

Abstract—High-speed networks with large delays present a
unique environment where TCP may have a problem utilizing the
full bandwidth. Several congestion control proposals have been
suggested to remedy this problem. The existing protocols consider
mainly two properties: TCP friendliness and bandwidth scalability.
That is, a protocol should not take away too much bandwidth from
standard TCP flows while utilizing the full bandwidth of
high-speed networks. This paper presents another important
constraint, namely, RTT (round trip time) unfairness where
competing flows with different RTTs may consume vastly unfair
bandwidth shares. Existing schemes have a severe RTT unfairness
problem because the congestion window increase rate gets larger as
the window grows – ironically the very reason that makes them
more scalable. RTT unfairness for high-speed networks occurs
distinctly with drop tail routers for flows with large congestion
windows where packet loss can be highly synchronized.

After identifying the RTT unfairness problem of existing
protocols, this paper presents a new congestion control scheme that
alleviates RTT unfairness while supporting TCP friendliness and
bandwidth scalability. The proposed congestion control algorithm
uses two window size control policies called additive increase and
binary search increase. When the congestion window is large,
additive increase with a large increment ensures square RTT
unfairness as well as good scalability. Under small congestion
windows, binary search increase supports TCP friendliness. The
simulation results confirm these properties of the protocol.

Keywords – Congestion control, High-speed networks, RTT

unfairness, TCP friendliness, Scalability, Protocol Design.

I. INTRODUCTION
The Internet is evolving. The deployment of wide-area
high-speed networks like Abilene and ESNet has heightened
demand for data-intensive, high-performance computing.
Applications like scientific collaboration, telemedicine, and
real-time environment monitoring benefit from this deployment.
These applications require access to high-bandwidth real time
data, images, and video captured from remote sensors such as
satellite, radars, and echocardiography. They, in addition,
require predictable, low-latency access to this data, in real time.

TCP has been widely adopted as a data transfer protocol for
these networks. TCP, however, substantially underutilizes
network bandwidth over high-speed connections with long

 The work reported in this paper is sponsored in part by NSF CAREER

ANI-9875651, NSF ANI- 0074012

RTTs [1, 2, 4, 7]. TCP increases its congestion window by one
packet in every round trip time (RTT) and reduces it by half at a
loss event. A loss event is defined to be a packet loss that causes
TCP to reduce its congestion window. Over 83,333/2 RTTs are
required for TCP to increase its window from half utilization to
full utilization of 10Gbps with 1500-byte packets —
approximately 1 hour with 100ms RTT. This requires that no
packet is lost within 1 hour. That is, the loss rate cannot be more
than 1 loss event per 2,600,000,000 packets, which is less than
the theoretical limit of the network’s bit error rates [1, 2].

Fine-tuning TCP parameters such as receiver windows and
network interface buffers [9, 10, 11, 12] may mitigate this
problem. One straightforward solution is to increase the packet
size by using the Jumbo packet option (up to 8KB) and use
multiple TCP connections [13, 14, 15]. This scheme is similar to
Additive Increase and Multiplicative Decrease (AIMD) where
the window increases with a fixed increment per RTT and
decreases by a multiplicative factor under losses. Although these
approaches enhance utilization by having a larger increment per
RTT than TCP, the bandwidth ratio between these flows and
standard TCP flows is always fixed. Therefore, even in the
TCP’s “well-behaving” operating range (between loss rates of
10-2 to 10-4), they always use proportionally a larger bandwidth
share compared to standard TCP. Guaranteeing both TCP
friendliness and bandwidth scalability with one fixed increase
rate of window is challenging. It calls for adaptive schemes that
vary the window growth rate depending on network conditions.

The research community has responded quickly to the need to
address TCP’s limitations. Several promising new protocols
have been put forward including XCP [5], SABUL [6], FAST
[7], High Speed TCP (HSTCP) [1, 2, 3], and Scalable TCP
(STCP) [4]. Except XCP, these protocols adaptively adjust their
increase rates based on the current window size. These protocols
are claimed to be TCP friendly under high loss rate
environments as well as highly scalable under low loss
environments.

The work presented here began as an attempt to assess the
performance of high-speed congestion control protocols in
under “realistic” network operation: i.e., to assess their impact
on overall network performance in the presence of
heterogeneous, competing flows. We focus on HSTCP and
STCP, which are window-based, self-clocking protocols known
for safer incremental deployment [16]. Other protocols such as

 Binary Increase Congestion Control (BIC) for
Fast Long-Distance Networks

Lisong Xu, Khaled Harfoush, and Injong Rhee
Department of Computer Science
North Carolina State University

Raleigh, NC 27695-7534
lxu2, harfoush, rhee@csc.ncsu.edu

Administrator
To Appear in INFOCOM 2004

SABUL and FAST are not studied because SABUL is a
rate-based protocol and FAST has not yet been described in
detail.

Lakshman and Madhow[19] studied RTT unfairness of TCP
in networks with high bandwidth delay products. It was reported
that under a FIFO queue (i.e., drop tail) that TCP throughput is
inversely proportional to αRTT where 21 ≤≤ α . This paper
extends their work by investigating RTT fairness for new
high-speed protocols. Our study reveals that notwithstanding
their scalability and TCP friendliness properties, HSTCP and
STCP have a serious RTT unfairness problem when multiple
flows with different RTT delays are competing for the same
bottleneck bandwidth. We define the RTT unfairness of two
competing flows to be the throughput ratio in terms of their RTT
ratio. Under a completely synchronized loss model, we show
that two HSTCP flows with RTT1 and RTT2 have RTT unfairness
() 56.5

12 RTTRTT and those of STCP have RTT unfairness

even ()∞
12 RTTRTT . That is, the shorter RTT flow eventually

starves off the longer RTT flow. Note that TCP and AIMD have
RTT unfairness ()2

12 / RTTRTT [19]. We report that this
problem commonly appears for drop tail routers while the
severity reduces for RED, and therefore, greatly impairs the
ability to incrementally deploy the protocols, without adequate
support from active queue management (such as RED and XCP).

The severe RTT unfairness of HSTCP and SCTP comes from
their adaptability– ironically the very reason that makes them
more scalable to large bandwidth. In HSTCP and STCP, a larger
window increases faster than a smaller window. Compounded
with delay differences, RTT unfairness gets worse as the
window of a shorter RTT flow grows faster than that of a longer
RTT flow.

