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Abstract

We define a scale derivative for non-differentiable functions. It is constructed via quantum derivatives which take

into account non-differentiability and the existence of a minimal resolution for mean representation. This justify

heuristic computations made by Nottale in scale-relativity. In particular, the Schr€oodinger equation is derived via the

scale-relativity principle and Newton�s fundamental equation of dynamics.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

The aim of this article is to give a complete proof that the Schr€oodinger equation can be obtained from Newton�s
fundamental equation of dynamics in the scale-relativity setting developed by Nottale [1,11,14]. The articles [1,11,14]

contain only a sketch of proof and are based on informal arguments.

The main ‘‘ingredient’’ of Nottale�s work is a new ‘‘derivative’’, 1 that he calls the scale derivative, which applies to

non-differentiable functions. Despite its importance, there exists no rigorous definition of this operator. In this article,

we give a precise definition of the scale derivative, as well as its geometric interpretation. As a consequence, we can

justify completely the computations made by Nottale in the articles [1,11,14].

The main problem is to define an extension of the classical differential calculus which has a clear physical meaning.

The starting point of our work is the following informal idea: Let c be a given curve. From the physical view-point,

we do not have access to c, but to a ‘‘representation’’ of it, denoted cs, which is always differentiable (up to a finite

number of points) at a given scale of observation s, and such that cs converge to c in C0 topology. Of course, cs is not
always sufficient in order to describe the underlying physical process. In particular, if c is non-differentiable, the

fluctuations of cs when s goes to zero become non-negligible 2 contrary to what happens in the differentiable case.

This transition from a differentiable behaviour to a non-differentiable one when we follow cs must be quantified. In

this article, we introduce several concepts in the special case of graphs of functions f ðtÞ and for a representation given

by the s-mean function fsðtÞ ¼ ð1=2sÞ
R tþs
t�s f ðsÞds.

In Section 2 we define the notion of s-differentiability, which leads to a natural transition quantity for the dif-

ferentiable–non-differentiable behaviour of fsðtÞ with respect to f ðtÞ, called minimal resolution and denoted sðf Þ.
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Heuristically, we can say that for s > sðf Þ, the approximation of f ðtÞ by fsðtÞ is sufficient to describe the behaviour of f
up to s small perturbations, which is not the case for s < sðf Þ.

When s < sðf Þ, we must take into account the non-differentiability of the limiting function f . We then define left and

right quantum derivatives, denoted �þf =�t and ��f =�t respectively, which are nothing else than the derivatives of the

right and left sðf Þ-mean function of f , i.e. frðtÞ ¼ ðr=sðf ÞÞ
R tþrsðf Þ
t f ðsÞds, r ¼ �. The fact to consider separately fþðtÞ

and f�ðtÞ is due to the non-differentiability of f .
The scale derivative, defined in Section 3 and denoted by �f =�t, is a complex operator which takes into account the

two quantity�rf =�t, r ¼ �, in such a way that when f is differentiable�f =�t ¼ f 0ðtÞ. This ‘‘gluing’’ property of �=�t
to d=dt on the set of differentiable functions is a necessary constraint to be satisfied by all extended ‘‘differential’’

calculus. Paragraph 4 gives some properties of the scale derivative.

In Section 5, we generalize, following Nottale�s scale relativity principle, Newton�s fundamental equation of dy-

namics, by replacing the classical derivative by our scale derivative. We prove that the new equation leads to a gen-

eralized Schr€oodinger equation. This justify heuristic computations made by Nottale [1,11,14].

2. Non-differentiable functions and minimal resolution

In the following, f is a continuous function, defined on an open set I of R. For all s 2 Rþ�, we denote by fs the s-
mean function defined by
fsðtÞ ¼ ð1=2sÞ
Z tþs

t�s
f ðsÞds: ð1Þ
We call s-oscillation of f the quantity
oscsf ðtÞ ¼ supff ðt0Þ � f ðt00Þ; t0; t00 2 ½t � s; t þ s�g: ð2Þ
We say that the graph of f is fractal according to Tricot [12] if the quantity
oscsf ðtÞ
s

! þ1 when s ! 0; ð3Þ
uniformly with respect to t, contrary to the differentiable case.

