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Abstract 

 
Component Based Development (CBD) aims to 

facilitate the construction of large-scale applications 
by supporting the composition of simple building 
blocks into complex applications. Components 
specification is thus needed to ensure the safety of 
composing  systems from components. This paper focus 
on component protocols specification and provides a 
framework for modelling protocols together with their 
composition. We start by investigating compatibility of 
component protocols based on service observation. 
Two compatibility relations together with their 
characterisation by the preservation to their degree of 
change property are proposed. Safety and liveness 
properties such as deadlock-freeness and proper 
termination of protocols are preserved up to different 
extents. Then, we propose some behavioural subtyping 
relations for component protocols related to the 
principle of substitutability. Finally, we address the 
soundness of our subtyping relations by showing the 
existing link between compatibility and substitutability 
concepts, namely their combination, which have found 
necessary when dealing with incremental design of 
components. 

 
 
1. Introduction 
 

Component Based Development (CBD) [17] aims to 
facilitate the construction of large-scale applications by 
supporting the composition of simple building blocks 
into complex applications. It is one of the most 
important technical initiatives in software engineering. 
In CBD, software systems are built by assembling 
components which are already developed and prepared 
for integration. The specification of components 
provides a definition of its interface that must be 
precise and complete for users, and an abstract 
definition of its internal structure for developers. 
Specification and verification are needed to ensure the 

safety of composing systems from components. 
Verification and CBD are synergistic: CBD introduces 
compositional structures and composition rules to the 
system being built, whereas specification and 
verification enable effective development of reliable 
component-based software systems.  

Although there is no unique definition of the 
component concept, several characteristics are 
fundamental to it such as explicit interfaces including 
sufficient information. Beyond classical signature 
based interfaces (such as CORBA [4], EJB [9]), 
interfaces should make explicit all the means for using 
components, such as communications and control 
between those components. In the last years [5, 14, 20], 
protocols in component interfaces have been proposed 
to specify the behavioural property of components such 
as “call sequences accepted” (as specified in a provided 
interface) and “call sequences required” (as specified in 
the required interface) by the component. Different 
approaches for protocols specification have been 
proposed, ranging from state machine approaches [5, 
13], Petri nets [18], predicates [21], to process calculi 
[1, 2, 3, 11]. In most of those approaches, the 
semantics used are based upon finite-state automata, 
which support automatic verification techniques.  

This paper integrates into interfaces, by means of 
protocols, the sequencing constraints that any 
component should obey when calling the services of 
another component. Protocols are formalized within 
component-nets [18], a formalism combining Petri nets 
and component-based approach. The protocols allow to 
detect specific component properties when checking 
two components for compatibility and substitutability. 
Two properties are of great importance (1) safety 
property: deadlock-freeness of the protocol, and  (2) 
liveness property: the successful (proper) termination 
of the protocol.   

The contribution of this paper are (a) to provide 
compatibility relations for component protocols based 
on service observation together with their 
characterisation to their degree of change by property 
preservation, (b) to propose some behavioural 



 

subtyping relations for protocols related to the 
principle of substitutability [10] and (c) to study the 
existing link between compatibility and substitutability, 
namely the soundness of the proposed subtyping 
relations that is the preservation of compatibility 
relations by substitutability. 

The paper is organized as follows. Section 2 
presents the basic definitions of the notions based on 
action observation. Section 3 describes our component 
protocol specification model together with component-
nets formalism. The semantics, the composition and the 
properties of protocols are presented. Section 4 
provides two compatibility relations and their 
characterisations by property preservation. Three 
subtyping relations are proposed and the preservation 
of components compatibility relations to their degree of 
change is studied. The compatibility and the subtyping 
relations are based upon failure and bisimulation 
semantics, which are considered in the study of 
concurrent systems and proved to be quite easy to use 
in practice. Section 5 concludes and presents some 
related approaches. Due to lack of space, the proofs 
may be found in the internal report [7]. 
 
2. Basic definitions 
 

We start by the definitions of the relevant concepts 
underlying our component protocol model, 
compatibility and behavioural subtyping relations. 
Labelled Petri Nets (PN for short) [12] are used to 
describe the behaviour of protocols, the services that 
are invoked on and by component and their order of 
execution, together with the behavioural type of a 
component protocol. The semantics of compatibility 
and behavioural subtyping relations and their 
soundness are based on failure (of the process algebra 
CSP), and bisimulation semantics. Let A be a set of 
methods, that is the alphabet of observable actions, and 
{λ,ν} denotes two special unobservable actions. The 
symbol λ plays the usual role of an internal action, 
whose execution is under the control of the net alone; 
the symbol ν stands for action which is unobservable to 
a particular client of a server net, but is not under the 
control of the server alone; it may have to be executed 
together with another client of the net. 