Another source of RTT unfairness is synchronized loss:
simultaneous loss events for multiple competing flows. Under
the assumption that packet losses are uniformly distributed
across all flows, a flow with a larger window gets more loss
events than a flow with a smaller window. However, this
assumption does not hold true in practice, especially in networks
with drop tail routers. A short-term loss rate during the period
around the overflow of router buffers can be much higher than
the average long-term loss rate. Therefore, it is very possible that
both flows lose packets at the same time when the buffer
overflows; otherwise none of them lose packets. Assuming a
random packet loss probability p with the uniform distribution,
the probability that a flow with window size w loses at least one
packet within an RTT is ()wp−− 11 , which increases
exponentially as window size w increases. That is, many
high-speed connections with relatively large windows more
likely lose packets simultaneously at the time of buffer overflow.

Synchronized loss encourages RTT unfairness. Since loss
events are more synchronized across different window sizes,
larger windows with a short RTT can always grow faster than
smaller windows with a long RTT. Furthermore, since
synchronization can prolong convergence and cause a long-term
oscillation of data rates, it can hurt bandwidth fairness in
short-term time scales. In our simulation study, we observe the

short-term unfairness of STCP and HSTCP over both drop-tail
and RED routers.

Designing a high-speed congestion control that supports all
three properties of RTT fairness, scalability, and TCP
friendliness is challenging. For instance, AIMD, which provides
square RTT unfairness and scales its bandwidth share by
increasing its additive increase factor, is not TCP friendly.
HSTCP and STCP, which are extremely scalable under low loss
rates and TCP friendly under high loss rates, are not RTT fair.
Recognizing these challenges, we propose, in the second part of
this paper, a new protocol called Binary Increase Congestion
Control (BIC) satisfies all these criteria:

1. Scalability: BIC can scale its bandwidth share to 10

Gbps around 3.5e-8 loss rates (comparable to HSTCP
which reaches 10Gbps at 1e-7).

2. RTT fairness: for large windows, BIC’s RTT unfairness
is proportional to the inverse square of the RTT ratio as
in AIMD.

3. TCP friendliness: BIC achieves bounded TCP fairness
for all window sizes. Around high loss rates where TCP
performs well, its TCP friendliness is comparable to
STCP’s.

4. Fairness and convergence: compared to HSTCP and
STCP, BIC achieves better bandwidth fairness over both
short and long time scales, and faster convergence to a
fair bandwidth share.

The paper organized as follows: Section II describes our
simulation setup. Section III discusses evidence for
synchronized loss. In Sections IV and V, we discuss the
behavior of HSTCP and STCP. In Section VI, we describe BIC
and its properties. Section VII gives details on simulation results.
Related work and Conclusion can be found in Sections VIII and
IX.

II. SIMULATION SETUP
Fig. 1 shows the NS simulation setup that we use throughout

the paper. Various bottleneck capacity and delays are tested. The
buffer space at the bottleneck router is set to 100% of the
bandwidth and delay product of the bottleneck link. All
connections pass through the bottleneck link. Each link is
configured to have different RTTs and different starting and
finishing times to reduce the phase effect [17]. Three kinds of
background traffic are simulated. Substantial web traffic—
consuming a minimum of 20% of bottleneck bandwidth, and up
to 50% of bottleneck bandwidth when no other flows are
present—is generated in both directions to remove
synchronization in TCP feedback. Twenty-five small TCP flows
whose congestion window sizes are restricted to be less than 64
are transmitted in each direction. Their starting and finishing
times are set randomly. And two to four long-lived TCP flows
(with no window size restriction) are created for both directions.
These three kinds of simulated background traffic totally
consume a minimum of 20% of the backward bandwidth.

This simulation topology is roughly comparable to that of the
real high-speed networks. High-speed networks of our interest
are different from the general Internet where a majority of
bottlenecks are located at the edges. High-speed networks with
high-speed edges can create a bottleneck at locations where
much high-speed traffic meets, such as Startlight in Chicago that
connects CERN (Geneva) and Abilene.

We make no claim about how realistic our background traffic
is. However, we believe that the amount of background traffic in
both directions, and randomized RTTs and starting and finishing
times are sufficient to reduce any simulation anomaly, e.g., the
phase effect and synchronized feedback. We also paced TCP
packets so that no more than two packets are sent in burst. A
random delay between packet transmissions is inserted to avoid
the phase effect. We test both RED and drop tail routers at the
bottleneck link. For RED, we use adaptive RED with the bottom
of max_p set to 0.001.1

III. SYNCHRONIZED PACKET LOSS
We use a synchronized loss model for the theoretical analysis of
RTT fairness. Before delving into the analysis, we provide some
evidence that synchronized loss is common in high-speed
networks.

To measure the extent of the synchronization, we ran a
simulation involving 20 high-speed connections of HSTCP with
RTTs varying from 40 ms to 150 ms in the network shown in
Figure 1 with bottleneck link bandwidth varying from 100 Mbps
to 2.5 Gbps. To measure synchrony in packet losses, we first
compute the average time interval between two consecutive loss
events of a connection. We define measurement interval to be
the duration corresponding to one-tenth of the average interval.
We consider all the flows having at least one loss event within
the same synchronization interval undergo synchronized losses.
To measure the degree of synchronized losses, we divide the
total simulation time by the unit of the measurement intervals,
and then in each interval count the number of unique high-speed
flows that have at least one packet loss. Synchronization ratio is
the ratio of the number of measurement intervals containing at
least x flows, where x is a predefined threshold, to the number of
measurement intervals containing at least one flow. Figure 2
shows synchronization ratios of RED and drop tail routers when

1 The use of a smaller bottom value is recommended by [1] to reduce

synchronized loss – normally this value is set to 0.01.

the threshold is set to 25% and 50% of the total number of
high-speed flows respectively.
 We observe that the synchronization ratio increases as the
bandwidth increases, especially under drop tail routers. As the
bandwidth increases from 100 Mbps to 2.5 Gbps, the
synchronization ratio with 50% threshold (i.e., 10 flows)
increases from about 0.23 to about 0.6. That implies whenever a
flow loses a packet in the drop tail router, the probability that at
least half of the total flows experience packet losses during a
period of measurement interval increases from 23% to 60%. On
the other hand, RED does not incur as much synchronized loss.
The synchronization ratio with 50% threshold is always close to
zero. However, there still exists some amount of
synchronization; the synchronization ratio for RED with 25%
threshold under 2.5 Gbps is about 23%, which means the
probability that at least a quarter of the total flows have a
synchronized loss event is around 23%.

