
 1

Specification of Role-based Interactions Components in
Multi-Agent Systems

Nabil Hameurlain1, Christophe Sibertin-Blanc2

1 LIUPPA Laboratory, Avenue de l’Université, BP 1155, 64013 Pau, France
nabil.hameurlain@univ-pau.fr

http://www.univ-pau.fr/~hameur
2 IRIT Laboratory, University Toulouse I, Place Anatole France31042 Toulouse, France

sibertin@univ-tlse1.fr

Abstract. Roles are an important concept used for different purposes as the
modeling of the organizational structure of multi-agent systems, the modeling
of protocols, and as basic building blocks for defining the behavior of agents.
Modeling interactions by roles brings several advantages, the most important of
which is the separation of concerns by distinguishing the agent-level and sys-
tem-level with regard to interaction. However, in open MASs, the composition
of independently developed roles can lead to unexpected emergent interaction
among agents. This paper identifies requirements for modeling role-based inter-
actions, and presents a formal specification model of roles for complex interac-
tions. Our approach aims to integrate specification and verification of roles into
the Component Based Development approach. An interaction protocol example
is given to illustrate our formal framework.

1 Introduction

The Multi-Agent System (MAS) paradigm is one of the most promising approaches to
create open and dynamic systems, where heterogeneous entities are naturally repre-
sented as interacting autonomous agents, which can enter or leave the system at will.
Interaction among autonomous agents is fundamental to the dynamic of multi-agent
systems. Agents belonging to a same application need to interact and coordinate their
activity to carry out their common global goal, whereas agents belonging to different
applications, as in an open scenario, also need to interact, for instance to compete for
a resource.

If these interactions are uncoordinated, there is no chance that they lead to the
achievement of the common goal, and the role concept is just the one that relates the
interactions performed by agents and the objectives of the system. A role is a specific
contribution to the system that realizes a part of the global goal, and it determines how
this sub-goal may or must be achieved. Thus, roles are basic buildings blocks for
defining the organization of multi-agent systems, together with the behavior of agents
and the requirements on their interactions [18]. Modeling interactions by roles allows
a separation of concerns by distinguishing the agent-level and system-level concerns
with regard to interaction. An important characteristic of real-world agent systems is

 2

that an agent may have to change the role it plays over time. If some flexibility con-
straints require some variety of these roles, agents have to adapt their architecture and
functionality as they adopt new roles. These additional capabilities must be dynami-
cally acquired because only a few roles can be hard-coded into an agent. As a matter
of fact, this dynamic acquisition is the only possibility in open system where agents
enter and leave at will. While designing the overall organization of a system, it is
valuable to reuse roles previously defined for similar applications, especially when the
structure of interaction is complex. To this end, roles must be specified in an appro-
priate way, since the composition of independently developed roles can lead to the
emergence of unexpected interaction among the agents.

On the other hand, Component Based Development (CBD) [26] promises to facili-
tate the construction of large-scale applications by supporting the composition of
simple building blocks into complex applications. It is one of the most important
among the recent technical initiatives in software engineering. In CBD, software sys-
tems are built by assembling components already developed and prepared for integra-
tion. Therefore, the specification of components is useful to both components users
and components developers. The specification provides a definition of the compo-
nent’s interface and it must be precise and complete for users; for developers, the
specification of a component also provides an abstract definition of its internal struc-
ture. The verification of such a well-established specification is needed for a safe
composition of systems from components. Verification and CBD are synergistic: CBD
introduces compositional structures, and composition rules to build systems, whereas
specification along with verification enable the effective development of reliable
component-based software systems.

It appears that the facilities brought by the CBD approach fit well the issues raised
by the use of roles in MASs, and this paper makes a proposal in this way. It presents
the RICO (Role-based Interactions COmponents) model for specifying complex inter-
actions based on roles in open MAS. Although the concept of role has been exploited
in several approaches [1, 2, 3, 4, 5, 7, 8, 18, 28] in the development of agent-based
applications, no consensus has been reached about what is a role and how it should be
specified and implemented. RICO proposes a specific definition of role, which is not
in contrast with the approaches mentioned above, but is quite simple and can be ex-
ploited in specifications, validations and implementations. In RICO, a role includes a
set of interface elements (either attributes or operations, which are the provided and
required features necessary to accomplish the role’s tasks), a behavior (interface ele-
ments semantics), and properties (proved to be satisfied by the behavior). When an
agent intends to take a role, it creates a new component (i.e. an instance of the compo-
nent type corresponding to this role) and this role-component is linked to its base-
agent. Then, the role is enacted by the role-component and it interacts with the role-
components of the other agents.

This paper focuses on the integration of specification and verification of roles into
the Component Based Development. Section 2 defines requirements for modeling
role-based interactions as components together with the RICO (Role-based Interac-
tions COmponents) specification model for complex interactions based on roles. Sec-
tion 3 presents the formal specification language COO (CoOperative Objects) [23],
together with SYROCO [24] (an acronym for SYstème Réparti d’Objets CoOpératifs),

 3

an environment that implements COOs. In section 4 we map the proposed RICO
specification model to the COO formalism, and specify properties of role-components.
An example of interaction protocol is studied to illustrate our approach. We present
related approaches in section 5 before to conclude in section 6.