 
Labelled Petri nets. A marked Petri net N = (P, T, W, 
MN) consists of a finite set P of places, a finite set T of 
transitions where P ∩ T = ∅, a weighting function W : 
P ×T ∪ T ×P → N, and MN : P → N is an initial 
marking. A transition t ∈ T is enabled under a marking 
M, noted M (t >, if W(p, t) ≤ M(p), for each place p. In 
this case t may occur, and its occurrence yields the 

follower marking M', where M'(p) = M(p) - W(p, t) + 
W(t, p), noted M(t > M'. The enabling and the 
occurrence of a sequence of transitions σ ∈ T* are 
defined inductively. The preset of a node x ∈ P ∪ T is 
defined as �x = {y ∈ P ∪ T, W(y, x) ≠ 0}, and the 
postset of x ∈ P ∪ T is defined as x�= {y ∈ P ∪ T, 
W(x, y) ≠ 0}. We denote as LN = (P, T, W, MN, l) the 
(marked, labelled) Petri net (see [12] for further 
information) in which the events represent actions, 
which can be observable. It consists of a marked Petri 
net N = (P, T, W, MN) with a labelling function l: T 
→ A ∪ {λ,ν}. Let ε be the empty sequence of 
transitions, l is extended to an homomorphism l*: T* 
→ A* ∪ {λ, ν} in the following way: l(ε) = λ where 
ε is the empty string of T*, and l*(σ.t) = l*(σ) if l(t) ∈ 
{λ, ν}, l*(σ.t) = l*(σ).l(t) if l(t) ∉ {λ, ν}. In the 
following, we denote l* by l, LN by (N, l), and if LN = 
(P, T, W, MN, l) is a Petri net and l' is another labelling 
function of N, (N, l') denotes the Petri net (P, T, W, 
MN, l'), that is N provided with the labelling l'. A 
sequence of actions w ∈ A* ∪ {λ} is enabled under the 
marking M and its occurrence yields a marking M', 
noted M(w >> M', iff either M = M' and w = λ or there 
exists some sequence σ ∈ T* such that l(σ) = w and 
M(σ> M'. The first condition accounts for the fact that 
λ is the label image of the empty sequence of 
transitions. A marking is stable if no unobservable 
action λ is enabled: M stable if not (M(λ >>). For a 
marking M, Reach (N,M) = {M'; ∃ σ ∈ T*; M(σ > M'} 
is the set of reachable markings of the net N from the 
marking M. 
 
Definition 2.1 (Traces and language) 
Let N = (P, T, W, MN, l) be a labelled net. Then Tr (N) 
= {σ ∈ T*; MN(σ >}is the traces of N, i.e. the set of 
enabled transition sequences of N. The label image of 
the traces of N is its language L(N) = l(Tr(N)) = {l(σ) 
∈ A*:∃ σ ∈ Tr(N)}. 
 
Definition 2.2 (Failures) 
Let N = (P, T, W, MN, l) be a labelled net. Then the 
failures of the net N on T' is F(N, T') = {(σ, S); σ ∈ T*, 
S ⊆ T', and there exists some marking M such that 
MN(σ > M, and ∀ t ∈ S, not (M(t >)}. 
The label image of the failures of N is F(N) = l(F(N, 
T)) = {(l(σ), X); X ⊆ A, and ∀ a ∈ X, not (M(a>>), for 
M stable such that  MN(σ > M}. 
 
Definition 2.3 (Bisimulation)  
Let N = (P, T, W, MN, l) and N' = (P', T', W', MN', l') be 
two labeled nets. We say that N and N' are bisimilar, 



 

noted N �BiSim N', iff there exists a bisimulation relation 
RR  ⊆  Reach (N, MN) x  Reach (N’, MN’) such that : 
1. (MN, MN') ∈ RR, 
2. ∀ (M1, M'1) ∈ RR, ∀ a ∈ A ∪ {λ}, ∀ M2, M1(a>> M2 
� ∃ M'2, M'1(a>> M'2 and (M2, M'2) ∈ RR, 
3. and vice versa: ∀ a ∈ A ∪ {λ}, ∀ M'2, M'1(a>> M'2 
� ∃ M2, M1(a>> M2 and (M2, M'2) ∈ RR. 
 
3. Component protocol modelling 
 

In this paper we adopt the approach specifying 
protocols by Petri nets, allowing non-deterministic and 
concurrency between protocols together with their 
composition. First, we present the formalism 
underlying the definition of protocols, called 
component-nets, and then we give the definition of our 
component protocol model together with its execution 
semantics. 