The result implies that the number of synchronized loss can be
quite substantial in drop tail. Although it requires real network
tests to confirm this finding, we believe that our simulation
result is not difficult to recreate in real networks. We leave that
to future study.

IV. RTT UNFAIRNESS OF HSTCP AND STCP
In this section, we analyze the effect of synchronized loss on the
RTT fairness of HSTCP and STCP. We use a synchronized loss
model where all high-speed flows competing on a bottleneck
link experience loss events at the same time. By no means, we
claim that this model characterizes all the aspects of high-speed
networks. We use this model to gain insights into RTT
unfairness that we observe in our simulation experiment
described later.

Let wi and RTTi denote the average window size and the RTT
of flow i (i=1, 2) respectively. Let t denote the interval between
two consecutive loss events of a flow during steady state.

In a network with a uniformly distributed packet loss,
different connections, regardless of their RTTs, get the same
packet loss rate. But with a synchronized loss model, different
connections may see different packet loss rates. Suppose that the

Fig. 2: Synchronization Ratio under RED and drop tail routers.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 500 900 1300 1700 2100 2500

S
yn

ch
ro

ni
za

tio
n

R
at

io

Bandwidth (Mbps)

DropTail, 50% threshold
RED, 50% threshold

DropTail, 25% threshold
RED, 25% threshold

N1 N2

Bottleneck Link

forward

S1

S2

Sn
backward

D1

D2

S3 D3

Dn

x

x1 ms X2 ms

Fig. 1. Simulation network topology

loss events of flow i are uniformly distributed with rate pi. The
total number of packets sent by flow i between its two
consecutive loss events is 1/pi. The total number of RTTs
between two consecutive loss events is t/RTTi. So, the average
window size can be obtained as follows.

i

i

i

i
i pt

RTT
RTTt

p
w

⋅
==

/
/1

 (1)

Let R(p) denote the response function of a protocol, which is
the average sending rate of the protocol in the unit of packets per
RTT, in terms of a loss event rate p. For HSTCP, STCP, and

AIMD, their response functions are of form dp
c

RTT
pR 1)(= ,

where c and d are protocol-dependent constants. The value of d
is between 0.5 and 1 [2]. The value of d for AIMD [18], HSTCP
[1], and STCP [4] is 0.5, 0.82, and 1, respectively. Therefore, the
average sending rate of flow i is calculated as follows.

i
d

id
iii

i wcp
p
c

RTTRTT
w

/1 =⇒=

Substitute the above equation into (1), we have

1

/

−

⋅
=⇒

⋅
=

d
d

d
i

id
i

i
i

ct
RTT

w
wct

RTT
w

Therefore the RTT unfairness of the two flows, the ratio of
their average throughputs, can be calculated as

()()
()()

d

RTT
RTT

RTTw
RTTw

pRTTw
pRTTw −

=≈

−
− 1

1

1

2

22

11

222

111

/
/

1/
1/

where (1-pi) is approximated by 1, since pi is usually far less than
1.

Substitute the value of d for each protocol, we get the
exponent 1/(1-d) for AIMD, HSTCP, and STCP, which is 2, 5.56,
and ∞, respectively.

Table 1 presents a simulation result that shows the bandwidth
shares of two high-speed flows with different ratios of RTTs
running in drop tail (RED does not show significant RTT
unfairness). The inverse ratio of RTTs is varied to be from 1 to 6
with base RTT 40 ms.

AIMD shows a quadratic increase in the throughput ratio as
the inverse RTT ratio increases. STCP shows almost 400 times
throughput ratio for inverse RTT ratio 6. HSTCP shows about
100 times throughput ratio for inverse RTT ratio 6. Clearly the
results indicate extremely unfair use of bandwidth by a short
RTT flow in drop tail.

The result shows better RTT unfairness than predicted by the
analysis. This is because while the analysis is based on a
completely synchronized loss model, the simulation may

involve loss events that are not synchronized. Also when the
window size is very small, the occurrence of synchronized loss
is substantially low. Long RTT flows continue to reduce their
windows up to a limit where synchronized loss does not occur
much. Thus, the window ratio does not get worse.

Figure 3 shows a sample simulation run with ten STCP flows
in drop tail. All flows are started at different times. Eight flows
have 80 ms RTT, and two flows have 160 ms RTT. It exhibits a
typical case of RTT unfairness. The two longer RTT flows
slowly reduce their window down to almost zero while the other
flows merge into a single point. Note that STCP does not
converge in a completely synchronized model because of
Multiplicative Increase and Multiplicative Decrease (MIMD)
window control [20]. However, in this simulation, eight flows
with the same RTT do converge (despite high oscillation). This
indicates that there exists enough asynchrony in packet loss in
our simulation to make the same RTT flows converge, but not
enough to correct RTT unfairness.

V. RESPONSE FUNCTION
The response function of a congestion control protocol can show
many characteristics of the protocol including RTT fairness,
TCP friendliness, and scalability. This section briefly discusses
how these properties can be deduced from response functions.

Figure 4 draws the response functions of HSTCP, STCP,
AIMD, and TCP in a log-log scale. AIMD uses the increase
factor 32 and the decrease factor 0.125.

From the previous section, we showed that for a protocol
with a response function dpc / where c and d are constants and
p is a loss event rate, its RTT unfairness could be modeled as
())1/(1

12 / dRTTRTT − . As d increases, the slope of the response
function and RTT unfairness increase. That is, the slope of a
response function in a log-log scale determines its RTT
unfairness. Since TCP and AIMD have the same slope, the RTT
unfairness of AIMD is the same as TCP – square RTT
unfairness. The RTT unfairness of STCP is infinite while that of
HSTCP falls somewhere between TCP’s and STCP’s.

The ability that a protocol utilizes the high amount of

Table 1: The throughput ratio of two high speed flows over various RTT
ratios in 2.5Gbps networks.

Inverse RTT Ratio 1 3 6
AIMD 1.11 6.68 22.03
HSTCP 1.01 29.19 107.90
STCP 1.01 127.23 389.13

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 50 100 150 200 250 300 350 400 450

W
in

do
w

 S
iz

e
(p

ac
ke

ts
/R

TT
))

Time (sec)

STCP0
STCP1
STCP2
STCP3
STCP4
STCP5
STCP6
STCP7
STCP8
STCP9

Fig. 3: 10 scalable TCP flows; 2.4 Gbps, Drop tail.

W
in

do
w

 S
iz

e
(P

ac
ke

ts
)

bandwidth under high-speed networks is determined by its high
sending rates under low loss rates. Thus from Figure 4, a
protocol becomes more scalable as its sending rate gets higher
under lower loss rates. STCP shows the best scalability followed
by HSTCP and AIMD.