2 Specifying Role-based interactions as Components

In the following, first we overview the specifications of software components in Com-
ponent Based Software Engineering, and then we present the RICO model for specify-
ing agent roles in open multi-agent systems, which is a template that can be instanti-
ated on various concrete computation model. The main objective is to use the CBD
approach for specifying role-based interactions as reusable components [10], and
which can be combined together by matching their respective needs and services.

2.1 Specification of Software Components

Component specification is an important issue in CBD. Although this problem has
been addressed from the very beginning of the development of component models, it
remains one of the challenging problems of Component Based Software Engineering.

Up to now, the specifications of components used in practical software develop-
ment are limited to syntactic specifications. These specifications include the specifica-
tions used with technologies such OMG’s CORBA [20] or Sun’s JavaBeans [25]. The
first of these uses different dialects of IDL (Interface Definition Language) [9],
whereas the second uses the Java programming language to specify component inter-
faces. Therefore, the specification of a component consists of a precise definition of
the component’s operations and context dependencies, and an essential feature of most
component specification techniques is the independence of interfaces from the com-
ponent implementations.

An important aspect of interface specifications is related to the principle of substi-
tution of components. A component can be substituted if the new component imple-
ments at least the same interfaces as the older component. For substitution of compo-
nents to be safe, however, several techniques try to provide semantics specifications,
and most of them use UML [19] and its Object Constraint Language (OCL) [27]. Thus
a component implements a set of interfaces, each of which consists of a set of opera-
tions. In addition, a set of preconditions and postconditions is associated with each
operation, which often depend on the state maintained by the component [17]. Never-
theless this is in general insufficient for the re-usability and extendibility of compo-
nents. Instead, the semantics or behavior of a software component has to be included
in its specification, and the safe substitution of components needs to compare their
behaviors [10].

 4

2.2 RICO Specification Model

RICO (Role-based Interactions COmponents) is a role-based interactions abstract
model for the specification of roles as components in agent-based applications. The
main motivation for modeling role-based interactions as components is to capture
interaction patterns that:
• feature well-defined and proved properties,
• may be composed the ones with the others so that the resulting behavior allows to

realize an intended goal,
• may be dynamically linked to agent and dissociated when this is no longer neces-

sary,
• enable a separation of concerns by distinguishing the agent-level and system-level

with regard to interaction.

Property

Agent

Service

Behavior

n action n

n

n

n

n

Role
Component

n

1

n

base 1

n

1

provide
n

1

n

n

require n

n

1

1

1 n

n

n
reference

n

client implements

Figure 1. UML metamodel of the concepts used in RICO specification model.

The concept of role has been used in several multiagent development methodolo-
gies for modelling and analysing complex system applications. Although there are
several role definitions, in all approaches roles are used to identify some task, behav-
iour, responsibility or operation that should be performed within the system [3]. In
RICO, a role is considered as a component providing a set of interface elements (ei-
ther attributes or operations, which are provided or required features necessary to
accomplish the role’s tasks), a behavior (interface elements semantics), and properties
(proved to be satisfied by the behavior). Figure 1 is a UML class diagram showing the
concepts used in RICO and the relationships between them. This UML metamodel
specifies that a role-component requires and provides some services, which must be
implemented by others role-components, and a service is implemented by one role-
component. This independence of services from the role component implementations
is an essential feature of RICO specification model according to the CBD approach.
Definition 1 gives the explicit definition of the concepts used in RICO. This model is
a generic representation of the relationships between these concepts, since in practice,

 5

the expression of these relationships varies from one specification technique to an-
other, that is, one can distinguish between object-oriented specifications and proce-
dural specifications.

In RICO, agents may take up one or several roles simultaneously, and an agent can
assume the same role several times, in the same conversation or in distinct ones. For
the simplicity, and in order to avoid the conflict access to the agent’s resources (for
instance agent’s public attributes), we assume that only one role is active at each mo-
ment in time, and this later is under the agent’s decision [3]. Since we are interested in
specifications and verification of roles, we assume that the relationship between agent
and role is static, that is agents take up roles statically and not dynamically.

Definition 1
A Role Component for a role R is a n-tuple RC = (Ag, Ref, Serv, Behav, Prop),
where:
1. Ag is the identity of the base agent to which RC is linked: Ag has created RC, and

RC enacts the role R on its behalf and under its control.
2. Ref is a list of role component identities, the role components in the system that RC

knows and with which it may interact.
3. Serv is the interface of RC, the set of public features through which it interacts with

the role components registered in Ref. These features are either attributes or opera-
tions, methods according to the standard object-oriented denomination. In addition
Serv’ features are either provided or required. Provided features are maintained and
operated by RC itself at the disposal of other role components; provided attributes
may be read and provided operations may be called. Required features are features
provided by other role components and used by RC; the proper behavior of RC
needs these attributes and operations and thus depends on their proper behavior.
Notice that the interface of a role component forms the basis for its interaction with
the environment (agent holding that role and other role components)

4. Behav defines the behavior of RC with regard to the other role components of the
system. It describes the life-cycle of RC and the sequences of observable actions
supported by RC as either the caller of a required operation or the callee of a pro-
vided operation; defining Behav in this way assumes that there is no constraint on
the access to public attributes; if not, the availability of these attributes must also be
specified in any manner. Serv together with Behav may be considered as the func-
tional specification of RC, Behav being a language defined on the operations of
Serv, and concerns the Serv’s elements by capturing their precise behavior. For in-
stance, the semantics may be specified by using pre- and post-condition associa-
tions, describing namely the life-cycle of the role component: sequence, synchroni-
zation, and concurrency of operations. Notice that the definition of a role compo-
nent may also be completed with the mention of private attributes and operations
and Behav may includes unobservable actions (private operations), and therefore
encapsulates the implementation of the component.

