

On Compatibility and Behavioural Substitutability of Component Protocols

Nabil Hameurlain
LIUPPA Laboratory, University of Pau, France

Nabil.hameurlain@univ-pau.fr

Abstract

Component Based Development (CBD) aims to

facilitate the construction of large-scale applications
by supporting the composition of simple building
blocks into complex applications. Components
specification is thus needed to ensure the safety of
composing systems from components. This paper focus
on component protocols specification and provides a
framework for modelling protocols together with their
composition. We start by investigating compatibility of
component protocols based on service observation.
Two compatibility relations together with their
characterisation by the preservation to their degree of
change property are proposed. Safety and liveness
properties such as deadlock-freeness and proper
termination of protocols are preserved up to different
extents. Then, we propose some behavioural subtyping
relations for component protocols related to the
principle of substitutability. Finally, we address the
soundness of our subtyping relations by showing the
existing link between compatibility and substitutability
concepts, namely their combination, which have found
necessary when dealing with incremental design of
components.

1. Introduction

Component Based Development (CBD) [17] aims to
facilitate the construction of large-scale applications by
supporting the composition of simple building blocks
into complex applications. It is one of the most
important technical initiatives in software engineering.
In CBD, software systems are built by assembling
components which are already developed and prepared
for integration. The specification of components
provides a definition of its interface that must be
precise and complete for users, and an abstract
definition of its internal structure for developers.
Specification and verification are needed to ensure the

safety of composing systems from components.
Verification and CBD are synergistic: CBD introduces
compositional structures and composition rules to the
system being built, whereas specification and
verification enable effective development of reliable
component-based software systems.

Although there is no unique definition of the
component concept, several characteristics are
fundamental to it such as explicit interfaces including
sufficient information. Beyond classical signature
based interfaces (such as CORBA [4], EJB [9]),
interfaces should make explicit all the means for using
components, such as communications and control
between those components. In the last years [5, 14, 20],
protocols in component interfaces have been proposed
to specify the behavioural property of components such
as “call sequences accepted” (as specified in a provided
interface) and “call sequences required” (as specified in
the required interface) by the component. Different
approaches for protocols specification have been
proposed, ranging from state machine approaches [5,
13], Petri nets [18], predicates [21], to process calculi
[1, 2, 3, 11]. In most of those approaches, the
semantics used are based upon finite-state automata,
which support automatic verification techniques.

This paper integrates into interfaces, by means of
protocols, the sequencing constraints that any
component should obey when calling the services of
another component. Protocols are formalized within
component-nets [18], a formalism combining Petri nets
and component-based approach. The protocols allow to
detect specific component properties when checking
two components for compatibility and substitutability.
Two properties are of great importance (1) safety
property: deadlock-freeness of the protocol, and (2)
liveness property: the successful (proper) termination
of the protocol.

The contribution of this paper are (a) to provide
compatibility relations for component protocols based
on service observation together with their
characterisation to their degree of change by property
preservation, (b) to propose some behavioural

subtyping relations for protocols related to the
principle of substitutability [10] and (c) to study the
existing link between compatibility and substitutability,
namely the soundness of the proposed subtyping
relations that is the preservation of compatibility
relations by substitutability.

The paper is organized as follows. Section 2
presents the basic definitions of the notions based on
action observation. Section 3 describes our component
protocol specification model together with component-
nets formalism. The semantics, the composition and the
properties of protocols are presented. Section 4
provides two compatibility relations and their
characterisations by property preservation. Three
subtyping relations are proposed and the preservation
of components compatibility relations to their degree of
change is studied. The compatibility and the subtyping
relations are based upon failure and bisimulation
semantics, which are considered in the study of
concurrent systems and proved to be quite easy to use
in practice. Section 5 concludes and presents some
related approaches. Due to lack of space, the proofs
may be found in the internal report [7].

2. Basic definitions

We start by the definitions of the relevant concepts
underlying our component protocol model,
compatibility and behavioural subtyping relations.
Labelled Petri Nets (PN for short) [12] are used to
describe the behaviour of protocols, the services that
are invoked on and by component and their order of
execution, together with the behavioural type of a
component protocol. The semantics of compatibility
and behavioural subtyping relations and their
soundness are based on failure (of the process algebra
CSP), and bisimulation semantics. Let A be a set of
methods, that is the alphabet of observable actions, and
{λ,ν} denotes two special unobservable actions. The
symbol λ plays the usual role of an internal action,
whose execution is under the control of the net alone;
the symbol ν stands for action which is unobservable to
a particular client of a server net, but is not under the
control of the server alone; it may have to be executed
together with another client of the net.

