
 

Abstract—High-speed networks with large delays present a 
unique environment where TCP may have a problem utilizing the 
full bandwidth. Several congestion control proposals have been 
suggested to remedy this problem. The existing protocols consider 
mainly two properties: TCP friendliness and bandwidth scalability. 
That is, a protocol should not take away too much bandwidth from 
standard TCP flows while utilizing the full bandwidth of 
high-speed networks. This paper presents another important 
constraint, namely, RTT (round trip time) unfairness where 
competing flows with different RTTs may consume vastly unfair 
bandwidth shares.  Existing schemes have a severe RTT unfairness 
problem because the congestion window increase rate gets larger as 
the window grows – ironically the very reason that makes them 
more scalable.  RTT unfairness for high-speed networks occurs 
distinctly with drop tail routers for flows with large congestion 
windows where packet loss can be highly synchronized. 

After identifying the RTT unfairness problem of existing 
protocols, this paper presents a new congestion control scheme that 
alleviates RTT unfairness while supporting TCP friendliness and 
bandwidth scalability. The proposed congestion control algorithm 
uses two window size control policies called additive increase and 
binary search increase. When the congestion window is large, 
additive increase with a large increment ensures square RTT 
unfairness as well as good scalability. Under small congestion 
windows, binary search increase supports TCP friendliness. The 
simulation results confirm these properties of the protocol. 
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I. INTRODUCTION 
The Internet is evolving. The deployment of wide-area 
high-speed networks like Abilene and ESNet has heightened 
demand for data-intensive, high-performance computing. 
Applications like scientific collaboration, telemedicine, and 
real-time environment monitoring benefit from this deployment. 
These applications require access to high-bandwidth real time 
data, images, and video captured from remote sensors such as 
satellite, radars, and echocardiography. They, in addition, 
require predictable, low-latency access to this data, in real time. 

TCP has been widely adopted as a data transfer protocol for 
these networks. TCP, however, substantially underutilizes 
network bandwidth over high-speed connections with long 
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RTTs [1, 2, 4, 7]. TCP increases its congestion window by one 
packet in every round trip time (RTT) and reduces it by half at a 
loss event. A loss event is defined to be a packet loss that causes 
TCP to reduce its congestion window. Over 83,333/2 RTTs are 
required for TCP to increase its window from half utilization to 
full utilization of 10Gbps with 1500-byte packets — 
approximately 1 hour with 100ms RTT. This requires that no 
packet is lost within 1 hour. That is, the loss rate cannot be more 
than 1 loss event per 2,600,000,000 packets, which is less than 
the theoretical limit of the network’s bit error rates [1, 2].  

Fine-tuning TCP parameters such as receiver windows and 
network interface buffers [9, 10, 11, 12] may mitigate this 
problem. One straightforward solution is to increase the packet 
size by using the Jumbo packet option (up to 8KB) and use 
multiple TCP connections [13, 14, 15]. This scheme is similar to 
Additive Increase and Multiplicative Decrease (AIMD) where 
the window increases with a fixed increment per RTT and 
decreases by a multiplicative factor under losses. Although these 
approaches enhance utilization by having a larger increment per 
RTT than TCP, the bandwidth ratio between these flows and 
standard TCP flows is always fixed. Therefore, even in the 
TCP’s “well-behaving” operating range (between loss rates of 
10-2 to 10-4), they always use proportionally a larger bandwidth 
share compared to standard TCP. Guaranteeing both TCP 
friendliness and bandwidth scalability with one fixed increase 
rate of window is challenging. It calls for adaptive schemes that 
vary the window growth rate depending on network conditions.  

The research community has responded quickly to the need to 
address TCP’s limitations. Several promising new protocols 
have been put forward including XCP [5], SABUL [6], FAST 
[7], High Speed TCP (HSTCP) [1, 2, 3], and Scalable TCP 
(STCP) [4]. Except XCP, these protocols adaptively adjust their 
increase rates based on the current window size. These protocols 
are claimed to be TCP friendly under high loss rate 
environments as well as highly scalable under low loss 
environments. 