5. Prop is a set of behavioral properties that are proved to be satisfied by Behav, so
that components requiring the services provided by RC can trust in their fulfillment.
Safety and liveness properties are of specific interest [15]: safety properties are in-
variants that states “nothing bad happens”. In contrast, liveness properties state

 6

“something good happens”. They are a functional specification of RC that is more
abstract than Behav, more declarative in that they are just statements of properties
that are guaranteed to be fulfilled by RC in any case. Role’s functional properties
are useful for selecting a role component and for assessing its suitability, usability
or reuse, relative to a given application.

The execution semantics of the Role Components is defined as follows: when an
agent executes, if the agent has taken up one or several roles, then at any moment
exactly one RC executes (interleaving semantics). Role Components interacts with
each other through the call of provided operations. Messages input or output by RC
are consumed or generated by Behav through the interface Serv of the Role Compo-
nent. Role Components allow a proper means for modelling agents and complex inter-
actions, since:
• Roles components are reactive, proactive, and autonomous: through their inter-

face, reactivity is dealt with by operations and services provided, proactiveness is
dealt with by services required, and finally a role component execute autono-
mously according to its behavior Behav, which can be non deterministic. Thus
role components can be used as agent-building blocks.

• Considering role components as the active members of protocols facilitates the
modeling of the behavior of complex interaction protocols, especially open and
concurrent ones. Thus, an agent can play one or more roles at the same time in
different conversations (protocols occurrences), and each participation is man-
aged by a specific role component.

In this paper we are interested in an object-oriented specification and implementa-

tion of the RICO model. We focus on the specification of these role components, and
their implementation by a concurrent formal object-oriented language, the Coopera-
tive Object (COO) formalism. With respect to the specification and design, we have a
similar view as, for example, the Gaia methodology [28], and the main focus of this
paper is the specification, verification and the implementation of roles.

3 The CoOperative Objects Formalism

In this section we present the COO formalism, a fully concurrent object-oriented for-
mal specifications language, and its implementation SYROCO, together with an ex-
ample of interaction protocols.

3.1 COO Definition

CoOperative Objects (COO) [23] is a formal specifications language allowing to
model a system as a collection of active objects cooperating through an asynchronous
request / reply protocol. Each object, being an instance of its COO class, has an iden-
tity usable as a reference, and may be dynamically created and deleted.

 7

The structure of a COO includes a set of attributes, a set of operations, a control
structure net called its OBCS (Object Control Structure), and a set of services sup-
ported by this OBCS. The definition of a COO class is divided into two parts, (see an
example in section 3.2): the specification part concerns the public provided items
composing the interface, while the implementation part includes the private items,
notably the OBCS, a Petri net with objects [16] defining its control structure. Services
are public provided methods – with typed in- and out-parameters – and service re-
quests are processed according to the state of the OBCS.

The OBCS of a COO is a high-level Petri net made of transitions, places and arcs,
each of them labeled with inscriptions referring to the processed data. Places are state
variables whose values (multi-sets of tokens referred to as their marking) determine
the current state of the object. Transitions correspond to actions that the object is able
to perform, and the occurrence of a transition produces a change in the net’s marking.
Arcs from places to a transition determine the enabling condition of the transition,
while arcs from a transition to places determine the result of its occurrence; the vari-
ables labeling arcs surrounding a transition are formal parameters defining how a
transition occurrence moves tokens from input to output places. In addition, the value
of the tokens linked to these variables at an occurrence of the transition, can be ac-
counted for by means of a guard and processed by means of a piece of code, the tran-
sition’s action. The action of a transition – written in any sequential object-oriented
programming language – has access to the attributes and operations of the object as
well as to the public attributes and services of other objects.

Some arcs feature a particular shape with the following semantics:
- Inhibitor arc, with a circle on the transition side: the transition is enabled only if

the place contains no token (transition t2 in figure 2);
- Place-to-transition clearing arc, with a double arrowhead: each occurrence of the

transition removes all the tokens from the input place. An integer value labeling the
arc indicates the minimum number of tokens necessary to enable the transition (transi-
tion t1 in figure 2).

In this paper, we consider services just with a message sending semantics instead of
the full asynchronous request–reply semantics. Each provided service is associated
with transitions which process the receipt of requests for that service (accept-
transition), shown by a pending input arc labeled by the service’s in-parameters. Thus,
a request for a service is processed by occurrences of transitions in the course of the
execution of the OBCS, and it is processed in different way according to the accept-
transition that takes the request-token. From the client side, a request for a required
service is issued by a request-transition. It is distinguished by a pending output arc
labeled by the service’s actual parameter and its occurrence gives a token to the ac-
cept-transitions of the requested service.

The activity of a COO instance consists in processing the calls for its provided op-
erations upon request, and in executing its OBCS as a background task: while transi-
tions are enabled under the current marking, it selects one of them and makes it occur.