 
3.1. Components nets (C-nets) 
 
3.1.1. Definition and semantics. Component-nets 
formalism [18] combines Petri nets with the 
component-based approach; petri nets will be used for 
concurrency, specification, verification, and refinement 
of protocols, whereas component-based approach will 
be used as a high level concept of abstraction which 
consider a protocol as a collection of sub-protocols, 
dealing with complex interactions between 
components. Semantically, a Component-net involves 
actions, which are observable or not observable 
together with two special places: the first one is the 
input place for instance creation of the component; and 
the second one is the output place for instance 
completion of the component. A C-net makes some 
services available to the nets and is capable of 
rendering these services. Each offered service is 
associated to one or several transitions, which may be 
requested by C-nets, and the service is available when 
one of these transitions, called accept-transitions, is 
enabled. On the other hand it can request services from 
other C-net transitions, called request-transitions, and 
needs these requests to be fulfilled. Thus, a C-net may 
be a server (and/ or client) if and only if it accepts (and/ 
or requests) at least one service. 
 
Definition 3.1 (C-net)  
Let CN = (P ∪ {I, O}, T, W, MN, lProv, lReq) be a 
labelled Petri net. CN is a Component-net (C-net) if 
and only if the following conditions are satisfied: 
 l. The labelling of transitions consists of two labelling 
functions lProv and lReq, such that: lProv : T → Prov ∪ 
{λ,ν}, where Prov ⊆ A is the set of provided (received) 

services, and lReq : T → Req ∪ {λ,ν}, where Req ⊆ 
A is the set of required (requested) services. 
2. Instance creation: the set of places contains a 
specific Input (source) place I, such that �I = ∅, 
3. Instance completion: the set of places contains a 
specific Output place O, such that O� = ∅. 
4. Visibility: for any t ∈ T such that t ∈ {I� ∪ �O}: l(t) 
∈ A. 
 

The first requirement allows to focusing either upon 
the server side of a C-net or its client side. Then, the 
interface of a C-net is the set of its provided and 
required services. The last requirement states that all 
the transitions related to the Input place I, and to the 
Output place O, are necessarily observable actions. 
They give input (parameters) and output (results) of the 
performed net. 
 
Notation. We denote by [I] and [O], the markings of 
the Input and the Output place of CN, and by Reach 
(CN, [I]), the set of reachable markings of the 
component-net CN obtained from its initial marking 
MN within one token in its Input place I.  
 
Definition 3.2 (completion + reliability = soundness)  
Let CN = (P ∪ {I, O}, T, W, MN, l) be a Component-
net (C-net). CN is said to be sound if and only if the 
following conditions are satisfied: 
1. Completion option: for any reachable marking M 

∈ Reach (CN, [I]), [O] ∈ Reach(CN, M). 
2. Reliability option: for any reachable marking M ∈ 

Reach (CN, [I]), M ≥ [O] implies M = [O]. 
 

A Sound Component-net has a life-cycle, which 
satisfies the completion and the reliability options. 
Completion option states that, if starting from the initial 
state, i.e. activation of the C-net , it is always possible 
to reach the marking with one token in the output place 
O. Reliability option states that the moment a token is 
put in the output place O corresponds to the 
termination of a C-net without leaving dangling 
references. 
 
3.1.2. Operations on C-nets. To define our 
behavioural subtyping relations, we need three basic 
operations on the C-nets: abstraction, cancellation of 
services, and asynchronous composition, used for 
testing compatibility together with characterizations of 
type substitutability: 
- The abstraction operator λ labels as not observable 
and internal actions, some transitions of a Labelled C-
net. It introduces new non-stable states, from which the 
refusal sets are not taken into account for the failure 



 

semantics. Formally, given a C-net N = (P, T, W, MN, 
l), for each H ⊆ A, λH(N) = N' = (P, T, W, MN, l') such 
that l'(t) = l(t) = a, if t ∈ T and a ∈ A \ H, l'(t) = λ else.  

- The cancellation operator δ labels as not observable, 
but not internal actions, some transitions of a Labelled 
net. Cancellation is another kind of abstraction, which 
does look at the new non-stable states when computing 
failures. It renames transitions into ν transitions. 
Formally, given a labelled Petri net N = (P, T, W, MN, 

l), for each H ⊆ A, δH(N) = N' = (P, T, W, MN, l') such 
that l'(t) = l(t) = a, if t ∈ T and a ∈ A \ H, l'(t) = ν else. 
- The parallel composition operator ⊕ : C-net × C-net 
→ C-net computes the set of parallel compositions 
of traces, interleaving actions. The composition ⊕ is 
made by communication places allowing interaction 
through observable services in asynchronous way. 
Given a client C-net and a server C-net, it consists in 
connecting, through the communication places, the 
request and accept transitions having the same service 
names: each accept-transition of the server is provided 
with an entry-place for receiving the requests/replies. 
Then, the client C-net is connected with the server C-
net through this communication place by an arc from 
each request-transition towards the suitable entry-place 
and an arc from the suitable entry-place towards each 
accept-transition. The composition of two C-nets is 
also a C-net, and this composition is associative. The 
following definition gives the composition of two C-
nets A and B. So, to achieve a syntactically correct 
compound C-net C = A ⊕ B, it is necessary to add new 
components for initialization and termination: two new 
places (an Input and Output places), noted {Ic, Oc}, 
and two new observable transitions, noted {ti, to}, for 
interconnecting the input place {Ic} to the original two 
input places via the first new transition {ti}, and the 
two original output places to the output place {Oc} via 
the second new transition {to}. 
 