Labelled Petri nets. A marked Petri net N = (P, T, W,
MN) consists of a finite set P of places, a finite set T of
transitions where P ∩ T = ∅, a weighting function W :
P ×T ∪ T ×P → N, and MN : P → N is an initial
marking. A transition t ∈ T is enabled under a marking
M, noted M (t >, if W(p, t) ≤ M(p), for each place p. In
this case t may occur, and its occurrence yields the

follower marking M', where M'(p) = M(p) - W(p, t) +
W(t, p), noted M(t > M'. The enabling and the
occurrence of a sequence of transitions σ ∈ T* are
defined inductively. The preset of a node x ∈ P ∪ T is
defined as �x = {y ∈ P ∪ T, W(y, x) ≠ 0}, and the
postset of x ∈ P ∪ T is defined as x�= {y ∈ P ∪ T,
W(x, y) ≠ 0}. We denote as LN = (P, T, W, MN, l) the
(marked, labelled) Petri net (see [12] for further
information) in which the events represent actions,
which can be observable. It consists of a marked Petri
net N = (P, T, W, MN) with a labelling function l: T
→ A ∪ {λ,ν}. Let ε be the empty sequence of
transitions, l is extended to an homomorphism l*: T*
→ A* ∪ {λ, ν} in the following way: l(ε) = λ where
ε is the empty string of T*, and l*(σ.t) = l*(σ) if l(t) ∈
{λ, ν}, l*(σ.t) = l*(σ).l(t) if l(t) ∉ {λ, ν}. In the
following, we denote l* by l, LN by (N, l), and if LN =
(P, T, W, MN, l) is a Petri net and l' is another labelling
function of N, (N, l') denotes the Petri net (P, T, W,
MN, l'), that is N provided with the labelling l'. A
sequence of actions w ∈ A* ∪ {λ} is enabled under the
marking M and its occurrence yields a marking M',
noted M(w >> M', iff either M = M' and w = λ or there
exists some sequence σ ∈ T* such that l(σ) = w and
M(σ> M'. The first condition accounts for the fact that
λ is the label image of the empty sequence of
transitions. A marking is stable if no unobservable
action λ is enabled: M stable if not (M(λ >>). For a
marking M, Reach (N,M) = {M'; ∃ σ ∈ T*; M(σ > M'}
is the set of reachable markings of the net N from the
marking M.

Definition 2.1 (Traces and language)
Let N = (P, T, W, MN, l) be a labelled net. Then Tr (N)
= {σ ∈ T*; MN(σ >}is the traces of N, i.e. the set of
enabled transition sequences of N. The label image of
the traces of N is its language L(N) = l(Tr(N)) = {l(σ)
∈ A*:∃ σ ∈ Tr(N)}.

Definition 2.2 (Failures)
Let N = (P, T, W, MN, l) be a labelled net. Then the
failures of the net N on T' is F(N, T') = {(σ, S); σ ∈ T*,
S ⊆ T', and there exists some marking M such that
MN(σ > M, and ∀ t ∈ S, not (M(t >)}.
The label image of the failures of N is F(N) = l(F(N,
T)) = {(l(σ), X); X ⊆ A, and ∀ a ∈ X, not (M(a>>), for
M stable such that MN(σ > M}.

Definition 2.3 (Bisimulation)
Let N = (P, T, W, MN, l) and N' = (P', T', W', MN', l') be
two labeled nets. We say that N and N' are bisimilar,

noted N �BiSim N', iff there exists a bisimulation relation
RR ⊆ Reach (N, MN) x Reach (N’, MN’) such that :
1. (MN, MN') ∈ RR,
2. ∀ (M1, M'1) ∈ RR, ∀ a ∈ A ∪ {λ}, ∀ M2, M1(a>> M2
� ∃ M'2, M'1(a>> M'2 and (M2, M'2) ∈ RR,
3. and vice versa: ∀ a ∈ A ∪ {λ}, ∀ M'2, M'1(a>> M'2
� ∃ M2, M1(a>> M2 and (M2, M'2) ∈ RR.

3. Component protocol modelling

In this paper we adopt the approach specifying
protocols by Petri nets, allowing non-deterministic and
concurrency between protocols together with their
composition. First, we present the formalism
underlying the definition of protocols, called
component-nets, and then we give the definition of our
component protocol model together with its execution
semantics.

3.1. Components nets (C-nets)

3.1.1. Definition and semantics. Component-nets
formalism [18] combines Petri nets with the
component-based approach; petri nets will be used for
concurrency, specification, verification, and refinement
of protocols, whereas component-based approach will
be used as a high level concept of abstraction which
consider a protocol as a collection of sub-protocols,
dealing with complex interactions between
components. Semantically, a Component-net involves
actions, which are observable or not observable
together with two special places: the first one is the
input place for instance creation of the component; and
the second one is the output place for instance
completion of the component. A C-net makes some
services available to the nets and is capable of
rendering these services. Each offered service is
associated to one or several transitions, which may be
requested by C-nets, and the service is available when
one of these transitions, called accept-transitions, is
enabled. On the other hand it can request services from
other C-net transitions, called request-transitions, and
needs these requests to be fulfilled. Thus, a C-net may
be a server (and/ or client) if and only if it accepts (and/
or requests) at least one service.