The TCP friendliness of a protocol is indicated by the point
where the response function of the protocol crosses that of TCP.
This is because high-speed congestion control protocols act the
same as standard TCP over a higher loss rate than the cross point.
Under lower loss rates below this point, the protocols run their
own “scalable” schemes. Under this strategy, it becomes more
TCP friendly if a protocol crosses TCP as low a loss rate as
possible (to the left of the X axis) since the protocol follows TCP
below that point. However, moving the cross point to the left
while maintaining the scalability increases the slope of the
response function, hurting RTT fairness.

An ideal protocol would be that (1) its response function
crosses TCP’s as low a rate as possible, and at the same time (2)
under lower loss rates, its slope is as close as that of AIMD.
Note that the function need not be a straight line, i.e., the slope
can vary depending on loss rates. But its slope at any loss rates
should not exceed that of STCP although it can be much more
forgiving under a high loss rate where window size is small
enough to avoid frequent synchronized loss.

VI. BINARY INCREASE CONGESTION CONTROL
It is challenging to design a protocol that can satisfy all three
criteria: RTT fairness, TCP friendliness, and scalability. As
alluded earlier, these criteria need not be satisfied
simultaneously for all loss rates (for instance, it does not make
sense to be TCP friendly for low loss rates). A protocol should
adapt its window control depending on the size of windows.
Below, we present such a protocol, called Binary Increase
Congestion Control (BIC). BIC consists of two parts: binary
search increase and additive increase.

Binary search increase: We view congestion control as a
searching problem in which the system gives yes/no feedback
through packet loss as to whether the current sending rate (or
window) is larger than the network capacity. The starting points

for this search are the current minimum window size Wmin and
maximum window size Wmax. Usually, Wmax is the window size
just before the last fast recovery (i.e. where the last packet loss
occurred), and Wmin is the window size just after the fast
recovery. The algorithm repeatedly computes the midpoint
between Wmax and Wmin, sets the current window size to the
midpoint; and checks for feedback, in the form of packet losses.
Based on this feedback, the midpoint is taken as the new Wmax if
there is a packet loss, and as the new Wmin if not. The process
repeats, until the difference between Wmax and Wmin falls below a
preset threshold, called the minimum increment (Smin).

This technique, which we call binary search increase, allows
bandwidth probing to be more aggressive initially when the
difference from the current window size to the target window
size is large, and become less aggressive as the current window
size gets closer to the target window size. A unique feature of the
protocol is that its increase function is logarithmic; it reduces its
increase rate, as the window size gets closer to the saturation
point. The other scalable protocols tend to increase their rates at
the saturation point so that the increment at the saturation point
is the maximum in the current epoch (defined to be a period
between two consecutive loss events). Typically, the number of
lost packets is proportional to the size of the last increment
before the loss. Thus binary search increase can reduce packet
loss. As we shall see, the main benefit of binary search is that it
gives a concave response function, which meshes well with that
of additive increase described below. We discuss the response
function of BIC in Section VI-B.

Additive Increase: In order to ensure faster convergence
and RTT-fairness, we combine binary search increase with an
additive increase strategy. When the distance to the midpoint
from the current minimum is too large, increasing the window
size directly to that midpoint may add too much stress to the
network. When the distance from the current window size to the
target in binary search increase is larger than a prescribed
maximum step, called the maximum increment (Smax), we
increase window size by Smax until the distance becomes less
than Smax, at which time window increases directly to the target.
Thus, after a large window reduction, the strategy initially
increases the window linearly, and then increases
logarithmically. We call this combination of binary search
increase and additive increase binary increase.

Combined with a multiplicative decrease strategy, binary
increase becomes close to pure additive increase under large
windows. This is because a larger window results in a larger
reduction in multiplicative decrease, and therefore, a longer
additive increase period. When the window size is small, it
becomes close to pure binary search increase – a shorter additive
increase period.

Slow Start: When the current window size grows past the
current maximum window Wmax, the binary search algorithm
switches to probing the new maximum window, which is
unknown (i.e., the window size where loss can occur is
unknown).

We run a “slow start” strategy to probe for a new maximum,
once the current window size is greater than Wmax, but smaller
than Wmax+Smax. The congestion window increases in each RTT

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e-7 1e-6 1e-5 1e-4 1e-3 1e-2

S
en

di
ng

 R
at

e
R

 (
P

ac
ke

t/R
T

T
)

Loss Event Rate Pevent

Regular TCP
HSTCP

Scalable TCP
AIMD(32, 0.125)

More Scalable

More TCP Friendly

Fig. 4: Response Functions of various protocols.

round in steps Wmax+Smin, Wmax+2*Smin, Wmax+4*Smin, ...,
Wmax+Smax. The rationale is that the current window size is likely
to be at the saturation point because the last losses occur around
the current window size. BIC probes for available bandwidth in
a “slow start”, until it is safe to increase the window by Smax.
After slow start, BIC switches to additive increase with fixed
increment Smax to probe a new Wmax.

Fast convergence: Under a completely synchronized loss
model, binary search increase combined with multiplicative
decrease converges to a fair share [8]. Suppose there are two
flows with different window sizes, but with the same RTT. Since
the larger window reduces more in multiplicative decrease (with
a fixed factor β), the time to reach the target is longer for a larger
window. However, its convergence time can be very long.
Assuming infinitely large Smax, binary search increase takes
log(βWmax)-log(Smin) RTT rounds to reach the maximum
window after a window reduction of βWmax. Since window size
increases logarithmically, both larger and smaller windows can
return to their respective maxima very fast almost at the same
time (although the smaller window flow gets to its maximum
slightly faster). Thus, the smaller window flow ends up taking
away only a small amount of bandwidth from the larger flow
before the next window reduction, prolonging the convergence
time.

To remedy this behavior, we modify the binary search
increase as follows. In binary search increase, after a window
reduction, new maximum and minimum are set. Suppose these
values are Wmax,i and Wmin,i for flow i (i=1, 2). If the new Wmax,i is
less than the previous, this window is in a downward trend (so
likely to have a window larger than the fair share). Then, we
readjust the new maximum to be the same as the new target
window which is the midpoint (i.e., Wmax,i =(Wmax,i + Wmin,i)/2),
and then readjust the target and apply binary search. This has an
effect of reducing the increase rate of the larger window which
allows the smaller window to catch up. We call this strategy fast
convergence.

Figure 5 shows a sample run of two BIC flows. Their
operating modes are marked by circles and arrows.