Definition 3.3 (Composition of C-nets)  
Let  A = (Pa ∪ {Ia, Oa}, Ta, Wa, Ma, la) and B = (Pb 
∪ {Ib, Ob}, Tb, Wb, Mb, lb) be two C-nets such that 
Pa ∩ Pb = ∅. Let AA (resp. AB) be the set of services 
of A (resp. B). Let {Ic, Oc} ∉ (Pa ∪ Pb) be two new 
places, and {ti, to} ∉ (Ta ∪ Tb) be two new observable 
transitions labeled resp. by � and �. 
The composed C-net C = A ⊕ B, is given by C = (Pc ∪ 
{Ic, Oc}, Tc, Wc, Mc, lc), where: 

• AC= AA ∪ AB ∪ {�, �} the alphabet of observable 
actions of the C-net C. 

• Pc = Pa ∪ Pb ∪ Pint, where Pint ={ps, s∈{Prov1∩ 
Req2}∪{Prov2 ∩ Req1}} is the set of places 
communication. 

• Tc = Ta ∪ Tb ∪{ti, to}.  
• lc = lReq ∪ lProv, where lc(t) = la(t), if t ∈Ta, lc(t)= 

lb(t), if t ∈Tb, and  lc(ti) = � and lc(to)= �. 
• Wc = Wa ∪ Wb ∪ Wint ∪{(Ic, ti), (ti, Ia), (ti, Ib), 

(to, Oc), (Oa, to), (Ob, to)}, where Wint(t, ps) = 1 if 
t ∈ Ta ∪ Tb, ps ∈ Pint and lReq(t) = s; Wint(ps, t) = 
1 if t ∈ Ta ∪ Tb, ps ∈ Pint and  lProv(t) = s. 

• Mc is such that Mc(ps) = 0, ps ∈ Pint, Mc(Ic) = 
Mc(Oc) = 0, Mc(p) = Ma(p), if p ∈ Pa, and   Mc(p) 
= Mb(p), if p ∈ Pb. 

 
Example 1 : As an example of the composition of two 
C-nets, considers A and B shown in figure 1, and the 
result of their composition in C = A ⊕ B. The ! and ? 
keywords are the usual sending (required) and 
receiving (provided)  services.  

a?

b!

a!

b?

tiαααα

a?

b!

a!

b?

ß

pa

pb

to

Ic

Oc
 

A        B        C = A  ⊕ B 
 
Figure 1. Composition of two C-nets, A ⊕⊕⊕⊕ B. 
 
3.2. Component protocol specification  

 
Component protocols are specified by component-

nets formalism allowing to explicitly: (1) identify and 
characterize elementary services; (2) have 
compositional semantics in order to deduce emergent 
interaction among Component protocols. In the 
following, first we define our Component protocol 
specification model, which is a template instantiated on 
C-nets. Then we investigate the composition of 
component-protocols together with their execution 
semantics. 



 

Definition 3.4 (Component-protocol) 
A Component-protocol CP is a two-tuple, CP = 
(Behav, Serv), where,  

• Behav = (P ∪ {I, O}, T, W, MN, l) is a C-net 
describing the life-cycle of CP. 

• Serv = (Req, Prov) is an “interface” through 
which CP interacts with other Component-
protocol for instance messaging interface. It is a 
pair (Req, Prov), where Req is a set of required 
services, and Prov is the set of provided services 
by CP, and more precisely by Behav. 

 
A component-protocol is a set of call sequences, 

that is a set of required and provided services that must 
be performed by the component; a call is the invocation 
of a method implemented by the component. 
 
Definition 3.5 (Component protocols composition) 
A (Component-) protocol CP = (Behav, Serv), can be 
composed from a set of primitive protocols, (Behav1, 
Serv1),…, (Behavn, Servn), noted CP = CP1⊗ …⊗ CPn, 
as follows: 

• Behav is obtained from Behav1, …, Behavn by 
connecting Behav1, …, Behavn through their 
interfaces in asynchronous way, that is Behav = 
Behav1 ⊕ … ⊕ Behavn. 

• Serv = (Req, Prov) is derived from Servi = (Reqi, 
Provi), i = 1, …, n. Req (or Prov, respectively) is 
a subset of ∪Reqi, i = 1, …, n (or ∪Provi, i = 
1,…, n ).  

 
The execution semantics of the Component-protocol 

is defined according to the interleaving semantics, as 
follows: when the component executes, then at any 
given moment exactly one (sub) component-protocol 
executes. Component protocols interacts with each 
other through the call of service requests, and messages 
input or output by a component-protocol are consumed 
or generated by the component-protocol or its 
recursively nested sub-component protocol.  