Definition 3.1 (C-net)
Let CN = (P ∪ {I, O}, T, W, MN, lProv, lReq) be a
labelled Petri net. CN is a Component-net (C-net) if
and only if the following conditions are satisfied:
 l. The labelling of transitions consists of two labelling
functions lProv and lReq, such that: lProv : T → Prov ∪
{λ,ν}, where Prov ⊆ A is the set of provided (received)

services, and lReq : T → Req ∪ {λ,ν}, where Req ⊆
A is the set of required (requested) services.
2. Instance creation: the set of places contains a
specific Input (source) place I, such that �I = ∅,
3. Instance completion: the set of places contains a
specific Output place O, such that O� = ∅.
4. Visibility: for any t ∈ T such that t ∈ {I� ∪ �O}: l(t)
∈ A.

The first requirement allows to focusing either upon
the server side of a C-net or its client side. Then, the
interface of a C-net is the set of its provided and
required services. The last requirement states that all
the transitions related to the Input place I, and to the
Output place O, are necessarily observable actions.
They give input (parameters) and output (results) of the
performed net.

Notation. We denote by [I] and [O], the markings of
the Input and the Output place of CN, and by Reach
(CN, [I]), the set of reachable markings of the
component-net CN obtained from its initial marking
MN within one token in its Input place I.

Definition 3.2 (completion + reliability = soundness)
Let CN = (P ∪ {I, O}, T, W, MN, l) be a Component-
net (C-net). CN is said to be sound if and only if the
following conditions are satisfied:
1. Completion option: for any reachable marking M

∈ Reach (CN, [I]), [O] ∈ Reach(CN, M).
2. Reliability option: for any reachable marking M ∈

Reach (CN, [I]), M ≥ [O] implies M = [O].

A Sound Component-net has a life-cycle, which
satisfies the completion and the reliability options.
Completion option states that, if starting from the initial
state, i.e. activation of the C-net , it is always possible
to reach the marking with one token in the output place
O. Reliability option states that the moment a token is
put in the output place O corresponds to the
termination of a C-net without leaving dangling
references.

3.1.2. Operations on C-nets. To define our
behavioural subtyping relations, we need three basic
operations on the C-nets: abstraction, cancellation of
services, and asynchronous composition, used for
testing compatibility together with characterizations of
type substitutability:
- The abstraction operator λ labels as not observable
and internal actions, some transitions of a Labelled C-
net. It introduces new non-stable states, from which the
refusal sets are not taken into account for the failure

semantics. Formally, given a C-net N = (P, T, W, MN,
l), for each H ⊆ A, λH(N) = N' = (P, T, W, MN, l') such
that l'(t) = l(t) = a, if t ∈ T and a ∈ A \ H, l'(t) = λ else.

- The cancellation operator δ labels as not observable,
but not internal actions, some transitions of a Labelled
net. Cancellation is another kind of abstraction, which
does look at the new non-stable states when computing
failures. It renames transitions into ν transitions.
Formally, given a labelled Petri net N = (P, T, W, MN,

l), for each H ⊆ A, δH(N) = N' = (P, T, W, MN, l') such
that l'(t) = l(t) = a, if t ∈ T and a ∈ A \ H, l'(t) = ν else.
- The parallel composition operator ⊕ : C-net × C-net
→ C-net computes the set of parallel compositions
of traces, interleaving actions. The composition ⊕ is
made by communication places allowing interaction
through observable services in asynchronous way.
Given a client C-net and a server C-net, it consists in
connecting, through the communication places, the
request and accept transitions having the same service
names: each accept-transition of the server is provided
with an entry-place for receiving the requests/replies.
Then, the client C-net is connected with the server C-
net through this communication place by an arc from
each request-transition towards the suitable entry-place
and an arc from the suitable entry-place towards each
accept-transition. The composition of two C-nets is
also a C-net, and this composition is associative. The
following definition gives the composition of two C-
nets A and B. So, to achieve a syntactically correct
compound C-net C = A ⊕ B, it is necessary to add new
components for initialization and termination: two new
places (an Input and Output places), noted {Ic, Oc},
and two new observable transitions, noted {ti, to}, for
interconnecting the input place {Ic} to the original two
input places via the first new transition {ti}, and the
two original output places to the output place {Oc} via
the second new transition {to}.

Definition 3.3 (Composition of C-nets)
Let A = (Pa ∪ {Ia, Oa}, Ta, Wa, Ma, la) and B = (Pb
∪ {Ib, Ob}, Tb, Wb, Mb, lb) be two C-nets such that
Pa ∩ Pb = ∅. Let AA (resp. AB) be the set of services
of A (resp. B). Let {Ic, Oc} ∉ (Pa ∪ Pb) be two new
places, and {ti, to} ∉ (Ta ∪ Tb) be two new observable
transitions labeled resp. by � and �.
The composed C-net C = A ⊕ B, is given by C = (Pc ∪
{Ic, Oc}, Tc, Wc, Mc, lc), where:

• AC= AA ∪ AB ∪ {�, �} the alphabet of observable
actions of the C-net C.

• Pc = Pa ∪ Pb ∪ Pint, where Pint ={ps, s∈{Prov1∩
Req2}∪{Prov2 ∩ Req1}} is the set of places
communication.