A. Protocol Implementation
Below, we present the pseudo-code of BIC implemented as a
modification of TCP-SACK.

The following preset parameters are used:
low_window: if the window size is larger than this threshold,

BIC engages; otherwise normal TCP
increase/decrease.

 Smax: the maximum increment.
 Smin: the minimum increment.
 β: multiplicative window decrease factor.

The following variables are used:
 Wmax: the maximum window size

 cwnd: congestion window size;
 bic_inc: window increment per RTT

When entering faster recovery:
if (cwnd < low_window){ //normal TCP

cwnd = cwnd *0.5;
return;

}
if (cwnd < Wmax) //fast convergence
 Wmax = cwnd * (2-β) / 2;

else
 Wmax = cwnd;
cwnd = cwnd * (1-β);//multiplicative decrease

When not in fast recovery and an acknowledgment for a new
packet arrives:

if (cwnd < low_window){//normal TCP
cwnd = cwnd + 1/cwnd;
return;

}

if (cwnd < Wmax) //binary search or additive increase
 bic_inc = (Wmax – cwnd)/2;
else //slow start or additive increase
 bic_inc = cwnd - Wmax;
if (bic_inc > Smax) //additive increase
 bic_inc = Smax;
else if (bic_inc < Smin)//binary search increase
 //or slow start
 bic_inc = Smin;

cwnd = cwnd + bic_inc/cwnd;

B. Characteristics of BIC
In this section, we analyze the response function and RTT
fairness of BIC. An analysis on the convergence and smoothness
of the protocol can be found in [8].

1) Response function of BIC
In this section, we present a deterministic analysis on the
response function of BIC.

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60

W
in

d
o
w

 (
p
a
ck

e
ts

/R
T

T
)

Time (sec)

Binary Increase, Drop Tail

BI-TCP0
BI-TCP1Binary Search Increase

Fast convergence

Slow start

Additive
Increase

Fig. 5: BIC in working.

BICflows

W
in

do
w

 S
iz

e
(P

ac
ke

ts
)

We assume that a loss event happens at every 1/p packets. We
define a congestion epoch to be the time period between two
consecutive loss events. Let Wmax denote the window size just
before a loss event. After a loss event, the window size decreases
to Wmax(1-β).

BIC switches from additive increase to binary search increase
when the distance from the current window size to the target
window is less than Smax. Since the target window is the midpoint
between Wmax and the current window size, it can be said that
BIC switches to binary search increase when the distance from
the current window size to Wmax is less than 2Smax. If the distance
between the current window and Wmax is less than 2Smax, there is
no additive increase. Let N1 and N2 be the numbers of RTT
rounds of additive increase and binary search increase,
respectively. We have

)0,2max(1 −

=

max

max

S
W

N
β

Then the total amount of window increase during binary
search increase can be expressed as Wmaxβ-N1Smax. Assuming
that this quantity is divisible by Smin, then N2 can be obtained as
follows.

2log 1
22 +

 −
=

min

maxmax

S
SNW

N
β

In the above equation, 2 corresponds to the first and the last
RTTs of the binary search increase.

During additive increase, the window grows linearly with
slope 1/Smax. So, the total number of packets during additive
increase, Y1, can be obtained as follows.

() () ()() 1max1maxmax1 111
2
1 NSNWWY −+−+−= ββ (2)

During binary search increase, the window grows
logarithmically. So, the total number of packets during binary
search increase, Y2, can be expressed as follows.

 minmaxmax SSNWNWY +−−=)(2 12max2 β (3)
The total number of RTTs in an epoch is N = N1 + N2, and the

total number of packets in an epoch is Y = Y1 + Y2. Since a loss
event happens at every 1/p packets, Y can be expressed as Y =
1/p. Using (2) and (3), we may express Wmax as a function of p.
Below, we give the closed-form expression of Wmax for two
special cases.

First, we assume that Wmaxβ > 2Smax, and Wmaxβ is divisible by
Smax. Then N1= Wmaxβ/Smax -2. Now we can get

a

p
cabb

W
2

142

max

+++−

= (4)

where a = β (2-β)/(2Smax), b = log2(Smax/Smin)+(2-β)/2, and c =
Smax - Smin. The average sending rate, R, is then,

()

() ()
2

2114

121

2 βββ

β

−+−+

++

−
=

⋅
=

b
p

cab

pRTT
RTTN
YR (5)

In case that Wmaxβ >> 2Smax, for a fixed Smin, N1>>N2.
Therefore, the sending rate of BIC mainly depends on the linear
increase part, and for small values of p, the sending rate can be
approximated as follows:

p

S
RTT

R 12
2

1 max

β
β−≈ when Wmaxβ >> Smax (6)

Note that for a very large window, the sending rate becomes
independent of Smin. Eqn. (6) is very similar to the response
function of AIMD [18] denoted as follows.

pRTT
RAIMD

12
2

1
β

βα −≈

For a very large window, the sending rate of BIC is close to
the sending rate of AIMD with increase parameter α = Smax

Next, we consider the case when Wmaxβ ≤ 2Smax, then N1=0,
Assuming 1/p>>Smin, we get Wmax as follows.

() p
S

W
W

−+

≈

β
β

12log

1

min

max
2

max

By solving the above equation using function LambertW(y)
[21], which is the only real solution of xx e y⋅ = , we can get a
closed-form expression for Wmax.

()
() ()

p
pS

eLambertW

W

=

−

min

2ln2max
2ln4

2ln
ββ

then,

+

−≈

+

=

⋅
=

2log

21
2log

11

min

max
2

max

min

max
2 S

WRTT
W

S
w

pRTT
RTTN
YR

β
β

β

When 2β <<log(Wmaxβ / Smin)+2,

RTT

W
R max≈ (7)

Note that when Wmaxβ ≤ 2Smax, the sending rate becomes
independent of Smax.

In summary, the sending rate of BIC is proportional to 1/pd,
with 1/2 < d <1. As the window size increases, d decreases from
1 to 1/2. For a fixed β, when the window size is small, the
sending rate is a function of Smin and when the window size is
large, a function of Smax. Our objective is that when window is
small, the protocol is TCP-friendly; and when the window is
large, it is more RTT fair and gives a higher sending rate than
TCP. We can now achieve this objective by adjusting Smin and
Smax. Before we give details on how to set these parameters, let
us examine the RTT fairness of BIC.