The global behavior of a COO system results from the concurrent execution of its
constitutive objects. Usually, we need to compose their OBCS for the analysis; this
composition is in asynchronous way according to the message sending semantics of
service rendering: given a client COO and a server COO, the composition of their

 8

OBCS consists in connecting, through communication places, the request-transitions
and the accept-transitions for the same service: each provided service goes with an
entry-place for receiving the requests. Then, a Client is connected with the service
provider through this communication place by an arc from each request-transition
towards the suitable entry-place and an arc from the suitable entry-place towards each
accept-transition of the service.

 The COO formalism is supported by SYROCO [24], an environment that makes it
possible to edit COO class and to generate a C++ class for each COO class, for se-
quential computing environments (interleaving semantics among objects), for envi-
ronments supporting threads and also for distributed computing environments compli-
ant with CORBA (true parallelism semantics among objects). SYROCO offers sym-
bolic debugging facilities allowing the designer to examine the state of the OBCS
[24], that is the sate of the object (history of transitions occurrence, the previous and
the next transition occurrence, value of tokens…). This debugger does not deal with
the code of actions, but with the behavior and cooperation among Objects. Each COO
has it own debugger, and it is possible to call the debugger of any object from the
debugger of another one.

3.2 An Application Example

To illustrate the COO formalism, we will study an example of interaction protocols,
the fish-market auction protocol. In [11], authors show how to model this protocol by
means of a COO class. In this paper, we show how to design the COO classes that
model the two roles, that is, the Vendor and Buyer roles. In any conversation follow-
ing the rules of this protocol, we have a single vendor, and a number of potential buy-
ers, the bidders. The vendor has a bucket of fish to sell for an initial price. A buyer
can make a bid to signal its interest. If no (or more than one) buyer is interested, the
vendor announces a new lower (or higher) price. When one and only one buyer is
interested, the vendor attributes fish to that bidder. Once the bucket of fish is attrib-
uted, the vendor gives the fish and receives the payment, while the buyer pays the
price and receives the fish.

First, let us consider the fm_Vendor class; figure 2 gives its specification and im-
plementation as a CoOperative Object class. The behavior (Control structure) of this
class is as follows: under the initial marking (one token in the price place), only the
t2 and t3 transitions are enabled and may occur. They are respectively the request-
transition and accept-transition of the to_announce and to_bid services, and the
vendor may process only these services. The acceptance of a to_bid service (by
transition t3) produces new token into the bid place; the transition t3 remains en-
abled as long as there is a token in the price place, that is until an occurrence of the
t4 transition caused by a request for the to_attribute service. This service is
accepted if there is exactly one token in the bid place, that is there is a single current
bidder. The occurrence of t4 returns OK to the buyer, and enables both the request-
transition t5 of the to_give, and the request-transition t6 of the rep_bid ser-
vices. The occurrence of the t6 transition returns Ok to the buyer, and the occurrence
of to_give service enables the accept-transition t7 of the to_pay service. The

 9

final state of the conversation is reached since the marking of the OBCS becomes the
initial one, that is one token in the price place.

class fm_Vendor specification;
attributes
bidders: list of agent*; //list of bidder agents
vendor: agent*; //the creator agent
operations //the C++ code of operations is not shown
Bidder_ident():agent* is <..>; //identity of final bidder
Bidder_num():integer is <...>; //current number of bidders
Current_price(): Currency is <...>; //current price of auction
~Vendor() is <...>;
Vendor(vendor:agent*, p:Currency): Vendor * is <...>;

Services
 // service provided
to_bid(); //receive a bid
to_pay(p: Currency): Status; //receive a payment
 // services required
to_announce(newp: Currency); //send the new price
to_attribute();
to_give(f: fish);
rep_bid(reply: Boolean); //reply to a received bid
end.

class fm_Vendor implementation;
attributes
current-price: Currency;
OBCS

to_announce to_bid

to_attribute

price

t1

t3

t4

t8

bid

newp

p

req

oldp
newp

OK

req

to_announce

newp

oldp

2*req

t2

<newp, req>
p

to_bid

req

OK

t6

attribute

to_give
t5

to_pay

t7

p

f
f

p

<p, req>

to_bid

p

newp

end.

Figure 2. The Vendor role in the fish-market protocol as a COO class, fm_Vendor.

rep_bid

rep_bid
No

 10

class fm_Buyer specification;
attributes
bidder: agent*; //the creator agent
vendor: agent*; //the vendor agent
other_bidders: list of agent*;

operations //C++ code of operations not shown
Vendor-ident (): Agent* is <..>; //identity of vendor
Current-price(): Currency is <...>; //current price of auction
~Buyer () is <...>;
Buyer (bidder: agent*, portfolio: Currency): Buyer* is <...>;

services
 // service required
to_bid();
to_pay(p: Currency): Status;
 // services provided
to_announce(newp: Currency);
to_attribute();
to_give(f: fish);
rep_bid(reply: Boolean);
end.

class fm_Buyer implementation;
attributes
portfolio: Currency;
current-price: Currency;
OBCS

to_announce

to_pay

portfolio

t1

t3

t4t2

attribute

p

p

Not Res Res

newp

p

p

rep_bid

to_attribute

OK

p

p

bid

announce

p to_give t5

f

pto_bid

Res

t6

end.