The work presented here began as an attempt to assess the 
performance of high-speed congestion control protocols in 
under “realistic” network operation: i.e., to assess their impact 
on overall network performance in the presence of 
heterogeneous, competing flows. We focus on HSTCP and 
STCP, which are window-based, self-clocking protocols known 
for safer incremental deployment [16]. Other protocols such as 

 Binary Increase Congestion Control (BIC) for 
Fast Long-Distance Networks  

Lisong Xu, Khaled Harfoush, and Injong Rhee 
Department of Computer Science 
North Carolina State University 

Raleigh, NC 27695-7534 
lxu2, harfoush, rhee@csc.ncsu.edu 

Administrator
To Appear in INFOCOM 2004



 

SABUL and FAST are not studied because SABUL is a 
rate-based protocol and FAST has not yet been described in 
detail.  

Lakshman and Madhow[19] studied RTT unfairness of TCP 
in networks with high bandwidth delay products. It was reported 
that under a FIFO queue (i.e., drop tail) that TCP throughput is 
inversely proportional to αRTT  where 21 ≤≤ α . This paper 
extends their work by investigating RTT fairness for new 
high-speed protocols. Our study reveals that notwithstanding 
their scalability and TCP friendliness properties, HSTCP and 
STCP have a serious RTT unfairness problem when multiple 
flows with different RTT delays are competing for the same 
bottleneck bandwidth. We define the RTT unfairness of two 
competing flows to be the throughput ratio in terms of their RTT 
ratio. Under a completely synchronized loss model, we show 
that two HSTCP flows with RTT1 and RTT2 have RTT unfairness 
( ) 56.5

12 RTTRTT  and those of STCP have RTT unfairness 

even ( )∞
12 RTTRTT . That is, the shorter RTT flow eventually 

starves off the longer RTT flow. Note that TCP and AIMD have 
RTT unfairness ( )2

12 / RTTRTT  [19]. We report that this 
problem commonly appears for drop tail routers while the 
severity reduces for RED, and therefore, greatly impairs the 
ability to incrementally deploy the protocols, without adequate 
support from active queue management (such as RED and XCP).  

The severe RTT unfairness of HSTCP and SCTP comes from 
their adaptability– ironically the very reason that makes them 
more scalable to large bandwidth. In HSTCP and STCP, a larger 
window increases faster than a smaller window. Compounded 
with delay differences, RTT unfairness gets worse as the 
window of a shorter RTT flow grows faster than that of a longer 
RTT flow.  

Another source of RTT unfairness is synchronized loss: 
simultaneous loss events for multiple competing flows. Under 
the assumption that packet losses are uniformly distributed 
across all flows, a flow with a larger window gets more loss 
events than a flow with a smaller window. However, this 
assumption does not hold true in practice, especially in networks 
with drop tail routers. A short-term loss rate during the period 
around the overflow of router buffers can be much higher than 
the average long-term loss rate. Therefore, it is very possible that 
both flows lose packets at the same time when the buffer 
overflows; otherwise none of them lose packets. Assuming a 
random packet loss probability p with the uniform distribution, 
the probability that a flow with window size w loses at least one 
packet within an RTT is ( )wp−− 11 , which increases 
exponentially as window size w increases. That is, many 
high-speed connections with relatively large windows more 
likely lose packets simultaneously at the time of buffer overflow. 

Synchronized loss encourages RTT unfairness. Since loss 
events are more synchronized across different window sizes, 
larger windows with a short RTT can always grow faster than 
smaller windows with a long RTT. Furthermore, since 
synchronization can prolong convergence and cause a long-term 
oscillation of data rates, it can hurt bandwidth fairness in 
short-term time scales.  In our simulation study, we observe the 

short-term unfairness of STCP and HSTCP over both drop-tail 
and RED routers.  