2) RTT unfairness of BIC
As in Section IV, we consider the RTT unfairness of a protocol
under the synchronized loss model. Recall that the RTT

unfairness of a protocol with a response function dp
c

RTT
1 is

())1/(1
12 / dRTTRTT −

From the previous section, we know that as the window size
increases, the value of d of BIC decreases from 1 to 1/2. That is,
with a high bandwidth, BIC has the same RTT unfairness as the
TCP; while with a low bandwidth, BIC has the same RTT
unfairness as STCP. However, since under small windows,
synchronized loss is less frequent, we believe that this unfairness
can be managed to be low. We verify this in Section VII.

3) Setting the parameters
In this section, we discuss a guideline to determine the preset
parameters of BIC: β, Smin, Smax and low_window in Section
VI-A.

From (6) and (7), we observe that reducing β increases the
sending rate. Reducing β also improves utilization. However it
hurts convergence since larger window flows give up their
bandwidth slowly. From the equations, we can infer that β has a
much less impact on the sending rate than Smax. So it is easier to
fix β and then adjust Smin and Smax. We choose 0.125 for β .
Under steady state, this can give approximately 94% utilization
of the network. STCP chooses the same value for β .

For a fixed β = 0.125, we plot the response function as we
vary Smax and Smin. Figure 6 shows the response function for
different values of Smax. As Smax increases, the sending rate
increases only for low loss rates using 1e-4 as a pivot. Smax
allows us to control the scalability of BIC for large windows. We
cannot increase Smax arbitrarily high since it effectively increases
the area of RTT unfairness (the area where the slope is larger
than TCP’s). Recall that when Wmaxβ ≤ 2Smax, the protocol is less
RTT fair. This area needs to be kept small to reduce the RTT
unfairness of the protocol.

Figure 7 plots the response function for various values of Smin.
As we reduce Smin, the sending rate reduces around high loss
rates (i.e., small windows) and the cross point between TCP and
BIC moves toward a lower loss rate. Since we can set
low_window to the window size corresponding to the cross point,
reducing Smin improves TCP friendliness. However, we cannot
reduce Smin arbitrarily low because it makes the slope of the
response function steeper before merging into the linear growth
area, worsening RTT unfairness. HSTCP crosses TCP at
window size of 31, and STCP at 16.

For a fixed β = 0.125, we plot the response function of BIC
with Smax = 32 and Smin = 0.01 in Figure 8. For comparison, we
plot those of AIMD (α = 32, β = 0.125), HSTCP, STCP, and
TCP. We observe that BIC crosses TCP around p = 1e-2 and it
also meets AIMD around p=1e-5 and stays with AIMD. Clearly,
BIC sets an upper bound on TCP friendliness since the response
functions of BIC and TCP run in parallel after some point (at
p=1e-5). BIC’s TCP-friendliness under high loss rates is
comparable to STCP’s, but less than HSTCP’s. BIC crosses TCP
at the window size of 14 (lower than STCP and HSTCP). The
sending rate of BIC over extremely low loss rates (1e-8) is less
than that of STCP and HSTCP.

Fig. 6: Response functions of BIC for different values of Smax.

Smax

Linear Growth

Logarithmic Growth

1

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

S
en

di
ng

 R
at

e
R

 (
P

ac
ke

t/R
T

T
)

Loss Event Rate P

BIC Smin=0.01 beta=0.125

Regular TCP
BIC with Smax=8

BIC with Smax=16
BIC with Smax=32
BIC with Smax=64

Smin

Fig 7: Response functions of BIC for different values of Smin.

1

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

S
en

di
ng

 R
at

e
R

 (
P

ac
ke

t/R
T

T
)

Loss Event Rate P

BIC Smax=32 beta=0.125

Regular TCP
BIC with Smin=1

BIC with Smin=0.1
BIC with Smin=0.01

BIC with Smin=0.001

Fig. 8: Response functions of various protocols

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e-7 1e-6 1e-5 1e-4 1e-3 1e-2

S
e
n
d
in

g
 R

a
te

 R
 (

P
a
ck

e
t/
R

T
T

)

Loss Event Rate Pevent

Regular TCP
HSTCP

Scalable TCP
AIMD(32, 0.125)

BIC(32, 0.125, 0.01)

VII. SIMULATION STUDY
In this section, we compare the performance of BIC using
simulation with that of HSTCP, STCP, and AIMD. Every
experiment uses the same simulation setup described in Section
II. Unless explicitly stated, the same amount of background
traffic is used for all the experiments. In order to reduce noise in
data sampling, we take measurement only in the second half of
each run. We evaluate BIC, AIMD, HSTCP, and STCP for the
following properties: bandwidth utilization, TCP friendliness,
RTT unfairness, and convergence to fairness. For BIC, we use
Smax=32, Smin =0.01, and β = 0.125, and for AIMD, α = 32 and
β = 0.125. All high-speed protocols are implemented by
modifying TCP/SACK.

Utilization: In order to determine whether a high-speed

protocol uses available bandwidth effectively under
high-bandwidth environments, we measure bandwidth
utilization for 2.5 Gbps bottleneck. Each test consists of two
high-speed flows of the same type and two long-lived TCP flows.
In each test, we measure the total utilization of all the flows
including background traffic. In drop tail, all protocols give
approximately 97% utilization, and in RED, AIMD and BIC
consume about 95% of the total bandwidth while HSTCP and
STCP consume about 92%. The drop tail experiment consumes
more bandwidth because drop tail allows flows to fill up the
network buffers. Note buffers are part of the capacity.

RTT Fairness: In this experiment, two high-speed flows

with a different RTT share the bottleneck. The RTT of flow 1 is
40 ms. We vary the RTT of flow 2 among 40ms, 120ms, and
240ms. The bottleneck link delay is 10ms. We run two groups of
simulation, each with different values of bottleneck bandwidth:
2.5 Gbps, and 100 Mbps. This setup allows the protocols to be
tested for RTT fairness for different window sizes. According to
our analysis in Section VI, around small window sizes, BIC
shows the worst RTT unfairness. BIC has window sizes about
7000 (loss rate 0.0003) for 2.5Gbps and 300 (loss rate 0.004) for
100Mbps.

Tables 2 and 3 show the results for the runs in 100Mbps and
2.5Gbps, respectively. We show the results of drop tail only. The
RTT unfairness under RED is close to the inverse of RTT ratio
for every protocol. We omit the RED figures. It can be seen that
the RTT unfairness of BIC is relatively comparable to AIMD.
This result verifies our analysis in Section VI. In Table 2, the
performance of BIC does not deteriorate much while HSTCP
and STCP have improved RTT unfairness. This is because in
100 Mbps, the window size of all the flows is much smaller than
in 2.5Gbps run. Therefore, the degree of synchronized loss is
very low. Although the RTT unfairness of BIC gets worse
around this window size by the analysis, this deficiency gets
compensated by lack of synchronized loss so that it does not
have much performance degradation. Overall, its RTT
unfairness is much better than HSTCP and STCP. HSTCP and
STCP tend to starve long RTT flows under high bandwidth
environments.

