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1. Introduction

The aim of this paper is to describe a process of creation of hyperbolicity in a partially

hyperbolic context called the transversality-torsion phenomenon introduced in ([4],[5]).

This process comes from the study of instability (Arnold diffusion) for (at least) three

degrees of freedom near-integrable Hamiltonian systems [1] and more precisely from the

derivation of a Smale-Birkhoff theorem ([6],[5]) for transversal homoclinic partially hyper-

bolic tori which come along multiple resonances [14]. Our starting point is the following

conjecture of R.W. Easton ([6],p.252) about symbolic dynamics for transversal homoclinic

partially hyperbolic tori: In [6], Easton has proved the existence of symbolic dynamics

in a neighbourhood of a partially hyperbolic torus whose stable and unstable manifolds

intersect transversally (in a given energy manifold containing the torus). This result is

obtained under a stringent assumption on the linear part of the homoclinic map (see §.3 for

a definition and [6],p.244), called the homoclinic matrix. However, Easton has conjectured

([6],p.252) that this assumption can be weakened, or perhaps cancelled.

In ([4],[5]), we have weakened the homoclinic matrix condition, but mainly, we have

put in evidence a dynamical and geometrical phenomenon at the origin of the hyperbolic

nature of symbolic dynamics, that we have called the transversality-torsion phenomenon:

the transversality of the stable and unstable manifold of the torus coupled with the torsion

of the flow around the torus give rise to a hyperbolic dynamics in the neighbourhood of the
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homoclinic connection. Our terminology is now commonly used and the transversality-

torsion phenomenon has been studied and extended. We refer in particular to the papers

of M. Gidea and C. Robinson ([9] p.64) and M. Gidea and R. De La LLave [8], dealing

with topological methods in dynamics.

In this paper, we prove that the transversality-torsion phenomenon observed in a par-

ticular case in [5] arises in a generic situation for three degrees of freedom Hamiltonian

systems.

The plan of the paper is the following: In §.2, we define transversal homoclinic partially

hyperbolic tori. In §.3, we state the hyperbolicity problem, which can be resumed as

finding the minimal conditions (about the dynamics on the torus and the geometry of the

intersection of the stable and unstable manifolds) in order to have a homoclinic transition

map(1) hyperbolic. In §.4, we solve the hyperbolicity problem for three degrees of freedom

Hamiltonian systems, putting in evidence the transversality-torsion phenomenon, i.e. the

fundamental role of the torsion of the flow on the torus and the transversality of the stable

and unstable manifolds to induce hyperbolicity of the transition map.

2. Transversal homoclinic partially hyperbolic tori

In this section, we define partially hyperbolic tori following the paper of S. Bolotin and

D. Treschev [3].

2.1. Partially hyperbolic tori. — Let M be a 2m dimensional symplectic manifold,

and H an analytic Hamiltonian defined on M.

Definition 1. — A weakly reducible, diophantine partially hyperbolic torus for H is a

torus for which there exists an analytic symplectic coordinates system, such that the Hamil-

tonian takes the form

(1) H(θ, I, s, u) = ω.I +
1
2
AI.I + s.M(θ)u+O3(I, s, u),

where (θ, I, s, u) ∈ Tk×Rk×Rm−k×Rm−k, with the symplectic structure ν = dI∧dθ+ds∧du,
A is a k × k symmetric constant matrix, M is a definite positive matrix and for all

k ∈ Zn \ {0}, we have

| ω.k |≥ α | k |−β, α, β > 0.

If M is a constant matrix, then the partially hyperbolic torus is say to be reducible.

(1)See §.3.1 for a definition.
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In ([3], Theorem 1, p. 406), S. Bolotin and D. Treschev prove that this ”KAM” defi-

nition is equivalent to the dynamical one (see [3], Definition 1 and 3, p. 402). Moreover,

for k = 1 and k = m− 1, the torus is always reducible.

In [3], Bolotin and Treschev introduce the notion of nondegenerate hyperbolic torus,

which is a condition of dynamical nature (see [3], definition 3, p.402). In the setting of

weakly reducible hyperbolic tori, we can use the following definition which is equivalent

to the dynamical one (see [3], Proposition 2,p. 404):

Definition 2. — A weakly reducible hyperbolic torus is nondegenerate if detA 6= 0.