Designing a high-speed congestion control that supports all 
three properties of RTT fairness, scalability, and TCP 
friendliness is challenging. For instance, AIMD, which provides 
square RTT unfairness and scales its bandwidth share by 
increasing its additive increase factor, is not TCP friendly. 
HSTCP and STCP, which are extremely scalable under low loss 
rates and TCP friendly under high loss rates, are not RTT fair. 
Recognizing these challenges, we propose, in the second part of 
this paper, a new protocol called Binary Increase Congestion 
Control (BIC) satisfies all these criteria:   

 
1. Scalability: BIC can scale its bandwidth share to 10 

Gbps around 3.5e-8 loss rates (comparable to HSTCP 
which reaches 10Gbps at 1e-7).  

2. RTT fairness: for large windows, BIC’s RTT unfairness 
is proportional to the inverse square of the RTT ratio as 
in AIMD. 

3. TCP friendliness: BIC achieves bounded TCP fairness 
for all window sizes. Around high loss rates where TCP 
performs well, its TCP friendliness is comparable to 
STCP’s. 

4. Fairness and convergence:  compared to HSTCP and 
STCP, BIC achieves better bandwidth fairness over both 
short and long time scales, and faster convergence to a 
fair bandwidth share. 
 

The paper organized as follows: Section II describes our 
simulation setup. Section III discusses evidence for 
synchronized loss.  In Sections IV and V, we discuss the 
behavior of HSTCP and STCP. In Section VI, we describe BIC 
and its properties. Section VII gives details on simulation results. 
Related work and Conclusion can be found in Sections VIII and 
IX. 

II.  SIMULATION SETUP  
Fig. 1 shows the NS simulation setup that we use throughout 

the paper. Various bottleneck capacity and delays are tested. The 
buffer space at the bottleneck router is set to 100% of the 
bandwidth and delay product of the bottleneck link. All 
connections pass through the bottleneck link. Each link is 
configured to have different RTTs and different starting and 
finishing times to reduce the phase effect [17]. Three kinds of 
background traffic are simulated. Substantial web traffic— 
consuming a minimum of 20% of bottleneck bandwidth, and up 
to 50% of bottleneck bandwidth when no other flows are 
present—is generated in both directions to remove 
synchronization in TCP feedback. Twenty-five small TCP flows 
whose congestion window sizes are restricted to be less than 64 
are transmitted in each direction. Their starting and finishing 
times are set randomly. And two to four long-lived TCP flows 
(with no window size restriction) are created for both directions. 
These three kinds of simulated background traffic totally 
consume a minimum of 20% of the backward bandwidth.  



 

This simulation topology is roughly comparable to that of the 
real high-speed networks. High-speed networks of our interest 
are different from the general Internet where a majority of 
bottlenecks are located at the edges. High-speed networks with 
high-speed edges can create a bottleneck at locations where 
much high-speed traffic meets, such as Startlight in Chicago that 
connects CERN (Geneva) and Abilene.  

We make no claim about how realistic our background traffic 
is. However, we believe that the amount of background traffic in 
both directions, and randomized RTTs and starting and finishing 
times are sufficient to reduce any simulation anomaly, e.g., the 
phase effect and synchronized feedback. We also paced TCP 
packets so that no more than two packets are sent in burst. A 
random delay between packet transmissions is inserted to avoid 
the phase effect. We test both RED and drop tail routers at the 
bottleneck link. For RED, we use adaptive RED with the bottom 
of max_p set to 0.001.1 

III. SYNCHRONIZED PACKET LOSS 
We use a synchronized loss model for the theoretical analysis of 
RTT fairness. Before delving into the analysis, we provide some 
evidence that synchronized loss is common in high-speed 
networks.  