For 0 < a6 1, we denote
jf ðtÞja;s ¼ sup
s;s02½t�s;tþs�; s 6¼s0

jf ðsÞ � f ðs0Þj
js� s0ja : ð4Þ
Remark 1. We have
jf j
a
6 jf ðtÞja;s 6 jf ja; ð5Þ
where
jf j
a
¼ inf

t 6¼t02I

jf ðtÞ � f ðt0Þj
jt � t0j ; jf ja ¼ sup

t 6¼t02I

jf ðtÞ � f ðt0Þj
jt � t0j ; ð6Þ
and I is the closure of I .

For all t 2 I, we define aðtÞ such that
aðt; f ; sÞ ¼ supfa > 0 j jf ðtÞja;s 6¼ 0g: ð7Þ
In the following, we do not write the explicit dependence of aðt; f ; sÞ with respect to f and s.
We denote
asf ðtÞ ¼
oscsf ðtÞ

2sjf ðtÞjaðtÞ;s
: ð8Þ
We have
jfsðtÞ � f ðtÞj6 2sjf ðtÞjaðtÞ;sasf ðtÞ; ð9Þ
so that asf ðtÞ is a measure of the approximation of f by the differentiable function fs.
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Remark 2. For a differentiable function, we have aðtÞ ¼ 1 for all t 2 I and asf ðtÞ6 1 for all t and all s.

We then have the following notion of s-differentiability at a point t:
Definition 1. Let f be a continuous function, defined on a compact set I of R, such that for all t 2 I ,
1P aðtÞ > 0: ð10Þ
Let s > 0 be given. We say that f is s-differentiable at point t 2 I if
asf ðtÞ6 1: ð11Þ
A large class of continuous functions satisfy condition (10). At least, H€oolderian functions of order 0 < a < 1.

Moreover, there exists explicit construction of continuous functions with prescribed H€oolder regularity, as discussed in

[16]. The simplest case is that of continuous function such that aðtÞ ¼ a for all t 2 I . As an example, we can consider the

Weierstrass function which possesses a uniform H€oolder regularity [12].

Remark 3. The concept of s-differentiability can be understood as a way to characterize when the fluctuations of f are

‘‘small’’ with respect to the mean function fs. Of course, the notion of ‘‘smallness’’ depends on a normalization, which is

fixed. In our case, this normalization is contained in the choice of the number 1 for the upperbound of as;af in (11), by

comparison with the differentiable case. Different kinds of normalization can be taken, leading to different notions of

non-differentiability. This is just a matter of choice.

We denote by sðf ÞðtÞ the minimal order of s-differentiability at point t:
sðf ÞðtÞ ¼ inffsP 0 jf is s-differentiable at point tg: ð12Þ
Definition 2. Let f be a continuous real valued function defined on an open interval I � R. We call minimal resolution

the quantity
sðf Þ ¼ inf
t2I

sðf ÞðtÞ: ð13Þ
We remark that for all k 2 R, we have
sðkf Þ ¼ sðf Þ and sðf þ kÞ ¼ sðf Þ: ð14Þ
If f is a fractal function (see (3)), then sðf Þ > 0. In fact, we have a more general result:

Lemma 1. If a continuous function f is differentiable then sðf Þ ¼ 0.

Proof. This follows from Remark 2. �

As a consequence, if sðf Þ > 0, then f is an everywhere non-differentiable function. Of course, if f is differentiable on

a given subset J of I , then sðf Þ ¼ 0, despite the fact that sðf ÞðtÞ > 0 for all t 2 I n J . In the following, we consider only

continuous everywhere non-differentiable functions.
3. Quantum derivatives and the scale derivative

We define left and right quantum derivatives.

Definition 3. Let f : R ! R be a continuous function such that its minimal resolution sðf Þ satisfies sðf Þ > 0. We call

right and left quantum derivative the quantities
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�þf
�t

ðtÞ ¼ f ðt þ sÞ � f ðtÞ
s

;

��f
�t

ðtÞ ¼ f ðtÞ � f ðt � sÞ
s

;

ð15Þ
respectively (where s ¼ sðf Þ). If s ¼ 0, then �rf
�t ðtÞ ¼ lims!0

f ðtþsÞ�f ðtÞ
s .

For a differentiable function, we have �þf
�t ðtÞ ¼

��f
�t ðtÞ ¼ f 0ðtÞ.

Remark 4. We refer to [17] for a careful study of such kind of difference operators in the context of what they call time

scales calculus.