 
4. Compatibility and substitutability 
 

We are now finally ready to define compatibility 
and behavioral subtyping relations. We show the 
existing link between compatibility and substitutability 
concepts, and namely their combination, which seems 
necessary, when we deal with incremental design of 
components. First, adequate definitions of protocols 
compatibility are given together with their 
characterization by property preservation. Second, 
useful behavioral subtyping relations related to the 
principle of substitutability are presented. Finally, the 

compatibility and the substitutability of component 
protocols are related to each other with the core 
theorem. In this paper, among the very numerous 
semantics, which may be used to compare behaviour of 
component protocols, only failure and Bisimulation 
semantics will deal with. The failure semantics involve 
linear case dealing with deadlock, whereas 
Bisimulation semantics are the finest and involve the 
branching case (see [6, 15] for a comparative study of 
these relations). 
 
4.1. Compatibility and property preservation 
 

In the following we will discuss both compatibility 
between required and provided interfaces. We call the 
first compatibility relation, weak compatibility. The 
choice of the name is due to the fact that weak 
compatibility relation guarantees safety property.  
 
Definition 4.1 (Weak compatibility) 
Let CP1 = (Behav1, Serv1) and CP2 = (Behav2, Serv2) 
be two component protocols. Let CP = CP1 ⊗ CP2 = 
(Behav, Serv).  
CP1 and CP2 are Weakly Compatible, noted CP1 �WC 
CP2, iff F(λServ2(Behav)) ⊆ F(Behav1) and F(λServ1 
(Behav)) ⊆  F(Behav2)  . 
 
The definition of weak compatibility uses failure 
semantics, and hence reasons about the deadlock. It 
ensures that the possible failures of CP must be a 
subset of the corresponding failure of CPi, i=1, 2.  
 

a ?

c !

a ?

b !

a !

c ?

a !

b ?

 
CP1    CP2 

 
Figure 2. CP1 ≈≈≈≈WC CP2 does not hold, where 
Serv1 = ({b, c}, {a}) and Serv2 = ({a}, {b, c}). 
 
Example 2: As an example, it is easy to prove that 
protocols CP1 and CP2 shown in figure 2 are not related 
by the weak compatibility relation, that is CP1 �WC CP2 
does not hold, since (a!.a?.b!, {a!, c?, b?}) ∈ F(CP), 
whereas (a!, {a!, c?, b?})  ∉ F(CP2). Further, CP1 and 



 

CP2 shown in figure 3 are related by the weak 
compatibility, that is CP1 �WC CP2 holds. 
 
 

a ?

b ? c ?

a !

c !

a !

b !

 
CP1    CP2 

 
Figure 3. CP1 �WC CP2, where Serv1 = (∅∅∅∅, {a, b, 
c}) and Serv2 = ({a, b, c},∅∅∅∅). 
 

According to the above example together with 
theorem 4.1 (see below), weak compatibility relation is 
a very powerful way to guaranty the correctness of the 
protocol when reasoning about safety property like the 
deadlock-freeness. Sometimes this is not enough, and 
we want to claim that some liveness properties are 
preserved by the Protocol’s composition like the proper 
(or successful) termination. This is the aim of strong 
compatibility relation, which is based on branching 
bisimulation semantics. 
 
Definition 4.2 (Strong compatibility) 
Let CP1 = (Behav1, Serv1) and CP2 = (Behav2, Serv2) 
be two component protocols. Let CP = CP1 ⊗ CP2 = 
(Behav, Serv). 
CP1 and CP2 are Strongly Compatible, noted CP1 �SC 
CP2, iff λServ2 (Behav) �BiSim Behav1, and λServ1 (Behav) 
�BiSim Behav2. 
 
Strong compatibility of two protocols preserves the 
behaviour of each protocol in the compound protocol 
according to the branching bisimulation semantics. 
 
Example 3: As an example, it is easy to prove that 
protocols CP1 and CP2 shown in figure 3 are not related 
by the strong compatibility, that is CP1 �SC CP2 does 
not hold, since the (branching) semantics of CP1 are not 
preserved in the compound CP, whereas the two 
protocols shown in figure 4 are related by the strong 
compatibility, that is CP1 �SC CP2 holds. 

 

Last but not least, Strong Compatibility always 
implies Weak Compatibility, and this last is finer than 
weak Compatibility: 

 
Property 4.1 (Hierarchy of compatibility relations)  
The compatibility relations form a hierarchy:  �SC � 
�WC. 
 

a ?

b ? c ?

a !

b ! c !

 
CP1         CP2 

 
Figure 4.  CP1 �SC CP2, where Serv1 = (∅∅∅∅, {a, b, 
c}) and Serv2 = ({a, b, c},∅∅∅∅). 
 