To measure the extent of the synchronization, we ran a 
simulation involving 20 high-speed connections of HSTCP with 
RTTs varying from 40 ms to 150 ms in the network shown in 
Figure 1 with bottleneck link bandwidth varying from 100 Mbps 
to 2.5 Gbps. To measure synchrony in packet losses, we first 
compute the average time interval between two consecutive loss 
events of a connection. We define measurement interval to be 
the duration corresponding to one-tenth of the average interval. 
We consider all the flows having at least one loss event within 
the same synchronization interval undergo synchronized losses. 
To measure the degree of synchronized losses, we divide the 
total simulation time by the unit of the measurement intervals, 
and then in each interval count the number of unique high-speed 
flows that have at least one packet loss. Synchronization ratio is 
the ratio of the number of measurement intervals containing at 
least x flows, where x is a predefined threshold, to the number of 
measurement intervals containing at least one flow. Figure 2 
shows synchronization ratios of RED and drop tail routers when 

 
1  The use of a smaller bottom value is recommended by [1] to reduce 

synchronized loss – normally this value is set to 0.01. 

the threshold is set to 25% and 50% of the total number of 
high-speed flows respectively. 
    We observe that the synchronization ratio increases as the 
bandwidth increases, especially under drop tail routers. As the 
bandwidth increases from 100 Mbps to 2.5 Gbps, the 
synchronization ratio with 50% threshold (i.e., 10 flows) 
increases from about 0.23 to about 0.6. That implies whenever a 
flow loses a packet in the drop tail router, the probability that at 
least half of the total flows experience packet losses during a 
period of measurement interval increases from 23% to 60%. On 
the other hand, RED does not incur as much synchronized loss. 
The synchronization ratio with 50% threshold is always close to 
zero. However, there still exists some amount of 
synchronization; the synchronization ratio for RED with 25% 
threshold under 2.5 Gbps is about 23%, which means the 
probability that at least a quarter of the total flows have a 
synchronized loss event is around 23%. 

The result implies that the number of synchronized loss can be 
quite substantial in drop tail. Although it requires real network 
tests to confirm this finding, we believe that our simulation 
result is not difficult to recreate in real networks. We leave that 
to future study.  

IV. RTT UNFAIRNESS OF HSTCP AND STCP 
In this section, we analyze the effect of synchronized loss on the 
RTT fairness of HSTCP and STCP. We use a synchronized loss 
model where all high-speed flows competing on a bottleneck 
link experience loss events at the same time. By no means, we 
claim that this model characterizes all the aspects of high-speed 
networks. We use this model to gain insights into RTT 
unfairness that we observe in our simulation experiment 
described later.  

Let wi and RTTi denote the average window size and the RTT 
of flow i (i=1, 2) respectively. Let t denote the interval between 
two consecutive loss events of a flow during steady state.  

In a network with a uniformly distributed packet loss, 
different connections, regardless of their RTTs, get the same 
packet loss rate. But with a synchronized loss model, different 
connections may see different packet loss rates. Suppose that the 

Fig. 2: Synchronization Ratio under RED and drop tail routers. 
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loss events of flow i are uniformly distributed with rate pi. The 
total number of packets sent by flow i between its two 
consecutive loss events is 1/pi. The total number of RTTs 
between two consecutive loss events is t/RTTi. So, the average 
window size can be obtained as follows. 
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Let R(p) denote the response function of a protocol, which is 
the average sending rate of the protocol in the unit of packets per 
RTT, in terms of a loss event rate p. For HSTCP, STCP, and 

AIMD, their response functions are of form dp
c

RTT
pR 1)( = , 

where c and d are protocol-dependent constants. The value of d 
is between 0.5 and 1 [2]. The value of d for AIMD [18], HSTCP 
[1], and STCP [4] is 0.5, 0.82, and 1, respectively. Therefore, the 
average sending rate of flow i is calculated as follows. 
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Therefore the RTT unfairness of the two flows, the ratio of 
their average throughputs, can be calculated as  
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where (1-pi) is approximated by 1, since pi is usually far less than 
1. 

Substitute the value of d for each protocol, we get the 
exponent 1/(1-d) for AIMD, HSTCP, and STCP, which is 2, 5.56, 
and ∞, respectively. 