We define quantum functions fþðtÞ and f�ðtÞ as
fþðtÞ ¼
1

s

Z tþs

t
f ðsÞds;

f�ðtÞ ¼
1

s

Z t

t�s
f ðsÞds;

ð16Þ
respectively.

We have
�rf
�t

ðtÞ ¼ f 0
rðtÞ; r ¼ �: ð17Þ
Remark 5. As �þf
�t ðtÞ and

��f
�t ðtÞ are continuous, the functions fþðtÞ and f�ðtÞ are well defined.

Using the quantum functions fþðtÞ and f�ðtÞ, we can write f as
f ðtÞ ¼ fþðtÞ þ nfþðtÞ; f ðtÞ ¼ f�ðtÞ þ nf�ðtÞ; ð18Þ
where nfþ and nf� are non-differentiable functions representing fluctuations with respect to the right (resp. left) mean

function. In the following, we will denote nfþ and nf� by nþ and n� if no confusion is possible.

Lemma 2. Let f be a continuous function such that sðf Þ > 0. Then for h sufficiently small, we have
f ðt þ rhÞ ¼ f ðtÞ þ r
�rf
�t

ðtÞhþ ðnrðt þ hÞ � nrðtÞÞ þ oðhÞ; ð19Þ
where �rf
�t ðtÞ ¼

f ðtþrsðf ÞÞ�f ðtÞ
rsðf Þ , r ¼ �.

Proof. We have f ðt þ rhÞ ¼ frðt þ rhÞ þ nrðt þ rhÞ þ oðhÞ for r ¼ �. A first order Taylor�s expansion of frðt þ rhÞ
gives
frðt þ rhÞ ¼ frðtÞ þ rf 0
rðtÞhþ oðhÞ: ð20Þ
Using (17), we obtain for h sufficiently small,
f ðt þ hÞ ¼ fþðtÞ þ
�þf
�t

ðtÞhþ nþðt þ hÞ þ oðhÞ;

f ðt � hÞ ¼ f�ðtÞ þ
��f
�t

ðtÞhþ n�ðt � hÞ þ oðhÞ:
Replacing frðtÞ by f ðtÞ � nrðtÞ, we obtain (19). �

In the following, we denote
rfrðt; hÞ ¼ nfrðt þ rhÞ � nfrðtÞ ð21Þ
for r ¼ �, or rrðt; hÞ if no confusion is possible.
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Definition 4. Let f : R ! R be a continuous function and sðf Þ its minimal resolution. We call scale derivative of f at

point t the quantity
3 An

(see [10
�f
�t

ðtÞ ¼ 1

2

�þf
�t

ðtÞ
�

þ��f
�t

ðtÞ
�
� i

1

2

�þf
�t

ðtÞ
�

þ��f
�t

ðtÞ
�
; i2 ¼ �1: ð22Þ
Remark 6.We use the terminology of scale derivative for the operator �

�t only to be coherent with Nottale�s terminology

[1,11]. However, as quantum derivatives, the scale derivative is not a derivation on the set of continuous functions, i.e. it

does not satisfy the Liebniz rule. 3

When f is differentiable, we obtain the classical derivative. The real part of the scale derivative is the derivative of the

s-mean function of f , fs. We have
fþðtÞ þ f�ðtÞ
2

¼ fsðtÞ:
In our computations about the Schr€oodinger equation, we will need the following definition of the scale derivative for

complex valued functions:

Let f : R ! C, t 7! f ðtÞ, be a continuous function. We have f ðtÞ ¼ Reðf ðtÞÞ þ i Imðf ðtÞÞ where Re and Im are the

real and imaginary part of f ðtÞ respectively. The functions Reðf ðtÞÞ and Imðf ðtÞÞ are continuous real valued functions.

We define the scale derivative of f as
�f
�t

ðtÞ ¼ �Reðf Þ
�t

ðtÞ þ i
�Imðf ÞðtÞ

�t
: ð23Þ
4. Consequences of non-differentiability

We keep the notations of Section 3.

4.1. Main lemma

In order to derive the Schr€oodinger equation from Newton�s fundamental equation of dynamics in Section 5, we need

to compute the scale derivative of a composed function of the form f ðxðtÞ; tÞ where f ðx; tÞ is a differentiable function,

and xðtÞ is not. The following lemma gives the formula.