• Tc = Ta ∪ Tb ∪{ti, to}.
• lc = lReq ∪ lProv, where lc(t) = la(t), if t ∈Ta, lc(t)=

lb(t), if t ∈Tb, and lc(ti) = � and lc(to)= �.
• Wc = Wa ∪ Wb ∪ Wint ∪{(Ic, ti), (ti, Ia), (ti, Ib),

(to, Oc), (Oa, to), (Ob, to)}, where Wint(t, ps) = 1 if
t ∈ Ta ∪ Tb, ps ∈ Pint and lReq(t) = s; Wint(ps, t) =
1 if t ∈ Ta ∪ Tb, ps ∈ Pint and lProv(t) = s.

• Mc is such that Mc(ps) = 0, ps ∈ Pint, Mc(Ic) =
Mc(Oc) = 0, Mc(p) = Ma(p), if p ∈ Pa, and Mc(p)
= Mb(p), if p ∈ Pb.

Example 1 : As an example of the composition of two
C-nets, considers A and B shown in figure 1, and the
result of their composition in C = A ⊕ B. The ! and ?
keywords are the usual sending (required) and
receiving (provided) services.

a?

b!

a!

b?

tiαααα

a?

b!

a!

b?

ß

pa

pb

to

Ic

Oc

A B C = A ⊕ B

Figure 1. Composition of two C-nets, A ⊕⊕⊕⊕ B.

3.2. Component protocol specification

Component protocols are specified by component-

nets formalism allowing to explicitly: (1) identify and
characterize elementary services; (2) have
compositional semantics in order to deduce emergent
interaction among Component protocols. In the
following, first we define our Component protocol
specification model, which is a template instantiated on
C-nets. Then we investigate the composition of
component-protocols together with their execution
semantics.

Definition 3.4 (Component-protocol)
A Component-protocol CP is a two-tuple, CP =
(Behav, Serv), where,

• Behav = (P ∪ {I, O}, T, W, MN, l) is a C-net
describing the life-cycle of CP.

• Serv = (Req, Prov) is an “interface” through
which CP interacts with other Component-
protocol for instance messaging interface. It is a
pair (Req, Prov), where Req is a set of required
services, and Prov is the set of provided services
by CP, and more precisely by Behav.

A component-protocol is a set of call sequences,

that is a set of required and provided services that must
be performed by the component; a call is the invocation
of a method implemented by the component.

Definition 3.5 (Component protocols composition)
A (Component-) protocol CP = (Behav, Serv), can be
composed from a set of primitive protocols, (Behav1,
Serv1),…, (Behavn, Servn), noted CP = CP1⊗ …⊗ CPn,
as follows:

• Behav is obtained from Behav1, …, Behavn by
connecting Behav1, …, Behavn through their
interfaces in asynchronous way, that is Behav =
Behav1 ⊕ … ⊕ Behavn.

• Serv = (Req, Prov) is derived from Servi = (Reqi,
Provi), i = 1, …, n. Req (or Prov, respectively) is
a subset of ∪Reqi, i = 1, …, n (or ∪Provi, i =
1,…, n).

The execution semantics of the Component-protocol

is defined according to the interleaving semantics, as
follows: when the component executes, then at any
given moment exactly one (sub) component-protocol
executes. Component protocols interacts with each
other through the call of service requests, and messages
input or output by a component-protocol are consumed
or generated by the component-protocol or its
recursively nested sub-component protocol.

4. Compatibility and substitutability

We are now finally ready to define compatibility
and behavioral subtyping relations. We show the
existing link between compatibility and substitutability
concepts, and namely their combination, which seems
necessary, when we deal with incremental design of
components. First, adequate definitions of protocols
compatibility are given together with their
characterization by property preservation. Second,
useful behavioral subtyping relations related to the
principle of substitutability are presented. Finally, the

compatibility and the substitutability of component
protocols are related to each other with the core
theorem. In this paper, among the very numerous
semantics, which may be used to compare behaviour of
component protocols, only failure and Bisimulation
semantics will deal with. The failure semantics involve
linear case dealing with deadlock, whereas
Bisimulation semantics are the finest and involve the
branching case (see [6, 15] for a comparative study of
these relations).

4.1. Compatibility and property preservation

In the following we will discuss both compatibility
between required and provided interfaces. We call the
first compatibility relation, weak compatibility. The
choice of the name is due to the fact that weak
compatibility relation guarantees safety property.

Definition 4.1 (Weak compatibility)
Let CP1 = (Behav1, Serv1) and CP2 = (Behav2, Serv2)
be two component protocols. Let CP = CP1 ⊗ CP2 =
(Behav, Serv).
CP1 and CP2 are Weakly Compatible, noted CP1 �WC
CP2, iff F(λServ2(Behav)) ⊆ F(Behav1) and F(λServ1
(Behav)) ⊆ F(Behav2) .

The definition of weak compatibility uses failure
semantics, and hence reasons about the deadlock. It
ensures that the possible failures of CP must be a
subset of the corresponding failure of CPi, i=1, 2.

a ?

c !

a ?

b !

a !

c ?

a !

b ?