H. Eliasson [7] and L. Niederman [13], have proved the following normal form theorem

for m− 1 dimensional tori:

Theorem 1. — Let T be a m− 1 dimensional reducible and non-degenerate diophantine

partially hyperbolic torus. There exists an analytic coordinates system (x, y, z+, z−) defined

in a neighbourhood V of T , such that

(2) H = ω.y + λz−z+ +O2(y, z+z−).

The geometry of the torus can then be easily described ([3]): it admits analytic stable

(resp. unstable) manifold, denoted by W+(T ) (resp. W−(T )), and locally defined in V

by:

(3) W+(T ) = {(x, y, z+, z−) ∈ V, y = 0, z− = 0},
W−(T ) = {(x, y, z+, z−) ∈ V, y = 0, z+ = 0}.

2.2. Transversal homoclinic connection. — In the following, we denote by H the

energy submanifold of M containing the torus under consideration. For convenience, a

weakly reducible diophantine partially hyperbolic torus will be called a partially hyperbolic

torus.

Definition 3. — Let T be a m−1 dimensional partially hyperbolic torus. We say that T

possesses a transversal homoclinic connection if its stable and unstable manifolds intersect

transversally in H.

In this paper, we explore the existence of a hyperbolic dynamics in a neighbourhood of

a transversal homoclinic connection to a partially hyperbolic torus.

3. The hyperbolicity problem

3.1. Set-up. — Let H be a m degree of freedom Hamiltonian system. Let T be a m−1

dimensional partially hyperbolic torus of H possessing a transversal homoclinic connection
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along a homoclinic (at least one) orbit denoted by γ. We introduce the following notations

and terminology:

Let V be the Eliasson’s normal form domain (2). There exists ([11]), a Poincaré section

S of T in V , and an analytic coordinates systems in S, denoted by (φ, ρ, s, u) ∈ Tm−2 ×
R× Rm−2 × R, such that the Poincaré map takes the form

(4) f(φ, s, ρ, u) = (φ+ ω + νρ, λs, ρ, λ−1u) +O2(ρ, s, u),

where ω ∈ Rm−2, ν ∈ Rm−2, 0 < λ < 1, νρ = (ν1ρ1, . . . , νm−2ρm−2).

We denote by fl(φ, s, ρ, u) = (φ+ ω + νρ, λs, ρ, λ−1u) the linear part of f .

We say that the torus T is with torsion if νi 6= 0, for i = 1, . . . ,m − 2, and without

torsion otherwise. We note that a torus is with torsion if and only if it is nondegenerate.

Let p− = (φ−, 0, 0, u−) ∈ S and p+ = (φ+, s+, 0, 0) ∈ S, be the last (resp. the first)

point of intersection between γ and S along the unstable manifold (resp. the stable

manifold). There exists neighbourhoods V + and V − in S of p+ and p− respectively, and

a map Γ : V − → V +, called the homoclinic map, such that Γ(p−) = p+. The homoclinic

map is of the form

Γ(p− + z) = p+ + Π.z +O2(z),

where Π is a matrix, called the homoclinic matrix. We denote by

Γl(p− + z) = p+ + Π.z.

We denote by Dn = {z ∈ V + | fn
l (z) ∈ V −} and D =

⋃
n≥1Dn. We denote by

ψ : D → V −, the transverse map introduced by Jürgen Moser [12] and defined by

ψ(z) = fn(z) if z ∈ Dn.

We denote by ψl(z) = fn
l (z) if z ∈ Dn.

The differential of fl, denoted by Dfl is the matrix

(5) Dfl =


Id 0 V 0
0 λ 0 0
0 0 Id 0
0 0 0 λ−1

 ,

where Id is the (m− 2)× (m− 2) identity matrix and V the diagonal matrix with compo-

nents νi, i = 1, . . . ,m− 2.



THE TRANSVERSALITY-TORSION PHENOMENON 5

In the following, we always work in the Poincaré section S.

Let C = {(u, v) ∈ Rm−1 × Rm−1 |‖ u ‖1≤ 1, ‖ v ‖1≤ 1}. We denote by Wµ : C → V +,

what we call an Easton’s window (or simply window in the following) defined by

Wµ(z) = µz + p+.