Table 1 presents a simulation result that shows the bandwidth 
shares of two high-speed flows with different ratios of RTTs 
running in drop tail (RED does not show significant RTT 
unfairness). The inverse ratio of RTTs is varied to be from 1 to 6 
with base RTT 40 ms.  

AIMD shows a quadratic increase in the throughput ratio as 
the inverse RTT ratio increases. STCP shows almost 400 times 
throughput ratio for inverse RTT ratio 6. HSTCP shows about 
100 times throughput ratio for inverse RTT ratio 6. Clearly the 
results indicate extremely unfair use of bandwidth by a short 
RTT flow in drop tail.  

The result shows better RTT unfairness than predicted by the 
analysis. This is because while the analysis is based on a 
completely synchronized loss model, the simulation may 

involve loss events that are not synchronized. Also when the 
window size is very small, the occurrence of synchronized loss 
is substantially low. Long RTT flows continue to reduce their 
windows up to a limit where synchronized loss does not occur 
much. Thus, the window ratio does not get worse.  

Figure 3 shows a sample simulation run with ten STCP flows 
in drop tail. All flows are started at different times. Eight flows 
have 80 ms RTT, and two flows have 160 ms RTT. It exhibits a 
typical case of RTT unfairness. The two longer RTT flows 
slowly reduce their window down to almost zero while the other 
flows merge into a single point. Note that STCP does not 
converge in a completely synchronized model because of 
Multiplicative Increase and Multiplicative Decrease (MIMD) 
window control [20]. However, in this simulation, eight flows 
with the same RTT do converge (despite high oscillation). This 
indicates that there exists enough asynchrony in packet loss in 
our simulation to make the same RTT flows converge, but not 
enough to correct RTT unfairness.  

 

V. RESPONSE FUNCTION 
The response function of a congestion control protocol can show 
many characteristics of the protocol including RTT fairness, 
TCP friendliness, and scalability. This section briefly discusses 
how these properties can be deduced from response functions. 

Figure 4 draws the response functions of HSTCP, STCP, 
AIMD, and TCP in a log-log scale. AIMD uses the increase 
factor 32 and the decrease factor 0.125. 

From the previous section, we showed that for a protocol 
with a response function dpc /  where c and d are constants and 
p is a loss event rate, its RTT unfairness could be modeled as 
( ) )1/(1

12 / dRTTRTT − . As d increases, the slope of the response 
function and RTT unfairness increase. That is, the slope of a 
response function in a log-log scale determines its RTT 
unfairness. Since TCP and AIMD have the same slope, the RTT 
unfairness of AIMD is the same as TCP – square RTT 
unfairness. The RTT unfairness of STCP is infinite while that of 
HSTCP falls somewhere between TCP’s and STCP’s.  

The ability that a protocol utilizes the high amount of 

Table 1: The throughput ratio of two high speed flows over various RTT 
ratios in 2.5Gbps networks. 

 
Inverse RTT Ratio 1 3 6 
AIMD 1.11 6.68 22.03 
HSTCP 1.01 29.19 107.90 
STCP 1.01 127.23 389.13 
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bandwidth under high-speed networks is determined by its high 
sending rates under low loss rates. Thus from Figure 4, a 
protocol becomes more scalable as its sending rate gets higher 
under lower loss rates. STCP shows the best scalability followed 
by HSTCP and AIMD.  

The TCP friendliness of a protocol is indicated by the point 
where the response function of the protocol crosses that of TCP. 
This is because high-speed congestion control protocols act the 
same as standard TCP over a higher loss rate than the cross point. 
Under lower loss rates below this point, the protocols run their 
own “scalable” schemes. Under this strategy, it becomes more 
TCP friendly if a protocol crosses TCP as low a loss rate as 
possible (to the left of the X axis) since the protocol follows TCP 
below that point. However, moving the cross point to the left 
while maintaining the scalability increases the slope of the 
response function, hurting RTT fairness.  