CP1 CP2

Figure 2. CP1 ≈≈≈≈WC CP2 does not hold, where
Serv1 = ({b, c}, {a}) and Serv2 = ({a}, {b, c}).

Example 2: As an example, it is easy to prove that
protocols CP1 and CP2 shown in figure 2 are not related
by the weak compatibility relation, that is CP1 �WC CP2
does not hold, since (a!.a?.b!, {a!, c?, b?}) ∈ F(CP),
whereas (a!, {a!, c?, b?}) ∉ F(CP2). Further, CP1 and

CP2 shown in figure 3 are related by the weak
compatibility, that is CP1 �WC CP2 holds.

a ?

b ? c ?

a !

c !

a !

b !

CP1 CP2

Figure 3. CP1 �WC CP2, where Serv1 = (∅∅∅∅, {a, b,
c}) and Serv2 = ({a, b, c},∅∅∅∅).

According to the above example together with
theorem 4.1 (see below), weak compatibility relation is
a very powerful way to guaranty the correctness of the
protocol when reasoning about safety property like the
deadlock-freeness. Sometimes this is not enough, and
we want to claim that some liveness properties are
preserved by the Protocol’s composition like the proper
(or successful) termination. This is the aim of strong
compatibility relation, which is based on branching
bisimulation semantics.

Definition 4.2 (Strong compatibility)
Let CP1 = (Behav1, Serv1) and CP2 = (Behav2, Serv2)
be two component protocols. Let CP = CP1 ⊗ CP2 =
(Behav, Serv).
CP1 and CP2 are Strongly Compatible, noted CP1 �SC
CP2, iff λServ2 (Behav) �BiSim Behav1, and λServ1 (Behav)
�BiSim Behav2.

Strong compatibility of two protocols preserves the
behaviour of each protocol in the compound protocol
according to the branching bisimulation semantics.

Example 3: As an example, it is easy to prove that
protocols CP1 and CP2 shown in figure 3 are not related
by the strong compatibility, that is CP1 �SC CP2 does
not hold, since the (branching) semantics of CP1 are not
preserved in the compound CP, whereas the two
protocols shown in figure 4 are related by the strong
compatibility, that is CP1 �SC CP2 holds.

Last but not least, Strong Compatibility always
implies Weak Compatibility, and this last is finer than
weak Compatibility:

Property 4.1 (Hierarchy of compatibility relations)
The compatibility relations form a hierarchy: �SC �
�WC.

a ?

b ? c ?

a !

b ! c !

CP1 CP2

Figure 4. CP1 �SC CP2, where Serv1 = (∅∅∅∅, {a, b,
c}) and Serv2 = ({a, b, c},∅∅∅∅).

We have defined compatibilities between protocols.
Now, we investigate properties preservation such as,
the safety property: no deadlock between protocols will
occur, and the liveness property: the successful
termination of a protocol. These two properties are
respectively related to the completion and the
soundness of the underlying C-net, describing the life-
cycle of the component. First, we give the definition of
these two protocol’s properties, and then the core
theorem characterising the weak and the strong
compatibility by property preservation is given.

Definition 4.3 (Safety and liveness property)
Let CP = (Behav, Serv) be a protocol.
1.CP is deadlock-free iff Behav satisfies the completion
option . (def. 3.2).
2. CP terminates successfully iff Behav is sound.

Theorem 4.1 (Property preservation)
Let CP1, CP2 be two component protocols, and CP =
CP1⊗CP2.
1. ⊗ preserves deadlock-freeness for protocols related
by weak compatibility: CP1 �WC CP2 and CPi, i=1,2, are
deadlock-free � CP is deadlock-free.
3. ⊗ preserves successful termination for protocols

related by strong compatibility: CP1 �SC CP2 and
CPi, i=1,2, terminates successfully � CP
terminates successfully.

4.2. Substitutability of protocols

Substitutability of protocols is the capacity to
replace one protocol by another one without losing
behaviours. Our main interest is to define behavioural
subtyping relations capturing the principle of
substitutability [10]. In this paper we propose to base
subtyping relations on the preorder which have been
introduced to compare the behaviour of concurrent
systems, such as the failure and bisimulation semantics.
The first proposed subtyping relation, called weak
subtyping, deals with refusals (failures) services
(provided and required) by the component protocol,
and is adapted for a single access component. Instead,
the second one, called optimal subtyping is adapted for
shared components. The third one, called strong
subtyping, which is more restrictive than the weak
subtyping, is based on bisimulation semantics dealing
with the branching case and is adapted for a single
access component protocol. In our context, there are
two possibilities to treat old and new services : we hide
them (abstraction) or we cancel them (cancellation).

Definition 4.4 (Weak subtyping)
Let CP1 = (Behav1, Serv1) and CP2 = (Behav2, Serv2)
be two component protocols such that Servi = (Reqi,
Provi), i=1,2, Prov1 ⊆ Prov2 and Req2 ⊆ Req1. Let G =
Prov2 \ Prov1 and H = Req1 \ Req2.
CP2 is less equal to CP1 w.r.t Weak Substitutability,
denoted CP2 ≤WS CP1, iff F(λG(Behav2)) = F(λH
(Behav1)).