We consider the map ∆ : C → C, defined by

∆ = (Wµ)−1 ◦ Γ ◦ ψ ◦Wµ.

We denote by

∆l = (Wµ)−1 ◦ Γl ◦ ψl ◦Wµ.

The map Γ ◦ ψ is called the homoclinic transition map.

In the following, we call linear model a Hamiltonian system possessing a transversal

homoclinic partially hyperbolic torus T such that the preceding maps are linear in a given

coordinates systems.

3.2. The hyperbolicity problem. — We keep the notations and terminology of the

previous section. For all matrix M , we denote by spec(M) its spectrum. The hyperbolicity

problem can be formulated as follow:

Hyperbolicity Problem – Let H be a m degrees of freedom Hamiltonian system. Let

T be a m − 1 dimensional partially hyperbolic of H possessing a transversal homoclinic

connection. Under which conditions on n, ν and Π do we have

spec(Π.Dfn
l ) ∩ S1 = ∅,

where S1 = {z ∈ C, | z |= 1} is the unit circle in C.

This problem is difficult as there exists no results about localization of eigenvalues for

the product of two matrices(2). In §.4, we solve the hyperbolicity problem in the three

degrees of freedom case. We also prove (see §.4.3) that if spec(Π.Dfn
l ) ∩ S1 = ∅, then for

µ sufficiently small and under additional assumptions on the remainders of f and Γ, the

homoclinic map ∆ is hyperbolic in a given neighbourhood of the homoclinic orbit.

(2)There exists hyperbolicity results for random or deterministic product of matrices like [2]. However,
they are based on genericity arguments which can not be used in order to understand the role of each of
the elements n, ν and Π in the creation of hyperbolicity.
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4. The transversality-torsion phenomenon

In this section, we deal with three degrees of freedom Hamiltonian systems. In the

following, we denote by Mn,p(R) the set of n× p matrices with real coefficients and for all

matrices M ∈Mn×n(R), we denote by |M | its determinant.

4.1. Transversality constraints. — The matrix Π ∈ M4,4(R) has the following form

in the symplectic base (eφ, es, eρ, eu):

Π =
(
A B
C D

)
,

where A,B,C,D ∈M2,2(R).

For all differentiable manifold M, we denote by TxM the tangent space to M at point

x ∈M.

Definition 4. — We say that the homoclinic matrix is transverse if and only if it satisfies

the following transversality condition Π(Tp−W
−(T )) + Tp+W+(T ) = Tp+S.

Of course, if the intersection of the stable and unstable manifold, W+(T ) and W−(T ),

of a torus T is transverse along an homoclinic orbit γ, then the homoclinic matrix satisfies

the transversality conditions by definition.

Lemma 1. — The matrix Π is transverse if and only if ∆ =
∣∣∣∣ c1,1 d1,2

c2,1 d2,2

∣∣∣∣ 6= 0.

Proof. — Let v = (vφ, 0, 0, vu) be a vector in Tp−W
−(T ). We have

(6) Πv = (a11vφ + b12vu, a21vφ + b22vu, c11vφ + d12vu, c21vφ + d22vu).

We begins with the global condition of transversality, namely that v′ = Πv = (v′φ, v
′
s, v

′
ρ, v

′
u)

is such that v′ρ = 0 and v′u = 0 if and only if vφ = 0 and vu = 0. This condition implies∣∣∣∣ c1,1 d1,2

c2,1 d2,2

∣∣∣∣ 6= 0.

In the following, we need the following strengthening of the transversality condition:

Definition 5. — The matrix Π is strongly transverse if ∆ 6= 0 and d2,2 6= 0.

The condition d2,2 6= 0 does not come from the transversality assumption. We can

understand the geometrical nature of this condition as follow:
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The unstable (resp. stable) manifold W u(T ) (resp. W s(T )) is foliated by 1 dimensional

manifolds (see [15],p.138) denoted by W u
p (T ) (resp. W s

p (T )), p ∈ T (the Fenichel fibers),

and

(7) W u(T ) =
⋃
p∈T

W u
p (T ) (resp. W s(T ) =

⋃
p∈T

W s
p (T ) ).