An ideal protocol would be that (1) its response function 
crosses TCP’s as low a rate as possible, and at the same time (2) 
under lower loss rates, its slope is as close as that of AIMD.  
Note that the function need not be a straight line, i.e., the slope 
can vary depending on loss rates. But its slope at any loss rates 
should not exceed that of STCP although it can be much more 
forgiving under a high loss rate where window size is small 
enough to avoid frequent synchronized loss. 

VI. BINARY INCREASE CONGESTION CONTROL 
It is challenging to design a protocol that can satisfy all three 
criteria: RTT fairness, TCP friendliness, and scalability. As 
alluded earlier, these criteria need not be satisfied 
simultaneously for all loss rates (for instance, it does not make 
sense to be TCP friendly for low loss rates). A protocol should 
adapt its window control depending on the size of windows. 
Below, we present such a protocol, called Binary Increase 
Congestion Control (BIC). BIC consists of two parts: binary 
search increase and additive increase.  

Binary search increase: We view congestion control as a 
searching problem in which the system gives yes/no feedback 
through packet loss as to whether the current sending rate (or 
window) is larger than the network capacity. The starting points 

for this search are the current minimum window size Wmin and 
maximum window size Wmax. Usually, Wmax is the window size 
just before the last fast recovery (i.e. where the last packet loss 
occurred), and Wmin is the window size just after the fast 
recovery. The algorithm repeatedly computes the midpoint 
between Wmax and Wmin, sets the current window size to the 
midpoint; and checks for feedback, in the form of packet losses. 
Based on this feedback, the midpoint is taken as the new Wmax if 
there is a packet loss, and as the new Wmin if not.  The process 
repeats, until the difference between Wmax and Wmin falls below a 
preset threshold, called the minimum increment (Smin).  

This technique, which we call binary search increase, allows 
bandwidth probing to be more aggressive initially when the 
difference from the current window size to the target window 
size is large, and become less aggressive as the current window 
size gets closer to the target window size. A unique feature of the 
protocol is that its increase function is logarithmic; it reduces its 
increase rate, as the window size gets closer to the saturation 
point. The other scalable protocols tend to increase their rates at 
the saturation point so that the increment at the saturation point 
is the maximum in the current epoch (defined to be a period 
between two consecutive loss events). Typically, the number of 
lost packets is proportional to the size of the last increment 
before the loss. Thus binary search increase can reduce packet 
loss.  As we shall see, the main benefit of binary search is that it 
gives a concave response function, which meshes well with that 
of additive increase described below. We discuss the response 
function of BIC in Section VI-B. 

Additive Increase: In order to ensure faster convergence 
and RTT-fairness, we combine binary search increase with an 
additive increase strategy. When the distance to the midpoint 
from the current minimum is too large, increasing the window 
size directly to that midpoint may add too much stress to the 
network. When the distance from the current window size to the 
target in binary search increase is larger than a prescribed 
maximum step, called the maximum increment (Smax), we 
increase window size by Smax until the distance becomes less 
than Smax, at which time window increases directly to the target. 
Thus, after a large window reduction, the strategy initially 
increases the window linearly, and then increases 
logarithmically. We call this combination of binary search 
increase and additive increase binary increase. 

Combined with a multiplicative decrease strategy, binary 
increase becomes close to pure additive increase under large 
windows. This is because a larger window results in a larger 
reduction in multiplicative decrease, and therefore, a longer 
additive increase period. When the window size is small, it 
becomes close to pure binary search increase – a shorter additive 
increase period.  

Slow Start: When the current window size grows past the 
current maximum window Wmax, the binary search algorithm 
switches to probing the new maximum window, which is 
unknown (i.e., the window size where loss can occur is 
unknown).  

We run a “slow start” strategy to probe for a new maximum, 
once the current window size is greater than Wmax, but smaller 
than Wmax+Smax. The congestion window increases in each RTT 
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round in steps Wmax+Smin, Wmax+2*Smin, Wmax+4*Smin, ..., 
Wmax+Smax. The rationale is that the current window size is likely 
to be at the saturation point because the last losses occur around 
the current window size. BIC probes for available bandwidth in 
a “slow start”, until it is safe to increase the window by Smax. 
After slow start, BIC switches to additive increase with fixed 
increment Smax to probe a new Wmax.  