If CP2 is less or equal to CP1 w.r.t Weak
Substitutability, then the protocol CP1 can be
substituted by a protocol CP2 and the client-component
will not be able to notice the difference since the new
provided services added in the sub-protocol CP2 are
considered unobservable, through the abstraction
operator λG, and the two protocols are failure
equivalent on the super-protocol’s provided services as
well as on the sub-protocol’s required services.

Example 4: As an example, consider the protocols CP1

and CP2 shown in figure 5. It is easy to prove that CP2
≤WS CP1 holds, since for G = {c, d} and H = ∅, we
have F(λG(Behav2)) = F(λH (Behav1)).

The above example shows why we are still not at the
end of defining behavioural substitutability relations
based on failure semantics. The protocol CP2 provides
services {b, c, d}, where the new services to be added
are {c, d}. So, the client of the old service {b}, might
indeed notice the differences, if for instance another

client is requesting the new service {c}. This extension
is however weak, and is adapted for a single access
protocol. Instead, for shared component protocol, the
second type of substitutability, optimal subtyping,
which is more restrictive than weak substitutability, is
necessary to capture the desired substitutability.

a !

b ?

a !

b ?

c ?

d ?

CP1 CP2

Figure 5. CP2 ≤≤≤≤WS CP1, where Serv1 = ({a}, {b})
and Serv2 = ({a}, {b, c, d}).

Definition 4.5 (Optimal subtyping)
Let CP1 = (Behav1, Serv1) and CP2 = (Behav2, Serv2)
be two component protocols such that Servi = (Reqi,
Provi), i=1,2, Prov1 ⊆ Prov2 and Req2 ⊆ Req1. Let G =
Prov2 \ Prov1 and H = Req1 \ Req2.
CP2 is less equal to CP1 w.r.t Optimal Substitutability,
denoted CP2 ≤OS CP1, iff F(δG(Behav2)) = F(λH
(Behav1)).

a !

b ?

a !

b ?

c ?

d ?

e ?

CP1 CP2

Figure 6. CP2 ≤≤≤≤OS CP1, where Serv1 = ({a}, {b})
and Serv2 = ({a}, {b, c, d, e}).

Example 5: As an example, consider the protocols CP1

and CP2 shown in figure 6. It is easy to prove that CP2
≤OS CP1 holds, since for G = {c, d, e} and H = ∅, we
have F(δG(Behav2)) = F(λH(Behav1)). The new
provided services {c, d} can be concurrently executed
with the old one {b}. For the client which requests the

{b} service, feature the same service as before is now
possible.

Definition 4.6 (Strong subtyping)
Let CP1 = (Behav1, Serv1) and CP2 = (Behav2, Serv2)
be two component protocols such that Servi = (Reqi,
Provi), i=1,2, Prov1 ⊆ Prov2 and Req2 ⊆ Req1. Let G =
Prov2 \ Prov1 and H = Req1 \ Req2.
CP2 is less equal to and CP1 w.r.t Optimal
Substitutability, denoted CP2 ≤SS CP1, iff λG(Behav2)
�BiSim λH (Behav1).

If CP2 is less or equal to CP1 w.r.t Strong
Substitutability, then the protocol CP1 can be
substituted by a protocol CP2 and the client-component
will not be able to notice the difference since the new
provided services added in the protocol CP2 are
considered unobservable, through the abstraction
operator λG, and the two protocols are bisimilar on the
super-protocol’s provided services as well as on the
sub-protocol’s required services.

Example 6: last but not least, consider the protocols
CP1 and CP2 shown in figure 7. It is easy to prove that
CP2 ≤SS CP1 holds, since for G = {d} and H = {b}, we
have λG(Behav2) �BiSim λH (Behav1).

a !

b ! c ?

a !

d ? c ?

CP1 CP2

Figure 7. CP2 ≤≤≤≤SS CP1, where Serv1 = ({a,b},
{c}) and Serv2 = ({a}, {c, d}).

Property 4.2 (Hierarchy of subtyping relations)
1. The subtyping relations ≤H, H ∈ {WS, OS, SS}, are
reflexive and transitive.
2. The subtyping relations form a hierarchy: ≤OS � ≤WS
and ≤SS � ≤WS.

As expected, the ≤H subtyping relations, where H∈
{OS, SS, WS} are compositional for the composition
operator ⊗; for instance, extending (resp. reducing) the
provided (resp. required) services of a protocol also

extends (resp. reduces) the provided (resp. required)
services of its composition with any client/server –
component protocol.

Property 4.3 (Subtyping are compositional)
Let CP1, CP2 be two component protocols such that
CP2 ≤H CP1 where H ∈ {WS, OS, SS}. Then for any
component protocol CP, we have CP ⊗ CP2 ≤H CP ⊗
CP1 .

4.3. Compatibility and substitutability

Substitutability guarantees the transparency of
changes of protocols to clients. Namely, the
compatibility between components should not be
affected by these changes. The following theorem study
the preservation of compatibility by substitutability,
dealing with the two compatibility relations together
with the three subtyping relations given in this paper.

