solution. Hence, we can always choose a solution of (52) such that «(x) = 0.
The choice of y in order to obtain Eq. (54) is then done by identification. [

Remark 10. Our derivation of the Schrodinger equation is done under the scale assumption, which follows from
Nottale’s physical concept of scale relativity principle. We refer to [13, pp. 254-257] for a completely different proof.
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