We have defined compatibilities between protocols. 
Now, we investigate properties preservation such as, 
the safety property: no deadlock between protocols will 
occur, and the liveness property: the successful 
termination of a protocol. These two properties are 
respectively related to the completion and the 
soundness of the underlying C-net, describing the life-
cycle of the component. First, we give the definition of 
these two protocol’s properties, and then the core 
theorem characterising the weak and the strong 
compatibility by property preservation is given. 
 
Definition 4.3 (Safety and liveness property) 
Let CP = (Behav, Serv) be a protocol. 
1.CP is deadlock-free iff Behav satisfies the completion 
option . (def. 3.2). 
2. CP terminates successfully iff Behav is sound. 
 
Theorem 4.1 (Property preservation)  
Let CP1, CP2 be two component protocols, and CP = 
CP1⊗CP2.  
1. ⊗ preserves deadlock-freeness for protocols related 
by weak compatibility: CP1 �WC CP2 and CPi, i=1,2, are 
deadlock-free �  CP is deadlock-free. 
3. ⊗ preserves successful termination for protocols 

related by strong compatibility: CP1 �SC CP2 and 
CPi, i=1,2, terminates successfully � CP 
terminates successfully. 



 

4.2. Substitutability of protocols 
 

Substitutability of protocols is the capacity to 
replace one protocol by another one without losing 
behaviours. Our main interest is to define behavioural 
subtyping relations capturing the principle of 
substitutability [10]. In this paper we propose to base 
subtyping relations on the preorder which have been 
introduced to compare the behaviour of concurrent 
systems, such as the failure and bisimulation semantics. 
The first proposed subtyping relation, called weak 
subtyping, deals with refusals (failures) services 
(provided and required) by the component protocol, 
and is adapted for a single access component. Instead, 
the second one, called optimal subtyping is adapted for 
shared components. The third one, called strong 
subtyping,  which is more restrictive than the weak 
subtyping, is based on bisimulation semantics dealing 
with the branching case and is adapted for a single 
access component protocol. In our context, there are 
two possibilities to treat old and new services : we hide 
them (abstraction) or we cancel them (cancellation). 
 
Definition 4.4 (Weak subtyping) 
Let CP1 = (Behav1, Serv1) and CP2 = (Behav2, Serv2) 
be two component protocols such that Servi = (Reqi, 
Provi), i=1,2, Prov1 ⊆ Prov2 and Req2 ⊆ Req1. Let G = 
Prov2 \ Prov1 and  H = Req1 \ Req2. 
CP2 is less equal to CP1 w.r.t Weak Substitutability, 
denoted CP2 ≤WS CP1, iff F(λG(Behav2)) = F(λH 
(Behav1)). 
 
If CP2 is less or equal to CP1 w.r.t Weak 
Substitutability, then the protocol CP1 can be 
substituted by a protocol CP2 and the client-component 
will not be able to notice the difference since the new 
provided services added in the sub-protocol CP2 are 
considered unobservable, through the abstraction 
operator λG, and the two protocols are failure 
equivalent on the super-protocol’s provided services as 
well as on the sub-protocol’s required services. 
 
Example 4: As an example, consider the protocols CP1 

and CP2 shown in figure 5. It is easy to prove that CP2 
≤WS CP1 holds, since for G = {c, d} and H = ∅, we 
have F(λG(Behav2)) = F(λH (Behav1)). 
 

The above example shows why we are still not at the 
end of defining behavioural substitutability relations 
based on failure semantics. The protocol  CP2 provides 
services {b, c, d}, where the new services to be added 
are {c, d}. So, the client of the old service {b}, might 
indeed notice the differences, if for instance another 

client is requesting the new service {c}. This extension 
is however weak, and is adapted for a single access 
protocol. Instead, for shared component protocol, the 
second type of substitutability, optimal subtyping, 
which is more restrictive than weak substitutability, is 
necessary to capture the desired substitutability. 
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Figure 5.  CP2 ≤≤≤≤WS CP1, where Serv1 = ({a}, {b}) 
and Serv2 = ({a}, {b, c, d}). 
 
Definition 4.5 (Optimal subtyping) 
Let CP1 = (Behav1, Serv1) and CP2 = (Behav2, Serv2) 
be two component protocols such that Servi = (Reqi, 
Provi), i=1,2, Prov1 ⊆ Prov2 and Req2 ⊆ Req1. Let G = 
Prov2 \ Prov1 and  H = Req1 \ Req2. 
CP2 is less equal to CP1 w.r.t Optimal Substitutability, 
denoted CP2 ≤OS CP1, iff F(δG(Behav2)) = F(λH 
(Behav1)). 
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Figure 6.  CP2 ≤≤≤≤OS CP1, where Serv1 = ({a}, {b}) 
and Serv2 = ({a}, {b, c, d, e}). 
 