Theorem 4.2 (Soundness of subtyping relations)
Let CP1 and CP2 be two component protocols.
1. CP2 ≤WS CP1 iff (∀CP, CP �WC CP1 � CP �WC CP2)
2. CP2 ≤SS CP1 iff (∀CP, CP �SC CP1� CP �SC CP2).

We have proposed three relations which are suitable
as behavioural subtyping relations for component
protocols: weak subtyping is the right relation if we
would like to preserve weak compatibility, and
guarantees the preservation of the deadlock-freeness,
optimal subtyping is useful to preserve weak
compatibility also for shared components. The third
subtyping relation, strong subtyping, preserves strong
compatibility, and then guarantees the preservation of
the liveness property, which is the successful
termination of protocols. The weak and the strong
subtyping are only suitable for components with single
access. The results can be applied in an incremental
design with behavioural subtyping by checking what
kind of subtype a sub-protocol is, and then deduce what
properties of the super-protocol are preserved. The
table 1 summarises the results for theorem 4.2.

Table 1. Preservation of Compatibility by
Substitutability.

Compatibility Component
Access

Subtyping

Weak Strong Single Shared
Strong � � �
Optimal � � �
Weak � �

5. Discussion and related work

The aim of this paper is to integrate specification

and verification methods into the Component Based
Development of protocols. The specification of
protocols is based on Petri nets. Each protocol has an
interface and an internal process, specified by a
component-net, allowing to specify behavioural
property of components such as call sequences
accepted (as specified in a provided interface) and call
sequences required (as specified in the required
interface) by the component. To study compatibility of
components, two notions of compatibility and three
subtyping relations between protocols are proposed
together with the property preservation of the proposed
compatibility relations to the degree of change. We
furthermore studied the interconnection between
compatibility and substitutability, and investigated the
characterisations of compatibility by behavioural
subtyping.

The approach presented in this paper leads to define
compatibility relations together with subtyping
relations for component protocols having good
properties. Our behavioural subtyping relations take
into account the non-deterministic, the composition
mechanism of protocols, component’s access (single or
shared), and determine automatically the compatibility,
which is preserved. The next step for this work is to
explore the notion of parametric contracts [16] in the
definition of protocols compatibility and
substitutability. Parametric contracts link the provided-
and required interfaces of the same protocol, and seems
to be interesting in the re-use of protocols, in different
environment, when the required interfaces are not fully
meet, but the component can still offer part of its
provided interface. Our aim is to define flexible
compatibility and substitutability of protocols,
depending on the context of use of components.
Related Work. There are many approaches to the
specification of protocols in components or object-
oriented systems, ranging from state machine based
approaches via Petri nets and logic predicates to
process calculus. The use of state machines to specify
protocols and to check their compatibility is the well
known approach. In [14], authors propose an enhanced
architectural description language for component
behaviour with protocols specified by regular
expressions. However, they do not consider property
preservation of protocols composition. Nierstrasz [13]
uses regular types to investigate service availability of
active objects. He defines notions of compatibility and
substitutability of protocol-enhanced objects, and only
describes the provided interface using finite state

machines. In our previous work [8], we studied
property preservation by substitutability in this setting.
The work presented in this paper can be seen as an
extension to components of the previous one, since we
take into account both the provided and required
component interfaces. In addition, compatibility and
substitutability of protocols for non-deterministic
systems is studied. In [19], substitutability of active
objects is studied for non-deterministic systems. Our
approach can be seen as an extension of this work
since, in addition, it deals with compatibility and
substitutability of components together with their
combination. In [18], Petri nets are used for modelling
components within software architectures. This work is
close to ours, since it uses component-nets formalism
to model the life-cycle of components and to check
their substitutability. The main contribution of this
work is to propose a framework to model software
architectures, and address consistency (will a
component “fit” or not?) at the level of a single
component and at the level of a system architecture.
Authors prove that consistency implies the correct
behaviour of the overall system, i.e., the system is free
of deadlocks; this result is based on the fact that the
proposed behavioural inheritance relations are
compositional. Nevertheless provided and required
interface are not distinguished in the specification of
components, and then compatibility of components is
not addressed. In contrast, our work specify
compatibility of component protocols w.r.t the
provided and required interfaces, their characterisations
by property (safety and liveness) preservation, and
finally to study the preservation of compatibility by
substitutability. In [1], authors differentiate between
components, described by a set of ports and
connectors, for glueing components, described by a set
of roles. In our approach, we do not distinguish at the
specification level of components protocols between
these categories, and both components and connectors
are called components. Further, in that work, the notion
of compatibility (of a port with a role) is only based on
the deadlock-freeness, whereas in our work the
compatibility between components protocols is related
both to safety (deadlock-freeness) and liveness (proper
termination) property. In [2], authors present a relation
of compatibility in the context of pi-calculus which
formalizes the notion of conformance of behaviour
between software components. This approach is
enhanced with the definition of a relation of inheritance
among processes. This relation, based on (bi)
simulation between process, preserves compatibility
and indicates whether a process can be considered as
an extension of another one. This work is close to ours,

since the compatibility relation is based on failure
semantics, and then related to the deadlock-freeness
property. Our approach can be seen as an extension of
this work since, in addition, we deal with compatibility
related to the liveness property and its preservation by
behavioural together with substitutability of protocols
for shared components