TCP-friendliness: We run four groups of tests, each with
different bottleneck bandwidth. Each group consists of four
independent runs, each with a different type of high-speed flows.
In every run, the same number of network flows (including
background) is used.

Figure 9 shows the percentage of bandwidth share by each
flow type under drop tail. (RED gives approximately similar
results as drop tail.) Three flow types are present: background
(web traffic and small TCP flows), long-lived standard
TCP/SACK flows, and high-speed flows.

Under bandwidth below 500Mbps, the TCP friendliness of
BIC is comparable to that of STCP. At 20Mbps, long-lived TCP
and background flows with BIC flows consume slightly less
bandwidth than those with HSTCP and STCP. However, in
HSTCP and STCP simulations, the unused bandwidth is slightly
more than that in BIC. That is, while BIC consumes more
bandwidth than HSTCP and STCP, it takes bandwidth not only
from TCP, but also from unused bandwidth. However, AIMD is
too aggressive, and it takes too much bandwidth from TCP.

For 500Mbps and 2.5Gbps, the amount of shares by
background and long-lived TCP flows substantially reduce due
to TCP’s limitation to scale its bandwidth usage in
high-bandwidth. Under 500Mbps, STCP, BIC, and AIMD use
approximately the same share of bandwidth. Under 2.5Gbps, the
bandwidth share of background TCP traffic is very small. STCP
becomes most aggressive. BIC becomes friendlier to TCP.

To sum, BIC achieves good TCP fairness for all window
sizes. Around high loss rates where TCP performs well, its TCP
friendliness is comparable to STCP’s. The result closely follows
our analysis in Section VI-B.

Fairness: Synchronized loss has impact also on bandwidth
fairness and convergence time to the fair bandwidth share. In
this experiment, we run 4 high-speed flows with RTT 100ms.
Two flows start earlier randomly in [0:60] seconds, and the other
two flows start later randomly in [100:160] seconds. The total
simulation time is 600 seconds. The bottleneck link bandwidth is
2.5Gbps. For this experiment, we measured the fairness index
[20] at each 50-second interval, and we take samples only after
the first 100 seconds. This result gives an indication on (1) how

Table 2: The throughput ratio of protocols under 100 Mbps

Inverse RTT Ratio 1 3 6
AIMD 1.04 7.08 25.77
BIC 0.99 11.78 27.48
HSTCP 1.06 8.86 39.12
STCP 0.95 19.05 64.97

Table 3: The throughput ratio of protocols under 2.5Gbps

Inverse RTT Ratio 1 3 6
AIMD 1.11 6.68 22.03
BIC 0.88 11.96 40.04
HSTCP 1.01 29.19 107.90
STCP 1.01 127.23 389.13

fast it converges to a fair share, and (2) even after convergence to
a fair share, how much it oscillates around the fair share.

Figure 10 shows the result for drop tail routers. At time around
150 seconds, the second set of two connections just start while
the first two connections consuming almost all the bandwidth.
Therefore, the difference between these four connections is the
largest, and hence the fairness index is the lowest. As the latter
two connections get more bandwidth, the fairness index
increases. The protocol whose fairness index reaches 1 the
fastest has the fastest convergence speed. BIC and AIMD give
the best results, and they quickly converge to the fair share
(where the fairness index is close to 1). STCP is the worst, and
even after 600 seconds, the fairness index is still below 0.95. We
observe that the fairness index of all protocols first increases fast,
and then slowly reaches to 1. The reason is that the congestion
windows of the latter two connections first increase
exponentially in the slow start state; after the first loss event,
they enter the congestion avoidance state, and increase slowly as
specified by each protocol.

Figure 11 shows the result for RED routers. We observe
much better convergence for HSTCP and STCP than in drop tail.
This is because RED does not incur as much synchronized loss
as drop tail. However, after convergence, HSTCP with RED
shows a larger oscillation around the fair share than HSTCP with
drop tail, and also than the other three protocols with RED. We
note that the fairness index of HSTCP increases earlier than
others in Figure 11. The reason is the latter two connections in
HSTCP simulation start earlier than those in other simulations,
since the simulation script randomly generates the starting time
of each connection.

VIII. RELATED WORK
As HSTCP and STCP have been discussed in detail in this paper,
we examine other high-speed protocols that are not covered by
this paper.

Recent experiment [9] indicates that TCP can provide good
utilization even under 10Gbps when the network is provisioned
with a large buffer and drop tail. However, the queue size of
high-speed routers is very expensive and often limited to less
than 20% of the bandwidth and delay products. Thus, generally,
TCP is not suitable for applications requiring high bandwidth.
FAST [7] modifies TCP-Vegas to provide a stable protocol for
high-speed networks. It was proven that TCP can be instable as
delay and network bandwidth increase. Using delay as an
additional cue to adjust the window, the protocol is shown to
give very high utilization of network bandwidth and stability. It
fairness property is still under investigation. XCP [5] is a
router-assisted protocol. It gives excellent fairness,
responsiveness, and high utilization. However, since it requires
XCP routers to be deployed, it cannot be incrementally
deployed.

IX. CONCLUSION
The significance of this paper is twofold. First, it presents RTT
fairness as an important safety condition for high-speed
congestion control and raise an issue that existing protocols may
have a severe problem in deployment due to lack of RTT

0%

20%

40%

60%

80%

100%

AI
M

D
BI

C
HS

TC
P

ST
CP

AI
M

D
BI

C
HS

TC
P

ST
CP

AI
M

D
BI

C
HS

TC
P

ST
CP

AI
M

D
BI

C
HS

TC
P

ST
CP

Long-Lived TCP Highspeed Background Unused

Fig 9: TCP friendliness for various bandwidth networks (DROPTAIL)

20M 100M 500M 2500M

0.5

0.6

0.7

0.8

0.9

1

150 200 250 300 350 400 450 500 550 600

F
ai

rn
es

s
In

de
x

Time (second)

AIMD
BIC

HSTCP
STCP

Fig. 10: Fairness index over various time scales (DROP TAIL)

0.5

0.6

0.7

0.8

0.9

1

150 200 250 300 350 400 450 500 550 600

F
ai

rn
es

s
In

de
x

Time (second)

AIMD
BIC

HSTCP
STCP

Fig. 11: Fairness index over various time scales (RED)

fairness under drop tail. RTT fairness has been largely ignored in
designing high-speed congestion control. Second, this paper
presents a new protocol that can support RTT fairness, TCP
friendliness, and scalability. Our performance study indicates
that it gives good performance on all three metrics.