Lemma 3. Let f ðx; tÞ be a C3 function. Let xðtÞ be a continuous function such that sðxÞ > 0 and
xðt þ rhÞ ¼ xðtÞ þ r
�rx
�t

ðtÞhþ rxrðtÞ ð24Þ
for h > 0 sufficiently small, r ¼ �.
We consider the function gðtÞ ¼ f ðxðtÞ; tÞ. We have

(i) sðgÞ > 0.

For all h sufficiently small, we denote
gðt þ rhÞ ¼ gðtÞ þ r
�rg
�t

ðtÞhþ rgrðt; hÞ; r ¼ �: ð25Þ
We assume that for r ¼ �, we have

(*) the function ðrxrðt; hÞÞ
2 admits a right derivative at point h ¼ 0 for all t,

(**) we have rgrðt; hÞ �
of
ox r

x
rðt; hÞ

� ��
h ! 0 when h ! 0r.
operator D on an algebra A is a derivation if 8x; y 2 A we have Dðx � yÞ ¼ Dx � y þ x �Dy which is usually called Liebniz identity

]).
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Then, we have
ðiiÞ �rg
�t

¼ of
ox

ðxðtÞ; tÞ�rx
�t

ðtÞ þ of
ot

ðxðtÞ; tÞ þ 1

2

o2f
ox2

ðxðtÞ; tÞarðtÞ; ð26Þ
where aþðtÞ (resp. a�ðtÞ) is the right derivative at point h ¼ 0 of r2þðt; hÞ (resp. r2�ðt; hÞ).

Remark 7. If f is a flat function at point ðxðtÞ; tÞ then ðof =oxÞðxðtÞ; tÞ ¼ 0 and assumption (**) is equivalent to the

differentiability of rrðt; hÞ, r ¼ � at h ¼ 0, which is not possible as sðxÞ > 0.

Proof. For (i) this follows easily from Lemma 1. For (ii), we have
gðt þ hÞ ¼ f ðxðt þ hÞ; t þ hÞ ¼ f xðtÞ
�

þ�þx
�t

ðtÞhþ oðhÞ þ rxþðt; hÞ; t þ h
�
; ð27Þ
using (19).

As rxþðt; hÞ ! 0 when h ! 0, we have, doing a Taylor�s expansion of f in the neighborhood of ðxðtÞ; tÞ,
gðt þ hÞ ¼ gðtÞ þ of
ox

ðxðtÞ; tÞ �þx
�t

ðtÞh
�

þ oðhÞ þ rxþðt; hÞ
�
þ of

ot
ðxðtÞ; tÞh

þ 1

2

o2f
ox2

ðxðtÞ; tÞ �þx
�t

ðtÞh
� 

þ oðhÞ þ rxþðt; hÞ
�2

þ 2
o2f
oxot

ðxðtÞ; tÞ �þx
�t

ðtÞh
�

þ oðhÞ þ rxþðt; hÞ
�
hþ o2f

ot2
ðxðtÞ; tÞh2

!
þ � � � ð28Þ
As ðrxþÞ
2ðt; hÞ is differentiable at point h, we have ðrxþÞ

2ðt; hÞ ¼ aþðtÞhþ oðhÞ. By factorizing terms of order 1 in h, we
obtain
gðt þ hÞ ¼ gðtÞ þ of
ox

ðxðtÞ; tÞ�þx
�t

ðtÞ
�

þ of
ot

ðxðtÞ; tÞ þ 1

2

o2f
ox2

ðxðtÞ; tÞaþðtÞ
�
hþ oðhÞ þ Rþ

g ðt; hÞ; ð29Þ
where
Rþ
g ðt; hÞ ¼

of
ox

ðxðtÞ; tÞrxþðt; hÞ ð30Þ
is non-differentiable and rgþðt; 0Þ ¼ 0.

We deduce
�þ

�t
f ðxðtÞ; tÞ � of

ox
ðxðtÞ; tÞ�þx

�t
ðtÞ

�
þ of

ot
ðxðtÞ; tÞ þ 1

2

o2f
ox2

ðxðtÞ; tÞaþðtÞ
�

¼ 1

h
ðrþg ðt; hÞ þ oðhÞ � Rþ

g ðt; hÞÞ 8h > 0: ð31Þ
By replacing Rgðt; hÞ by (30) and taking the limit in (31), we obtain, using (**),
�þ

�t
f ðxðtÞ; tÞ ¼ of

ox
ðxðtÞ; tÞ�þx

�t
ðtÞ þ of

ot
ðxðtÞ; tÞ þ 1

2

o2f
ox2

ðxðtÞ; tÞaþðtÞ; ð32Þ
where aþðtÞ is the derivative of ðrxþÞ
2ðt; hÞ at point h ¼ 0.