Example 5: As an example, consider the protocols CP1 

and CP2 shown in figure 6. It is easy to prove that CP2 
≤OS CP1 holds, since for G = {c, d, e} and H = ∅, we 
have F(δG(Behav2)) = F(λH(Behav1)). The new 
provided services {c, d} can be concurrently executed 
with the old one {b}. For the client which requests the 



 

{b} service, feature the same service as before is now 
possible. 
 
Definition 4.6 (Strong subtyping) 
Let CP1 = (Behav1, Serv1) and CP2 = (Behav2, Serv2) 
be two component protocols such that Servi = (Reqi, 
Provi), i=1,2, Prov1 ⊆ Prov2 and Req2 ⊆ Req1. Let G = 
Prov2 \ Prov1 and  H = Req1 \ Req2. 
CP2 is less equal to and CP1 w.r.t Optimal 
Substitutability, denoted CP2 ≤SS CP1, iff λG(Behav2) 
�BiSim λH (Behav1). 
 
If CP2 is less or equal to CP1 w.r.t Strong 
Substitutability, then the protocol CP1 can be 
substituted by a protocol CP2 and the client-component 
will not be able to notice the difference since the new 
provided services added in the protocol CP2 are 
considered unobservable, through the abstraction 
operator λG, and the two protocols are bisimilar on the 
super-protocol’s provided services as well as on the 
sub-protocol’s required services. 
 
Example 6: last but not least, consider the protocols 
CP1 and CP2 shown in figure 7. It is easy to prove that 
CP2 ≤SS CP1 holds, since for G = {d} and H = {b}, we 
have λG(Behav2) �BiSim λH (Behav1). 
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Figure 7.  CP2 ≤≤≤≤SS CP1, where Serv1 = ({a,b}, 
{c}) and Serv2 = ({a}, {c, d}). 
 
Property 4.2 (Hierarchy of subtyping relations)  
1. The subtyping relations ≤H, H ∈ {WS, OS, SS}, are 
reflexive and transitive. 
2. The subtyping relations form a hierarchy: ≤OS � ≤WS  
and  ≤SS � ≤WS. 
 

As expected, the ≤H subtyping relations, where H∈ 
{OS, SS, WS} are compositional for the composition 
operator ⊗; for instance, extending (resp. reducing) the 
provided (resp. required) services of a protocol also 

extends (resp. reduces) the provided (resp. required) 
services of its composition with any client/server –
component protocol. 
 
Property 4.3 (Subtyping are compositional) 
Let CP1, CP2 be two component protocols such that  
CP2 ≤H CP1 where H ∈ {WS, OS, SS}. Then for any 
component protocol CP, we have CP ⊗ CP2  ≤H CP ⊗ 
CP1 . 
 
4.3. Compatibility and substitutability  
 

Substitutability guarantees the transparency of 
changes of protocols to clients. Namely, the 
compatibility between components should not be 
affected by these changes. The following theorem study 
the preservation of compatibility by substitutability, 
dealing with the two compatibility relations together 
with the three subtyping relations given in this paper. 
 
Theorem 4.2 (Soundness of subtyping relations)  
Let CP1 and CP2 be two component protocols. 
1. CP2 ≤WS CP1  iff  (∀CP, CP �WC CP1 � CP �WC CP2) 
2. CP2 ≤SS CP1  iff (∀CP, CP �SC CP1� CP �SC CP2). 
 

We have proposed three relations which are suitable 
as behavioural subtyping relations for component 
protocols: weak subtyping is the right relation if we 
would like to preserve weak compatibility, and 
guarantees the preservation of the deadlock-freeness, 
optimal subtyping is useful to preserve weak 
compatibility also for shared components. The third 
subtyping relation, strong subtyping, preserves strong 
compatibility, and then guarantees the preservation of 
the liveness property, which is the successful 
termination of protocols. The weak and the strong 
subtyping are only suitable for components with single 
access. The results can be applied in an incremental 
design with behavioural subtyping by checking what 
kind of subtype a sub-protocol is, and then deduce what 
properties of the super-protocol are preserved. The 
table 1 summarises the results for theorem 4.2. 
 
Table 1. Preservation of  Compatibility by 
Substitutability. 
 

Compatibility Component 
Access 

 
Subtyping 

Weak Strong Single Shared 
Strong � � �  
Optimal  �  � � 
Weak �  �  
 



 

5. Discussion and related work  
 
The aim of this paper is to integrate specification 

and verification methods into the Component Based 
Development of protocols. The specification of 
protocols is based on Petri nets. Each protocol has an 
interface and an internal process, specified by a 
component-net, allowing to specify behavioural 
property of components such as call sequences 
accepted (as specified in a provided interface) and call 
sequences required (as specified in the required 
interface) by the component. To study compatibility of 
components, two notions of compatibility and three 
subtyping relations between protocols are proposed 
together with the property preservation of the proposed 
compatibility relations to the degree of change. We 
furthermore studied the interconnection between 
compatibility and substitutability, and investigated the 
characterisations of compatibility by behavioural 
subtyping.  