We note that the response function of BIC may not be the
only one that can satisfy the three constraints. It is possible that
there exists a better function that utilizes the tradeoff among the
three conditions. This is an area of more research. Another point
of discussion is that high-speed networks can greatly benefit
from the deployment of AQM. Our work supports this case since
a well-designed AQM can relieve the protocol from the burden
of various fairness constraints caused by synchronized loss.

One possible limitation of BIC is that as the loss rate reduces
further below 1e-8, its sending rate does not grow as fast as
HSTCP and STCP. This is because of the lower slope of its
response function. Hence, it may seem that there is a
fundamental tradeoff between RTT fairness and scalability. We
argue it is not the case. Under such a low loss rate, most of loss is
due to signal or “self-inflicted”, i.e., loss is created because of
the aggressiveness of the protocol. As a protocol gets more
aggressive, it creates more loss and thus, needs to send at a
higher rate for a given loss rate. The utilization of the network
capacity is more important under such low loss rates, which is
determined mostly by the decrease factor of congestion control.
For TCP, the utilization is 75% and for STCP and BIC, around
94% (these numbers are determined from β). In addition, we
believe that by the time that much higher bandwidth (in the order
of 100 Gbps) becomes available, the network must have more
advanced AQM schemes deployed so that we can use a higher
slope response function. Then again, a less aggressive (i.e.,
lower slope) protocol, however, is less responsive to available
bandwidth; so short file transfers will suffer. There are many
facets to the problems, requiring more research efforts. We
believe that fast convergence to efficiency requires a separate
mechanism that detects the availability of unused bandwidth
which has been an active research area lately ([22, 23]). We
foresee that advance in this field greatly benefits the congestion
control research.

REFERENCES
[1] S. Floyd, S. Ratnasamy, and S. Shenker, “Modifying TCP’s congestyion

control for high speeds”, http://www.icir.org/floyd/hstcp.html, May 2002
[2] S. Floyd, “HighSpeed TCP for large congestion windows”, IETF,

INTERNET DRAFT, draft-floyd-tcp-highspeed-01.txt, 2003
[3] S. Floyd, “Limited slow-start for TCP with large congestion windows”,

IETF, INTERNET DRAFT, draft-floyd-tcp-slowstart-01.txt, 2001
[4] T. Kelly, “Scalable TCP: Improving performance in highspeed wide area

networks”, Submitted for publication, December 2002
[5] Dina Katabi, M. Handley, and C. Rohrs, "Internet congestion control for

high bandwidth-delay product networks." ACM SIGCOMM 2002,
Pittsburgh, August, 2002

[6] Y. Gu, X. Hong, M. Mazzucco, and R. L. Grossman, “SABUL: A high
performance data transport protocol”, Submitted for publication, 2002

[7] C. Jin, D. Wei, S. H. Low, G. Buhrmaster, J. Bunn, D. H. Choe, R. L. A.
Cottrell, J. C. Doyle, H. Newman, F. Paganini, S. Ravot, and S. Singh,
"FAST Kernel: Background theory and experimental results". Presented at
the First International Workshop on Protocols for Fast Long-Distance
Networks (PFLDnet 2003), February 3-4, 2003, CERN, Geneva,
Switzerland

[8] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control for
fast long-distance networks”, Tech. Report, Computer Science
Department, NC State University, 2004

[9] S. Ravot, "TCP transfers over high latency/bandwidth networks & Grid
DT", Presented at First International Workshop on Protocols for Fast
Long-Distance Networks (PFLDnet 2003), February 3-4, 2003, CERN,
Geneva, Switzerland

[10] T. Dunigan, M. Mathis, and B. Tierney, “A TCP tuning daemon”, in
Proceedings of SuperComputing: High-Performance Networking and
Computing, Nov. 2002

[11] M. Jain, R. Prasad, C. Dovrolis, “Socket buffer auto-sizing for maximum
TCP throughput”, Submitted for publication, 2003

[12] J. Semke, J. Madhavi, and M. Mathis, “Automatic TCP buffer tuning”, in
Proceedings of ACM SIGCOMM, Aug. 1998

[13] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, S. Meder, S.
Tuecke., “GridFTP protocol specification”. GGF GridFTP Working Group
Document, September 2002.

[14] PFTP : http://www.indiana.edu/~rats/research/hsi/index.shtml
[15] H. Sivakumar, S. Bailey, and R. L. Grossman, “PSockets: The case for

application-level network striping for data intensive applications using
high speed wide area networks”, in Proceedings of SuperComputing:
High-Performance Networking and Computing, Nov 2000

[16] D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker, "Dynamic behavior
of slowly responsive congestion controls", In Proceedings of SIGCOMM
2001, San Diego, California.

[17] S. Floyd, and E. Kohler, “Internet research needs better models”,
http://www.icir.org/models/bettermodels.html, October, 2002

[18] S. Floyd, M. Handley, and J. Padhye, “A comparison of equation-based
and AIMD congestion control”, http://www.icir.org/tfrc/, May 2000

[19] T. V. Lakshman, and U. Madhow, “The performance of TCP/IP for
networks with high bandwidth-delay products and random loss”,
IEEE/ACM Transactions on Networking, vol. 5 no 3, pp. 336-350, July
1997

[20] D. Chiu, and R. Jain, “Analysis of the increase and decrease algorithms for
congestion avoidance in computer networks”, Journal of Computer
Networks and ISDN, Vol. 17, No. 1, June 1989, pp. 1-14

[21] R. M. Corless, G. H. Gonnet, D.E.G. Hare, D. J. Jeffrey, and Knuth, "On
the LambertW function", Advances in Computational Mathematics
5(4):329-359, 1996

[22] C. Dovrolis, and M.Jain, ``End-to-end available bandwidth: measurement
methodology, dynamics, and relation with TCP throughput''. In
Proceedings of ACM SIGCOMM 2002, August 2002.

[23] K. Harfoush, A. Bestavros, and J. Byers, "Measuring bottleneck bandwidth
of targeted path segments", In Proceedings of IEEE INFOCOM '03, April
2003.