In the normal form coordinates system, we have for all p = (φp, 0, 0, 0) ∈ T ,

W u
(φp,0,0,0)(T ) = {(φ, s, ρ, u) ∈ T× R× R× R | φ = φp, s = 0, ρ = 0},(8)

W s
(φp,0,0,0)(T ) = {(φ, s, ρ, u) ∈ T× R× R× R | φ = φp, u = 0, ρ = 0}.(9)

The condition d2,2 6= 0 is then equivalent to the following geometrical condition on the

foliation of the stable and unstable manifolds in the linear model.

Lemma 2. — Let us consider the linear model. The condition d2,2 6= 0 is equivalent to

the transversality of the intersection between the unstable leave at (φ−, 0, 0, 0) denoted by

W u
(φ−,0,0,0)(T ) with the invariant manifold defined by {(φ, s, ρ, u) ∈ T×R×R×R; u = 0}

at point (φ+, s+, 0, 0).

4.2. The transversality-torsion phenomenon. — The main technical result of this

paper is the following:

Theorem 2 (Transversality-torsion phenomenon). — Let H be a 3 degrees of free-

dom Hamiltonian system possessing a 2 dimensional partially hyperbolic tori with a transver-

sal homoclinic connection. We keep notations from section 3. We assume that:

– i) The homoclinic matrix Π is transverse;

– ii) The torus is with torsion;

Then, for n sufficiently large, the matrix ΠDfn
l is hyperbolic.

Moreover, if the matrix Π is strongly transverse, i.e. d22 6= 0, all its eigenvalues are

reals and given asymptotically by

x1(n) ∼ −nνd−1
22 ∆, x2(n) ∼ d22λ

−n, x3(n) = x1(n)−1, x4(n) = x2(n)−1,

where λ and ν are associated to Dfl of the form (5)

Proof. — Let us assume that the matrix ΠDfn
l possesses a complex eigenvalue βn. As

ΠDfn
l is symplectic, we know that the three remanning eigenvalues are β̄n, 1/βn and 1/β̄n

(see [10], prop. 5.5.6, p. 220). The characteristic polynomial is then given by

Pn(x) = x4 +A(n)x3 +B(n)x2 +A(n)x+ 1,

where A(n) = −(Sn + S̄n), B(n) = 2+ | Sn |2 with Sn = βn +
1
βn

.
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Moreover, we have

A(n) = −d22λ
−n − λna22 − nνc11 − a11 − d11,

B(n) = λn [| A | +a22d11 − c12b21 + nν(a22c11 − c12a21)]
+λ−n [| D | +a11d22 − c21b12 + nν∆]
+(a11d11 + a22d22 − c22b22 − c11b11).

We must consider two cases: d22 6= 0 and d22 = 0.

- If d22 6= 0, i.e. we have for n sufficiently large A(n) ∼ −d22λ
−n. In the same way,

as ∆ 6= 0 and ν 6= 0, we obtain B(n) ∼ nν∆λ−n. We deduce that ReSn ∼ d22λ
−n and

| Sn |2∼ d2
22λ

−2n. We also have | Sn |2∼ nν∆λ−n using the inequality on B(n). We obtain

a contradiction. As a consequence, all the eigenvalues are reals.

We then have eigenvalues x1(n), x2(n) and 1/x1(n), 1/x2(n), x1(n) ∈ R and x2(n) ∈ R.

We denote by S1(n) = x1(n) + 1/x1(n) and S2(n) = x2(n) + 1/x2(n). We have A(n) =

−(S1(n) + S2(n)) and B(n) = 2 + S1(n)S2(n), so S1(n)(A(n) + S1(n)) = −S1(n)S2(n).

As A(n) ∼ −d22λ
−n and B(n) ∼ nν∆λ−n, we conclude that S1(n) ∼ −nd−1

22 ∆, so

x1(n) ∼ −nd−1
22 ∆. Using A(n), we obtain S2(n) ∼ d22λ

−n, so x2(n) ∼ d22λ
−n, which

concludes the proof.

- If d22 = 0, we have A(n) = O(n). As B(n) ∼ nν∆λ−n, this implies that Im(Sn) 6= 0.

If we denote β(n) = β1(n) + iβ2(n), β1(n), β2(n) ∈ R, we have Im(Sn) = β2(n)(1− |
β(n) |−1). As Im(Sn) 6= 0, we deduce that β2(n) 6= 0 and 1− | β(n) |−1 6= 0, i.e. β2(n) 6= 0

and | β(n) |6= 1. The eigenvalues are then hyperbolic.