Similar computations allow us to prove that
��

�t
f ðxðtÞ; tÞ ¼ of

ox
ðxðtÞ; tÞ��x

�t
ðtÞ þ of

ot
ðxðtÞ; tÞ þ 1

2

o2f
ox2

ðxðtÞ; tÞa�ðtÞ; ð33Þ
where a�ðtÞ is the derivative of ðrx�Þ
2ðt; hÞ at point h ¼ 0. �

About Ito’s stochastic calculus. As a consequence, the non-differentiability of xðtÞ introduces additional spatial terms

in the derivative of f ðxðtÞ; tÞ with respect to the differentiable case. This formula is similar to Ito�s formula in stochastic

calculus [15]. However, Ito�s formula is obtained under probabilistic assumptions. In Lemma 4, this follows from the
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geometric assumption that f is non-differentiable. For more details about our scale derivative and Ito�s formula, we

refer to [2,3].

4.2. The complex case

Let
C : R� R ! C

ðx; tÞ 7! Cðx; tÞ :
We denote Aðx; tÞ ¼ ReCðx; tÞ and Bðx; tÞ ¼ ImCðx; tÞ, then Cðx; tÞ ¼ Aðx; tÞ þ iBðx; tÞ.
Let
x : R ! R

t 7! xðtÞ
be a continuous function such that its minimal resolution sðf Þ satisfies sðf Þ > 0. We define the functions xþðtÞ, x�ðtÞ,
nþðtÞ and n�ðtÞ as in Section 3.

We denote by arðtÞ the right derivative of ðnrðt þ rhÞ � nrðtÞÞ2 at point h ¼ 0.

Lemma 4. The scale derivative of the function
C : R ! C

t 7! CðxðtÞ; tÞ
is
�C

�t
¼ oC

ot
þ�x

�t
oC
ox

þ 1

2
aðtÞ o

2C
ox2

; ð34Þ
where
aðtÞ ¼ aþðtÞ � a�ðtÞ
2

� �
� i

aþðtÞ þ a�ðtÞ
2

� �
: ð35Þ
Proof. We denote by AðtÞ and BðtÞ the functions AðxðtÞ; tÞ and BðxðtÞ; tÞ respectively. By Lemma 4, we have
�rA

�t
¼ oA

ox
�rx
�t

þ oA
ot

þ r
1

2
arðtÞ

o2A
ox2

:

We deduce
�A

�t
¼ oA

ox
1

2

�þx
�t

�
þ��x

�t

�
þ oA

ot
þ 1

2

o2A
ox2

1

2
ðaþðtÞ � a�ðtÞÞ � i

oA
ox

1

2

�þx
�t

��
���x

�t

�
þ 1

2

o2A
ox2

1

2
ðaþðtÞ þ a�ðtÞÞ

�
;

that is
�A

�t
¼ oA

ox
�x
�t

þ oA
ot

þ 1

2
aðtÞ o

2A
ox2
with aðtÞ ¼ aþðtÞ�a�ðtÞ
2

� �
� i aþðtÞþa�ðtÞ

2

� �
.

We obtain a similar formula for BðtÞ. Hence, by definition, we have
�C

�t
¼ �x

�t
oA
ox

�
þ i

oB
ox

�
þ oA

ot

�
þ i

oB
ot

�
þ 1

2
aðtÞ o2A

ox2

�
þ i

o2B
ox2

�
:

We then obtain
�C

�t
¼ �x

�t
oC
ox

þ 1

2
aðtÞ o

2C
ox2

þ oC
ot

;

which concludes the proof. �
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4.3. About the regularity assumption (*)

Feynman and Hibbs [7] have proved that generic trajectories of quantum particles are continuous non-differentiable

curves. However, there exists a quadratic velocity, that is, the quantity
lim
x!x0

ðf ðxÞ � f ðx0ÞÞ2

x� x0
exists: ð36Þ
Hence, the following quantities
ðf ðt þ hÞ � f ðtÞÞ2

h
and

ðf ðtÞ � f ðt � hÞÞ2

h
ð37Þ
keep sense when h > 0þ, and are equals.