In [21], predicate approaches are used for specifying
protocols, providing a higher modelling power than the
approaches given above. The idea is that formal
specifications are pre- and postconditions written as
predicates in first order logic; nevertheless checking
protocols compatibility and substitutability remains
very complex and non-computable. In [3], an approach
using process calculus based on the concept of
“contract” is proposed; in this approach, modalities on
the sequences of actions to be performed by interfaces
are introduced in the definition of compatibilities
between interfaces, and sound composition of
components is studied w.r.t property preservation such
as external deadlock-freeness and message
consumption. This approach is close to ours, since the
compatibility rules are based upon bisimulation
semantics, like those used in our strong compatibility
and substitutability relations, together with their
characterisations by property preservation.
Nevertheless, it is based on a logic based calculi, and
has a similar drawbacks as predicate based approaches
[21], that is the complexity to checks compatibility
together with safety and liveness property.

References

[1] R.Allen, and D.Garlan. Formalizing architectural
connection. In Proc. CSE’94, pages 71-80, Sorrento(Italy),
May 1994.

[2] C. Canal, E. Pimentel, and J.M. Troya. “Compatibility
and inheritance in software architectures” Science of
Computer Programming, 41(2):105-138. 2001.

[3] C. Carrez, A. Fantechi, E. Najm. “Behavioural Contracts
for a Sound Assembly of Components”, FORTE 2003, LNCS
2767, pp 111-126, 2003.

[4] OMG. “The Common Object Request Broker:
Architecture and Specifications”, Report V2.4, OMG, 2000.

[5] L. De Alfaro, T.A. Henzinger. “Interface automata”, In
proc. of ESEC/FSE, volume 26, 5 of Software Engineering
Notes, ACM (2001).

[6] R. Van Glabbeek, U. Goltz. “Equivalence Notions for
Concurrent Systems and Refinement of Actions”. In MFCS
89, LNCS 379, Springer-Verlag 1989.

[7] N. Hameurlain. “On Compatibility and Behavioural
Substitutability of Component Protocols”. Internal report,
University of Pau (F), 2005. Available at http://www.univ-
pau.fr/~hameur.

[8] N. Hameurlain. “Behavioural Subtyping and Property
Preservation for Active Objects”, Fifth IFIP International
Conference on Formal Methods for Open Object-Based
Distributed Systems, FMOODS'02, pp 95-110, Kluwer 2002.

[9] Sun Microsystems. “JavaBeans 1.01 Specification”,
Available at http://java.sun.com/beans.

[10] B. H. Liskov, J. M; Wing. “A Behavioral notion of
Subtyping”, ACM Transactions on Programming Languages
and Systems, 16 (6): 1811-1841, November 1994.

[11] R. Milner. “A Calculus of Communicating Systems”,
LNCS, 92, 1980.

[12] T. Murata. “Petri Nets: Properties, Analysis and
Applications”. In Proc. of the IEEE, vol. 77, N° 4, pp. 541-
580, April 1989.

[13] O. Nierstrasz. “Regular types for Active Objects”. In
ACM SIGPLAN Notices, 28 (10); Proceedings of
OOPSLA’93, Washington DC, pp. 1-15, 1993.

[14] F. Plasil, S. Visnovsky. “Behaviour Protocols for
Software Components”. In Transactions on Software
Engineering, IEEE (2002).

[15] L. Pomello, G. Rozenberg, C. Simone. “A Survey of
Equivalence Notions for Net Based System”. Advances in
Petri Nets 1992; G. Rozenberg Ed., LNCS 609, Springer-
Verlag 1992.

[16] R.H. Reussner, J. Happe, A. Habel. “Modelling
Parametric Component Contracts and the State Space of
Composite components by Graph Grammars”. In
ETAPS/FASE 2005, LNCS 3442, pp 80-90, Springer.

[17] C. Szyperski, “Component Software-Beyond Object-
Oriented Programming”, Addison-Wesley, 2002.

[18] W.M.P. Van der Aalst, k.M. van Hee, R.A. van der
Toorn. “Component-Based Software Architectures: A
framework Based on inheritance of Behaviour”. Working
Paper Series 45, Eindhoven University of Technology, 2000.

[19] H. Wehrheim. “Behavioural Subtyping relations for
Active Objects”, Formal Methods in System Design, 23:143-
170, 2003.

[20] D.M. Yellin, R.E. Strom. “Protocol Specification and
Component Adaptors”, ACM TPLS 19: 292-333, 1997.

[21] A. M. Zaremski, J. M. Wing. “Specification Matching of
Software Components”. ACM Transactions of Software
Engineering and Methodology, 6 (4): 333-369, (1997).