Fast convergence: Under a completely synchronized loss 
model, binary search increase combined with multiplicative 
decrease converges to a fair share [8].  Suppose there are two 
flows with different window sizes, but with the same RTT. Since 
the larger window reduces more in multiplicative decrease (with 
a fixed factor β), the time to reach the target is longer for a larger 
window. However, its convergence time can be very long. 
Assuming infinitely large Smax, binary search increase takes 
log(βWmax)-log(Smin) RTT rounds to reach the maximum 
window after a window reduction of βWmax.  Since window size 
increases logarithmically, both larger and smaller windows can 
return to their respective maxima very fast almost at the same 
time (although the smaller window flow gets to its maximum 
slightly faster). Thus, the smaller window flow ends up taking 
away only a small amount of bandwidth from the larger flow 
before the next window reduction, prolonging the convergence 
time.  

To remedy this behavior, we modify the binary search 
increase as follows. In binary search increase, after a window 
reduction, new maximum and minimum are set. Suppose these 
values are Wmax,i and Wmin,i for flow i (i=1, 2). If the new Wmax,i is 
less than the previous, this window is in a downward trend (so 
likely to have a window larger than the fair share). Then, we 
readjust the new maximum to be the same as the new target 
window which is the midpoint (i.e., Wmax,i =( Wmax,i + Wmin,i )/2), 
and then readjust the target and apply binary search. This has an 
effect of reducing the increase rate of the larger window which 
allows the smaller window to catch up. We call this strategy fast 
convergence.  

Figure 5 shows a sample run of two BIC flows. Their 
operating modes are marked by circles and arrows.  

 

A. Protocol Implementation 
Below, we present the pseudo-code of BIC implemented as a 
modification of TCP-SACK.  

 
The following preset parameters are used: 
low_window: if the window size is larger than this threshold, 

BIC engages; otherwise normal TCP 
increase/decrease. 

        Smax: the maximum increment. 
        Smin: the minimum increment. 
                       β:  multiplicative window decrease factor. 

 
The following variables are used: 
               Wmax: the maximum window size 

       cwnd: congestion window size; 
          bic_inc: window increment per RTT  
 

When entering faster recovery: 
if (cwnd < low_window){ //normal TCP 

cwnd = cwnd *0.5;  
return; 

} 
if (cwnd < Wmax) //fast convergence 
 Wmax = cwnd * (2-β) / 2;  

else  
  Wmax = cwnd; 
cwnd = cwnd * (1-β);//multiplicative decrease 
 

When not in fast recovery and an acknowledgment for a new 
packet arrives: 

if (cwnd < low_window){//normal TCP 
cwnd = cwnd + 1/cwnd; 
return; 

} 
 
if (cwnd < Wmax) //binary search or additive increase 
  bic_inc = (Wmax – cwnd)/2; 
else            //slow start or additive increase 
  bic_inc = cwnd - Wmax; 
if (bic_inc > Smax) //additive increase 
  bic_inc = Smax; 
else if (bic_inc < Smin)//binary search increase 
                       //or slow start 
  bic_inc = Smin; 
 
cwnd = cwnd + bic_inc/cwnd; 
 

B.  Characteristics of BIC 
In this section, we analyze the response function and RTT 
fairness of BIC. An analysis on the convergence and smoothness 
of the protocol can be found in [8]. 
 
1) Response function of BIC 
In this section, we present a deterministic analysis on the 
response function of BIC. 
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We assume that a loss event happens at every 1/p packets. We 
define a congestion epoch to be the time period between two 
consecutive loss events.  Let Wmax denote the window size just 
before a loss event. After a loss event, the window size decreases 
to Wmax(1-β). 