For all h > 0, we have
r2þðt; hÞ
h

¼
f ðt þ hÞ � f ðtÞ � �þf

�t hþ oðhÞ
� 	� 	2

h
: ð38Þ
When h ! 0þ, we obtain
lim
h!0þ

r2þðt; hÞ
h

¼ lim
h!0þ

ðf ðt þ hÞ � f ðtÞÞ2

h
: ð39Þ
Similar computations prove that
lim
h!0�

r2�ðt; hÞ
h

¼ lim
h!0�

ðf ðtÞ � f ðt � hÞÞ2

h
:

We denote by aþðtÞ (resp. a�ðtÞ) the right derivative of r2þðt; hÞ (resp. r2�ðt; hÞ). As the quadratic velocity is well

defined, we must have
aþðtÞ ¼ a�ðtÞ: ð40Þ
Assumption (*) is then satisfied by functions describing quantum trajectories.

Remark 8

• For the Browninan motion, Einstein [9] has proved that f ðt þ hÞ � f ðtÞ � h1=2 for h > 0, which is in accordance with

(*).

• The existence of a quadratic velocity is equivalent to 1/2-right differentiability of f following [4].
5. Scale relativity principle and Schrödinger equation

In [1,11,14], Nottale announce that the Schr€oodinger equation can be obtained from the classical Newton�s equation
of dynamics using a quantization procedure which comes from the scale relativity theory. The scale relativity theory is

developed by Nottale since 1980. Its aim is to generalize Einstein�s relativity principle in order to derive quantum

mechanics from a first principle. We refer to his work for more details [1]. The quantization procedure is based on a

generalized Euler–Lagrange equation coming from Nottale�s theory and the use of the scale derivative instead of the

classical derivative. The computations made by Nottale in [1,11,14] are informal and based on heuristic arguments.

Using the scale derivative defined in the previous paragraph, we give a complete and detailed proof of his approach.

5.1. Action functional and wave function

Let x : R ! R, t 7!xðtÞ, be a continuous, non-differentiable function, describing the trajectory of a quantum particle

of mass m. Let
v : R ! C

t 7! vðtÞ ¼ �x
�t
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be its velocity. Let
U : R� R ! C

ðx; tÞ 7! Uðx; tÞ ð41Þ
be a differentiable function, called scalar potential.

The action functional is then defined by
L : R� C� R ! C

ðx; v; tÞ 7! 1

2
mv2 � Uðx; tÞ : ð42Þ
We note that the map Lðx; v; tÞ is differentiable with respect to x and v.
Scale assumption. We assume, following Nottale [1], that equation of motion for particles is given by the following

Euler–Lagrange generalized equation:
�

�t
oL

ov

� �
¼ oL

ox
: ð43Þ
Nottale deduce this equation informally via his scale relativity principle. We refer to his work [1,5,6] for more details.

We then have
m
�v
�t

¼ � oU
ox

: ð44Þ
We call this equation, fundamental equation of dynamics, by analogy with Newton�s classical equation.
The momentum is defined by p ¼ oL

ov , which gives p ¼ mv. We introduce an action A as
A : R� R ! C

ðx; tÞ 7! Aðx; tÞ ; ð45Þ
which is a differentiable function, related to the momentum via the relation p ¼ oAðx;tÞ
ox . We then obtain v ¼ 1

m
oA
ox.

We can introduce a function
w : R� R ! C

ðx; tÞ 7! wðx; tÞ ; ð46Þ
differentiable, such that
wðx; tÞ ¼ e
iAðx;tÞ
2mc ; ð47Þ
where c 2 R is a normalization constant to be determined.

This function is of course the wave function of a particle. We note that Aðx; tÞ ¼ �2mci lnwðx; tÞ and v ¼
vðx; tÞ ¼ �i2c o lnw

ox , where ln is the complex logarithm.

Remark 9. We obtain the classical correspondence principle of quantum mechanics for momentum and energy, that is
p ¼ �2imc
ow
ox

1

w
; E ¼ 2imc

ow
ot

1

w
: ð48Þ
5.2. Schr€oodinger equation

Using the wave function, the fundamental equation of dynamics looks like
2icm
�

�t
o

ox
ðlnwÞ

� �
¼ oU

ox
: ð49Þ
Lemma 5. The fundamental equation of dynamics is equivalent to
�i2cm ic

�
þ aðtÞ

2

�
ow
ox

� �2
1

w2
þ i2cm

o lnw
ot

þ icaðtÞ o
2w
ox2

1

w
¼ Uþ aðxÞ: ð50Þ
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Proof. The fundamental equation of dynamics is
2icm
�

�t
o lnw
ox

� �
¼ oU

ox
:

We denote NðtÞ ¼ nðxðtÞ; tÞ ¼ o lnw
ox ðxðtÞ; tÞ. We have, using Lemma 5,
�

�t
o

ox
ðlnwÞ

� �
¼ �N

�t
¼ on

ox
�x
�t

þ on
ot

þ 1

2
aðtÞ o

2n
ox2

:

A simple computation gives on
ot ¼ o

ox
o lnw
ot

� 	
and
on
ox

�x
�t

¼ �2ic
on
ox

n;
by definition of v ¼ �x
�t as function of w. We then have
on
ox

�x
�t

¼ �ic
on2

ox
¼ �ic

o

ox
1

w2

ow
ox

� �2
 !

:

Moreover, we have
o2n
ox2

¼ o

ox
o2w
ox2

1

w

 
� ow

ox

� �2
1

w2

!
:

We deduce, by gathering these terms
�N
�t

¼ o

ox

 
� ic

�
þ aðtÞ

2

�
ow
ox

� �2
1

w2
þ aðtÞ

2

o2w
ox2

1

w
þ o lnw

ot

!
:

By replacing in the fundamental equation of dynamics, we obtain
o

ox

 
� 2icm ic

�
þ aðtÞ

2

�
ow
ox

� �2
1

w2
þ icmaðtÞ o

2w
ox2

1

w
þ 2icm

o lnw
ot

!
¼ oU

ox
:

We conclude the proof by integration. h

As a particular case, when the non-differentiability of xðtÞ is uniform, we obtain the classical Schr€oodinger equation.

Corollary 1. Let xðtÞ be a continuous, non-differentiable function such that
aðtÞ ¼ �i2c: ð51Þ
Then the fundamental equation of dynamics takes the form
i2cm
ow
ot

þ 2c2m
o2w
ox2

¼ ðUþ aðxÞÞw: ð52Þ
We can always choose a solution of (52) such that aðxÞ ¼ 0. In this case, when
c ¼
�hh
2m

; ð53Þ
where �hh is the Planck constant, we obtain the classical Schr€oodinger equation
i�hh
ow
ot

þ
�hh2

2m
o2w
ox2

¼ Uw: ð54Þ
Proof. The choice of aðtÞ allows us to cancel the term ðow
oxÞ

2 1

w2 : In this case, by replacing aðtÞ and remarking that
o lnw
ot ¼ ow

ot
1
w, we obtain Eq. (52).
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Let w be a solution of (52). We search for a function ~ww solution of the equation
i2cm
o ~ww
ot

þ 2c2m
o2 ~ww
ox2

¼ U ~ww ð55Þ
of the form
~ww ¼ ei
Aðx;tÞ
2mc þhðxÞ ¼ wðx; tÞHðxÞ; ð56Þ
where
HðxÞ ¼ ehðxÞ:
That is, we modify the phase of the wave function w.
We then have
o ~ww
ox

¼ ow
ox

Hþ wH0;

o2 ~ww
ox2

¼ o2w
ox2

Hþ 2
ow
ox

H0 þ wH00;

ow
ot

¼ ow
ot

H;

ð57Þ
where H0ðxÞ and H00ðxÞ are the first and second derivative of HðxÞ.
By replacing in (55), we obtain
i2cm
ow
ot

Hþ 2c2m
o2w
ox2

H

�
þ 2

ow
ox

H0 þ wH00
�

¼ UwH: ð58Þ
We deduce an ordinary differential equation in H of the form
H i2cm
ow
ot

�
þ 2c2m

o2w
ox2

� Uw

�
þ 4c2m

ow
ox

H0 þ 2c2mwH00 ¼ 0: ð59Þ
As w is a solution of (52), we have
HaðxÞwþ 4c2m
ow
ox

H0 þ 2c2mwH00 ¼ 0: ð60Þ
This differential equation has always a solution. Hence, we can always choose a solution of (52) such that aðxÞ ¼ 0.

The choice of c in order to obtain Eq. (54) is then done by identification. h

Remark 10. Our derivation of the Schr€oodinger equation is done under the scale assumption, which follows from

Nottale�s physical concept of scale relativity principle. We refer to [13, pp. 254–257] for a completely different proof.
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