This concludes the proof.

The behaviour of the eigenvalues can be also given when d22 = 0, but depends on several

assumptions on the form of the homoclinic matrix which have not a direct geometrical

meaning.

In some cases of interest, we can obtain a stronger result. For example, using the

homoclinic matrix introduced in [11] and generalized in [4] in relation with the Arnold

model [1], we obtain:

Theorem 3. — Let H be a three degrees of freedom Hamiltonian systems possessing a 2

dimensional partially hyperbolic tori with a transversal homoclinic connection. We keep
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the notations of §.3. We assume that the homoclinic matrix has the form

(10) Π =


1 0 0 0
0 1 0 0
δ 0 1 0
0 0 0 1

 ,

and δ is a parameter.

Then, the matrix ΠDfn
l is hyperbolic for n sufficiently large if and only if the matrix Π

is transverse, i.e. δ 6= 0 and the torus is with torsion, i.e. ν 6= 0.

Proof. — The characteristic polynomial of ΠDfn
l is given by

P (x) = (x2 − x(δnν + 2) + 1)(x2 − xa(n) + 1),

where a(n) = λ2n + λ−n. The matrix is hyperbolic if δ 6= 0 and ν 6= 0. Indeed, in this

case, the matrix Π satisfies the transversality assumption. Moreover, if δ = 0 and ν 6= 0

(or δ 6= 0 and ν = 0), we obtain two eigenvalues equal to ±1, destroying the hyperbolicity.

This concludes the proof.

4.3. Hyperbolicity of the homoclinic transition map. — We keep notations from

section 3. We want to prove that under the assumptions of the transversality-torsion

phenomenon the homoclinic transition map ∆ is also hyperbolic for µ sufficiently small.

In order to prove this, we must control the remainder of ∆ with respect to ∆l. This can

be done assuming for example a special dependance of the remainder of f and Γ with

respect to fl and Γl. We denote rf (φ, s, ρ, u) = f(φ, s, ρ, u) − fl(φ, s, ρ, u) and rΓ(z) =

Γ(p− + z)− Γl(p− + z). We denote by z = (zφ, zs, zρ, zu) the coordinates in C. We make

the following assumptions, already used in ([5],assumption (h3),p.273):

– (r1) We have rf (φ, s, ρ, u) = O2(ρ, su).

– (r2) We have rΓ(zφ, zs, zρ, zu) = O2(zρ, zszu).

These two assumptions must be seen as the counterpart, in the Poincaré section, of the

special form of the remainder in the Eliasson’s normal form (1) for the Hamiltonian. We

then have the following result:

Theorem 4. — Let H be a 3 degrees of freedom Hamiltonian system possessing a 2 di-

mensional partially hyperbolic tori with a transversal homoclinic connection. We keep

notations from section 3. We assume that assumptions (r1) and (r2) are satisfied, and

that:

– i) The homoclinic matrix Π is strongly transverse;

– ii) The torus is with torsion.

Then, for µ sufficiently small the homoclinic transition map ∆ is hyperbolic.
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This follows from the following results, already proved in ([5],p.290). We denote by

R(z) = ∆(z)−∆l(z) the remainder of the homoclinic transition map.

Lemma 3. — (Control lemma) For each z ∈ Dn, we have ‖ R(z) ‖< Cλ2n and ‖
DR(z) ‖< C̃µλn, where C and C̃ are constants.

As a consequence, for each z ∈ Dn, the maps ∆ and ∆l are µλn close in C1 topology, as

long as n is sufficiently large in order to have λn ≤ µ. Using classical perturbation theory

for hyperbolic maps this concludes the proof.

Remark 1. — In ([6],p.243) R.W. Easton assumes that f is linear in the Poincaré sec-

tion. As a consequence, the maps ∆ reduces to ∆ = (Wµ)−1 ◦ Γ ◦ ψl ◦Wµ. In this case,

∆l approaches ∆ in the C1-topology when µ goes to zero (see [6],p.250). Indeed, this is

equivalent to prove that Γ and Γl are C1-close in a sufficiently small neighbourhood of the

homoclinic orbit.
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té de Pau et des Pays de l’Adour, avenue de l’Université, BP 1155, 64013 Pau cedex, France
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