Figure 3. The Buyer role in the fish-market protocol as a COO class, fm_Buyer.

In figure 3, we give the fm_Buyer class. The behavior of this class is as follows:
under the initial marking (one token in the portfolio place), only the t1 transition

 11

is enabled and may occur. It is an accept-transition of the to_announce service.
The acceptance of the to_announce service produces an occurrence of the t6
transition that requests the to_bid service. Then, transition t2 accepts the rep_bid
service from the vendor and receives the Res reply. If the value of Res is true, it pro-
duces a new token into the attribute place, and enables the accept-transition of
the to_attribute service; thus the occurrence of the to_attribute service
enables t4, a request-transition of the to_pay service. The rendering of the
to_pay service enables the accept-transition t5 of the to_give service. Other-
wise, if the value of RES is false it produces a token into the announce place, and
the buyer should wait for a new announce from the vendor. The final state of the con-
versation is reached since the marking of the OBCS becomes the initial one, that is
one token in the portfolio place, and one token in the announce place.

4 Implementation of RICO Model as COO

In this section we show how to map the proposed RICO specification model to the
COO formalism, together with some characteristic properties, and give some safety
and liveness property of role components and their verification.

4.1 Mapping RICO Model to COO

The mapping of RICO model to COO consists in modeling Role Components as COO
classes, both at the instance and type levels. Referring to definition 1 of a Role Com-
ponent RC, we have:
• Ag and Ref are registered in attributes, either in the specification or in the imple-

mentation according to visibility considerations.
• The provided features are exactly the element declared in the specification part;

concerning the required features, services are the ones attached to the request-
transitions of the OBCS such as e.g. the services to_bid and to_pay of transi-
tions t6 and t4 in Figure 3, while attributes and operations can be explicitly
listed as comment.

• The behavior of RC is defined by its OBCS that rigorously determines (1) when a
reception of a request for a provided service can be taken into account and proc-
essed by an accept-transition occurrence and (2) when a request for a required
service is issued by a request-transition occurrence. The capabilities and the needs
wrt to message receptions and sending are thus formally expressed by the RC’s
OBCS. Other interactions among role components are never constraining and thus
have no effect on their respective behaviors, that is: public attributes are continu-
ously readable and calls for operations are synchronously processed upon request.

• The behavioral properties are properties of the OBCS and their technical state-
ment may follow a variety of expressions, some are given below.

 12

As mentioned by Kristensen [14], the concept of roles in object-oriented modeling,
should support a set of characteristic properties; the specification and the implementa-
tion of RICO model as COO support these properties as follows:
• Visibility/ Dependency: visibility is supported by distinguishing a specification

part concerning public items of the interface (operations and services), and imple-
mentation part concerning private items, notably the OBCS. Dependency is sup-
ported by the fact that the existence of a Role Component depends on that of the
agent playing this role.

• Identity/ Dynamicity: supported by the fact that each role component as COO,
being an instance of its COO class, has its own identity that can be used as refer-
ence, and may be dynamically created and deleted by the agent playing this role.

• Multiplicity/ Abstractivity: supported by the fact that the role components are
mapped to COO classes, distinguishing between Role Components on instance and
type level. Thus, several instances of role components may exist for a role at the
same time.

Clearly the COO language is not the only way to implement the RICO model,

RICO can be supported by any language allowing to explicitly :
- identify and characterize elementary interactions (for Serv) ;
- describe formally a control structure for Behav ;
- have operational semantics in order to deduce more easily an executable

implementation from the specifications.
- have compositional semantics in order to deduce emergent interaction among

Role Components.
For instance, the type of automatons shown in figure 4 and 5 (section 4.2), could be

used to describe the behavior of fm_vendor and fm_buyer classes. The main advan-
tages to use petri nets is that they are completely compositional, that is the composi-
tion of the OBCSs (for different roles components) is also an OBCS, even if role com-
ponents enter and leave the conversations at will [23]; while the definition and the
semantics of communicating automatons are more difficult than those of simple
automatons, and structural modification of the system (e.g. create, insert and delete an
automaton) are more difficult to be taken into account. This mechanism of composi-
tion is essential to verify properties related to emergent behaviour when independently
developed components roles are put in interaction: the properties of the system are
deduced from the properties of its components.

4.2 Safety and Liveness Properties of Role Components

Since the life-cycle of role components is modeled by means of Petri nets, two kinds
of properties should be verified [16]: structural property which are related to Petri nets
topology. These kinds of properties help designer to build correct specification of the
role, independent of the number of agents, and resources; and behavioral properties,
that depend on the fixed initial state, and concern qualitative behavior. In this paper,
we are interested in safety and liveness behavioral properties of roles and their verifi-
cation.

 13

Usually, it is possible to generate the reachability graph of the Petri net [16], using
tools such as INA [22]. The reachability graph shows all the reachable states and all
the sequences of transitions occurrences that may be performed. If the reachability
graph is infinite, due to the infinity of a domain value, or to the fact that an action can
be repeated again and again (for instance, transition t3 of to_bid service in the
Vendor component, figure 2), the covering graph is generated instead; it is finite, and
allows the analysis of some safety and liveness properties of the net too.