The approach presented in this paper leads to define 
compatibility relations together with subtyping 
relations for component protocols having good 
properties. Our behavioural subtyping relations take 
into account the non-deterministic, the composition 
mechanism of protocols, component’s access (single or 
shared), and determine automatically the compatibility, 
which is preserved. The next step for this work is to 
explore the notion of parametric contracts [16] in the 
definition of protocols compatibility and 
substitutability. Parametric contracts link the provided- 
and required interfaces of the same protocol, and seems 
to be interesting in the re-use of protocols, in different 
environment, when the required interfaces are not fully 
meet, but the component can still offer part of its 
provided interface. Our aim is to define flexible 
compatibility and substitutability of protocols, 
depending on the context of use of components. 
Related Work. There are many approaches to the 
specification of protocols in components or object-
oriented systems, ranging from state machine based 
approaches via Petri nets and logic predicates to 
process calculus. The use of state machines to specify 
protocols and to check their compatibility is the well 
known approach. In [14], authors propose an enhanced 
architectural description language for component 
behaviour with protocols specified by regular 
expressions. However, they do not consider property 
preservation of protocols composition. Nierstrasz [13] 
uses regular types to investigate service availability of 
active objects. He defines notions of compatibility and 
substitutability of protocol-enhanced objects, and only 
describes the provided interface using finite state 

machines. In our previous work [8], we studied 
property preservation by substitutability in this setting. 
The work presented in this paper can be seen as an 
extension to components of the previous one, since we 
take into account both the provided and required 
component interfaces. In addition, compatibility and 
substitutability of protocols for non-deterministic 
systems is studied. In [19], substitutability of active 
objects is studied for non-deterministic systems. Our 
approach can be seen as an extension of this work 
since, in addition, it deals with compatibility and 
substitutability of components together with their 
combination. In [18], Petri nets are used for modelling 
components within software architectures. This work is 
close to ours, since it uses component-nets formalism 
to model the life-cycle of components and to check 
their substitutability. The main contribution of this 
work is to propose a framework to model software 
architectures, and address consistency (will a 
component “fit” or not?) at the level of a single 
component and at the level of a system architecture. 
Authors prove that consistency implies the correct 
behaviour of the overall system, i.e., the system is free 
of deadlocks; this result is based on the fact that the 
proposed behavioural inheritance relations are 
compositional. Nevertheless provided and required 
interface are not distinguished in the specification of 
components, and then compatibility of components is 
not addressed. In contrast, our work specify 
compatibility of component protocols w.r.t the 
provided and required interfaces, their characterisations 
by property (safety and liveness) preservation, and 
finally to study the preservation of compatibility by 
substitutability. In [1], authors differentiate between 
components, described by a set of ports and 
connectors, for glueing components, described by a set 
of roles. In our approach, we do not distinguish at the 
specification level of components protocols between 
these categories, and both components and connectors 
are called components. Further, in that work, the notion 
of compatibility (of a port with a role) is only based on 
the deadlock-freeness, whereas in our work the 
compatibility between components protocols is related 
both to safety (deadlock-freeness) and liveness (proper 
termination) property. In [2], authors present a relation 
of compatibility in the context of pi-calculus which 
formalizes the notion of conformance of behaviour 
between software components. This approach is 
enhanced with the definition of a relation of inheritance 
among processes. This relation, based on (bi) 
simulation between process, preserves compatibility 
and indicates whether a process can be considered as 
an extension of another one. This work is close to ours, 



 

since the compatibility relation is based on failure 
semantics, and then related to the deadlock-freeness 
property. Our approach can be seen as an extension of 
this work since, in addition, we deal with compatibility 
related to the liveness property and its preservation by 
behavioural together with substitutability of protocols 
for shared components 

In [21], predicate approaches are used for specifying 
protocols, providing a higher modelling power than the 
approaches given above. The idea is that formal 
specifications are pre- and postconditions written as 
predicates in first order logic; nevertheless checking 
protocols compatibility and substitutability remains 
very complex and non-computable. In [3], an approach 
using process calculus based on the concept of 
“contract” is proposed; in this approach, modalities on 
the sequences of actions to be performed by interfaces 
are introduced in the definition of compatibilities 
between interfaces, and sound composition of 
components is studied w.r.t property preservation such 
as external deadlock-freeness and message 
consumption. This approach is close to ours, since the 
compatibility rules are based upon bisimulation 
semantics, like those used in our strong compatibility 
and substitutability relations, together with their 
characterisations by property preservation. 
Nevertheless, it is based on a logic based calculi, and 
has a similar drawbacks as predicate based approaches 
[21], that is the complexity to checks compatibility 
together with safety and liveness property. 
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