Safety properties. Safety properties of roles are requirements on finite execution.
That is, statements of the form “nothing bad happens”. For instance, a specific attrib-
ute in a role component is always initialized before this role is taken by an agent. In
the Fish-market protocol example, the identity and the initial price of the fish must be
fixed by the agent taking the Vendor role (agent who initiates the protocol), that is
attributes {vendor, current-price} are not null. These properties can be specified by
means of predicates, expressed over the variables listed in the interface of RC. Safety
properties express requirements which refer not only to several such status fields at
once, but also to a history of states. For instance, using the covering graph of the
fm_Vendor’s OBCS shown in Figure 4 (the symbols ! and ? are used to indicate re-
spectively the required and provide services), we technically verify requirements that
can be worded in the following way:
• “to_announce service may be performed from the initial state or, if, since its

previous occurrence, no or more than one to_bid service has been performed”.
• “to_attribute service may be performed exactly once when, since the previous

to_announce occurrence, a single to_bid intervention has been performed.
• “to_give” and “to_pay” may be performed only once.

Figure 4. The covering graph of the Vendor in the fish market protocol.

In addition to this classical behavioral analysis, the flexibility and the openness of
SYROCO allow to add to the definition of a COO class new attributes to extend the
structure of the tokens of any place of the OBCS, and to integrate new methods (func-
tions) to be executed at each occurrence of transitions, namely when the interpreter of

 ?to_pay

!to_announce

?to_bid !to_attribute

 !to_give
5

2

0

3 1

6

?to_bid
!rep_bid

?to_bid

4

7

 !rep_bid

!to_announce

 14

the OBCS removes tokens (from) or adds (into) the places. Besides, it is always pos-
sible to add, in the modeling of a COO class, transitions or places whose roles are not
functional but only for supervising and detecting particular situations, and namely to
be used to check safety properties of the Role Component .

Liveness properties. As mentioned above, safety properties are a very powerful way
to guarantee the correctness of a role by verifying that it never reaches an erroneous
state. Sometimes this is not enough, and we need to claim that “something good even-
tually happens”. This is the aim of the liveness properties. These subtle properties
require checking for specific cycles in the reachability graph. So, a liveness property
is violated if there is an infinite execution (trace) where progress is not guaranteed;
usually, this means that some actions can be repeated infinitely, and the same states of
the Role Component are visited again and again. In our example, the analysis of the
fm_Vendor’s OBCS, tells us that the initial state of the Vendor can be reproduced,
and since the initial marking represents the state where there is no ongoing (active)
conversation, this reversible property proves that every conversation can be eventually
completed and finished. Besides, by exploring the reachability graph of the
fm_Buyer’s OBCS shown in Figure 5, we can verify requirements such as:
• “after a to_attribute intervention, to_pay intervention may be performed”.
• “after a to_pay intervention, to_give intervention may be performed”.

Figure 5. The reachability graph of the Buyer in the fish market protocol.

To further prove additional behavioral properties of roles, INA tool also provides
some state-based model checking capabilities, and allows us to state properties in the
form of CTL formulae [6]. These formulas are defined on the marking of places; so
we can specify and verify some key temporal properties about roles on the whole
reachability graph of the Vendor--Buyer OBCS, the Petri net with Objects obtained by
the composition of the OBCS of the fm_Buyer and fm_Vendor classes according to
the message sending semantics. For instance:
• Mutual exclusion, which is a safety property: for instance in the Vendor-

component, no more than one buyer is selected to attribute the fish; it is expressed
by the fact that it is impossible to mark both places bid and attribute at the
same time. This property is expressed by:

EF(Vendor.bid & Vendor.attribute)
that results in FALSE if it is impossible to mark both places announce and at-
tribute at the same time.

 ?to_give

?to_announce

?rep_bid
!to_bid

 ?to_attribute

! to_pay
4

2

0

31

5

?rep_bid

 15

• Concurrency between role components, which is a liveness property: for instance
there exists a path in the reachability graph of the Vendor/Buyer_OBCS, in which
the price place (in fm_Vendor’s OBCS), and the bid place (in fm_Buyer’s
OBCS) are marked at the same time, and then, to_announce and to_bid ser-
vices, may be executed concurrently. This property is expressed by the holding of
the following formula: EF(Vendor.price & Buyer.bid).

5 Related Work

There are many approaches and methodologies for the specification of roles (interac-
tions) in multi-agents system. In recent years, roles formation, configuration among
roles, and static semantics of roles have been proposed [2, 7]. [7] proposes a meta-
model to define models of organizations, based on three concepts: agent, group, and
role; agents belong to groups where they hold roles, and interactions take place only
between agents member of the same group and according to their respective roles. Our
approach is in the same line, since it is based on roles, and the agents that hold a role
in the same conversation of a protocol constitute a group. However, our approach
gives a formal and precise definition of the interaction patterns – protocols and roles –
and groups are defined on the basis of conversations, i.e. occurrences of protocols. In
[2], authors study the conditions under which an agent can enact a role and what it
means for an agent to enact a role. They define possible relations between roles and
agents, and discuss functional changes that an agent must undergo when it enters an
open agent system. This work completes our approach, and one can use the proposed
relations as constraints interaction requirements that the agents that take up the role
must meet. In [3], they argue for the importance of enactment/deactement of roles by
agents in multiagent programming, in particular when dealing with open systems. This
work study the dynamics of roles in terms of operations performed by agents.; their
formalization is conceptually based on the notion of cognitive agents, and therefore,
we claim that it can be easily exploited in our specification and implementation of role
components. In [28], Gaia methodology adopts an abstract, semiformal description to
express the capabilities and expected behaviors of roles involved in protocols. This
work is close to ours, since it is based on the organizational abstractions for analysis
and design of complex and open interactions, but one possible limitation, is the formal
specification, validation and namely the implementation of roles. This is due to the
fact that, the life-cycle of roles in Gaia is only expressed by safety and liveness prop-
erties, and this methodology does not directly deals with formal analysis and imple-
mentation issues.

The Aspect Oriented Programming (AOP) approach has been exploited to imple-
ment the concept of roles in [12]. The author discusses the relevance of modeling
roles for agents systems. In our approach, roles are considered as components for the
interactions between agent’s applications. Then, a Role can be selected and reused,
considering not only its functionality but also its behavioral properties. In [5], the
authors go beyond these AOP’s considerations, and propose an interaction model
based on the notion of XRole (XML Role), where notations based on XML are

 16

adopted to support the definition and the exploitation of roles at different phases of the
application development. This work is close to ours, since it is based on the separation
of concerns introduced by AOP, but it suffers from the lack of a formal semantics and
as a consequence the possibility to make verification and validation. Thanks to their
XML-based syntactic definition, XRole focuses on flexibility, openness, and adapta-
bility of the roles, but not on their formal specification and verification.

Considering the specification and validation of complex interactions and open
software systems, [13] proposes an extension of AUML for the modular design of
interaction protocols by composing micro-protocols; the main contribution of this
approach is to reduce the gap between informal specification of interaction and semi-
formal one by using protocol diagrams (AUML sequence diagrams), a graphical lan-
guage for designing protocols. Nevertheless, specification and verification of open
interaction protocols remains non trivial process. In [4], authors develop a role con-
cept for a modeling approach based on the UML and graph transformation systems.
They also provide a run-time semantics for roles on concepts from the theory of graph
transformation. This approach allows a convenient model for the concurrency, reactiv-
ity, and the autonomy of agents. Nevertheless, engineering issues raised related to the
use of roles such as the validation and the verification of agent’s behavior. In [1], the
specification of the MAS is based on a hierarchy of components, defined in term of
input/output and temporal constraints. The proposed framework is developed for
specification and simulation of MAS. However, the approach has two drawbacks.
First, with this approach it seems difficult to refine specifications to implementation
language. Second, the verification technique is limited to model checking. [21] pro-
poses a formal framework using the Z language, where initial units (schemas) of speci-
fications are refined in order to obtain a MAS specification. Nevertheless, this frame-
work does not allow to specify temporal and reactive properties of MAS. In our model
these aspects are specified by the behaviour and the properties of the Role Compo-
nents. [8] proposes a multi-formalism based specification approach, including state-
charts in Object-Z classes and proposes a formal framework approach for the proto-
typing and simulation of MAS. Although this approach allows specification and simu-
lation, it has some limitations. Indeed, the Object-Z part of the specification is not yet
executable, and only the analysis by simulation of the statechart specifications is pos-
sible.

6 Conclusion and Future Work

The aim of this paper is to show how to exploit the concept of role in engineering
agent complex interactions (specification, verification, and implementation). Model-
ing interactions by roles gives several advantages, the most important of which is the
separation of concerns by distinguishing the agent-level and system-level with regard
to interaction.

Component Based Development (CBD) promises to facilitate the construction of
large-scale applications by supporting the composition of simple building blocks into

 17

complex applications. Software systems are built by assembling components already
developed and prepared for integration.

Starting from the above considerations, we have identified requirements for model-
ing roles-based interactions as components, and propose RICO (Role-based Interac-
tions COmponents), a role-based interactions specification model whose aims is to
specify roles in agent-based applications according to component based approach.
Then, we have shown how RICO model can been specified and implemented by a
concurrent formal object-oriented language, the CoOperative Object (COO) formal-
ism, that enables the formal specification, analysis and validation of open and concur-
rent interactions. Finally, we have shown how to specify and check properties of a role
component exploiting Petri nets theory: reachability graphs for behavioral analysis,
and namely others tools such as INA tool for checking temporal properties.

 The next step for this work is to exploit some directions. First, we want to adapt
SYROCO environment in order to develop an infrastructure supporting RICO model
for real size applications, and namely for open and concurrent interaction protocols.
Our intention is to explore the coordination model based on Moderators of conversa-
tion presented in [11]. This model fits the organization-centered view of MAS as it
strictly distinguishes the agent-level and the organization-level concerns with regard to
interaction, and the main advantage of this approach is that it is quite simple, both to
use and to implement. Second, we are exploring the formal specifications of the rela-
tionships between role components and organizational rules [28] such as compatibility
and consistency between agents and roles, and interdependence of roles. Finally, we
are going to consider non-functional properties in the specification of role compo-
nents, such as performance, reliability, security, and environmental assumptions; the
specification of non-functional properties is still an open area of research in Compo-
nent Based Software Engineering, and we believe that it will have an impact on the
future of software role components specification.

Acknowledgments. This work is funded by the STIC-CNRS Department, under the
grant SUB/2003/076/DR16, in the context of C2ECL (Coordination et Contrôle de
l’Execution de Composants Logiciels) action.

References

[1] F. M. T. Brazier, B. Dunin Keplicz, N. Jennings, J. Treur, “Desire: Modelling Multi-agent
Systems in a Compositional Formal Framework”, International Journal of Cooperative In-
formation Systems, 6:67-94, 1997.

[2] M. Dastani, V. Dignum, F. Dignum, “Role Assignment in Open Agent Societies”,
AAMAS’03, ACM 2003.

[3] M. Dastani, M. B. van Riemsdijk, J.Huslstijn, F. Dignum, J-J. Meyer, ”Enacting and Deact-
ing Roles in Agent Programming”, AOSE’04.

[4] R. Depke, R.Heckel, J.M.Kuster, “Roles in Agent-Oriented Modeling”, International Jour-
nal of Software engineering and Knowledge engineering, vol 11, No. 3 (2001) 281-302.

[5] G. Cabri, L. Leonardi, F. Zambonelli “BRAIN: a Framework for Flexible Role-based
Interactions in Multi-agent Systems”, Proceedings of CoopIS 2003, 2003.

 18

[6] E. M. Clarke, E.A. Emerson, A. P. Sistla, “Automatic Verification of finite-State Concur-
rent Systems using Temporal Logic Specifications”, ACM Transactions on Programming
Languages and Systems, Vol 8, N° 2, 1986, pp244-263.

[7] J. Ferber, O. Gutknecht, “Aalaadin: A Meta-model for the Analysis and Design of Organi-
zations in Multiagent system”, ICMAS’98, 1998.

[8] P. Gruer, V. Hilaire, A. Koukam, “Formal Specification and Verification of Multi-agent
Systems”, ICMAS’2000, IEEE, 2000.

[9] M. Gudgin, “Essential IDL: Interface Design for COM”, Reading, MA, Addison-Wesley,
2001

[10] N. Hameurlain. “Formal Semantics for Behavioural Substitutability of Agent Components:
Application to Interaction Protocols”, From Theory to Practice in Multi-agent Systems,
LNAI 2296, Springer-Verlag, pp 131-140, 2002.

[11] C. Hanachi, C. Sibertin-Blanc, “Protocol Moderators as Active Middle-Agents in Multi-
Agent Systems”, AAMAS, 8, 3, p. 131-164, Kluwer Academic Publishers, 2004.

[12] E. A. Kendall, “Role Modelling for Agent Systems Analysis, Design and Implementation”,
IEEE Concurrency, 8(2): 34-41, April-June 2000.

[13] J-L. Koning, M-P. Huget, J. Wei, X. Wang. Extended Modeling Languages for Interaction
Protocol Design. AOSE'2001, Springer-Verlag, pp 93-100, 2001

[14] B.B. Kristensen, “Object Oriented Modeling with Roles”, in Proc. 2nd International Con-
ference on Object-Oriented Information Systems (OOIS’95), pp 57-71, Springer .

[15] Z. Manna, A. Pnueli, “Temporal Verification of Reactive Systems-Safety”, Springer-
Verlag, 1995.

[16] T. Murata, "Petri Nets: Properties, Analysis and Applications", In Proceedings of the
IEEE, Vol.77, No.4 pp.541-580, April, 1989.

[17] B. Meyer, “Object-Oriented software Construction”, Upper Saddle River, NJ, Prentice
Hall, 1997.

[18] J. Odell, H. V. .D . Parunak, S. Brueckner, J. Sauter, “Temporal Aspects of Dynamic Role
Assignment”, AOSE’03, Springer. 2003.

[19] OMG, “OMG Unified Modeling Language specifications”, Report V1.3, OMG, June
1999.

[20] OMG, “The Common Object Request Broker: Architecture and Specifications”, Report
V2.4, OMG, 2000.

[21] M. Luck, M. d’Inverno, “A formal Framework for Agency and Autonomy”, ICMAS’95,
AAAI Press/MIT Press, editor.

[22] S. Roch, P. H. Starke, “INA: Integrated Net Analyzer, Version 2.2”, Humboldt-Universitat
of Berlin, April 1999.

[23] C. Sibertin-Blanc, “CoOperative Objects : Principles, Use and Implementation”, In Petri
Nets and Object Orientation, G. Agha, F. De Cindio eds, LNCS 2001, Springer-Verlag.
2001.

[24] C. Sibertin-Blanc et Al., “SYROCO : Reference Manual V7”, University Toulouse1, Oct
1996, (C) 1995, 97, CNET and University Toulouse 1.

Available at http://www.daimi.aau.dk/PetriNet/tools.
[25] Sun Microsystems, “JavaBeans 1.01 Specification”,
Available at http://java.sun.com/beans.
[26] C. Szyperski, “Component Software-Beyond Object-Oriented Programming”, Addison-

Wesley, 2002.
[27] J. Warmer, A. Kleppe, “The Object Constraint Language”, Reading, MA: Addison

Wesley, 1999.
[28] F. Zambonelli, N. Jennings, M. Wooldridge, “Developing Multiagent Systems: The Gaia

Methodology”, ACM Transactions on Software Engineering and Methodology, Vol 12, N°
3, July 2003, pp317-370.