BIC switches from additive increase to binary search increase 
when the distance from the current window size to the target 
window is less than Smax. Since the target window is the midpoint 
between Wmax and the current window size, it can be said that 
BIC switches to binary search increase when the distance from 
the current window size to Wmax is less than 2Smax. If the distance 
between the current window and Wmax is less than 2Smax, there is 
no additive increase. Let N1 and N2 be the numbers of RTT 
rounds of additive increase and binary search increase, 
respectively. We have 

)0,2max(1 −
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Then the total amount of window increase during binary 
search increase can be expressed as Wmaxβ-N1Smax. Assuming 
that this quantity is divisible by Smin, then N2 can be obtained as 
follows. 
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In the above equation, 2 corresponds to the first and the last 
RTTs of the binary search increase. 

During additive increase, the window grows linearly with 
slope 1/Smax. So, the total number of packets during additive 
increase, Y1, can be obtained as follows. 

( ) ( ) ( )( ) 1max1maxmax1 111
2
1 NSNWWY −+−+−= ββ  (2) 

During binary search increase, the window grows 
logarithmically. So, the total number of packets during binary 
search increase, Y2, can be expressed as follows. 

 minmaxmax SSNWNWY +−−= )(2 12max2 β   (3) 
The total number of RTTs in an epoch is N = N1 + N2, and the 

total number of packets in an epoch is Y = Y1 + Y2. Since a loss 
event happens at every 1/p packets, Y can be expressed as Y = 
1/p. Using (2) and (3), we may express Wmax as a function of p. 
Below, we give the closed-form expression of Wmax for two 
special cases. 

First, we assume that Wmaxβ > 2Smax, and Wmaxβ is divisible by 
Smax. Then N1= Wmaxβ/Smax -2. Now we can get 
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where a = β (2-β)/(2Smax), b = log2(Smax/Smin)+(2-β)/2, and c = 
Smax - Smin.  The average sending rate, R, is then,  
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In case that Wmaxβ >> 2Smax, for a fixed Smin, N1>>N2. 
Therefore, the sending rate of BIC mainly depends on the linear 
increase part, and for small values of p, the sending rate can be 
approximated as follows: 
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β
β−≈  when Wmaxβ >> Smax (6) 

Note that for a very large window, the sending rate becomes 
independent of Smin. Eqn. (6) is very similar to the response 
function of AIMD [18] denoted as follows. 
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For a very large window, the sending rate of BIC is close to 
the sending rate of AIMD with increase parameter α = Smax 

Next, we consider the case when Wmaxβ ≤ 2Smax, then N1=0, 
Assuming 1/p>>Smin, we get Wmax  as follows. 

( ) p
S

W
W











−+








≈

β
β

12log

1

min

max
2

max  

By solving the above equation using function LambertW(y) 
[21], which is the only real solution of xx e y⋅ = , we can get a 
closed-form expression for Wmax. 
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When 2β <<log(Wmaxβ / Smin)+2,  
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Note that when Wmaxβ ≤ 2Smax, the sending rate becomes 
independent of Smax.  

In summary, the sending rate of BIC is proportional to 1/pd, 
with 1/2 < d <1. As the window size increases, d decreases from 
1 to 1/2. For a fixed β, when the window size is small, the 
sending rate is a function of Smin and when the window size is 
large, a function of Smax. Our objective is that when window is 
small, the protocol is TCP-friendly; and when the window is 
large, it is more RTT fair and gives a higher sending rate than 
TCP. We can now achieve this objective by adjusting Smin and 
Smax. Before we give details on how to set these parameters, let 
us examine the RTT fairness of BIC. 

 
2)  RTT unfairness of BIC 
As in Section IV, we consider the RTT unfairness of a protocol 
under the synchronized loss model. Recall that the RTT 



 

unfairness of a protocol with a response function dp
c

RTT
1  is 

( ) )1/(1
12 / dRTTRTT −  

From the previous section, we know that as the window size 
increases, the value of d of BIC decreases from 1 to 1/2. That is, 
with a high bandwidth, BIC has the same RTT unfairness as the 
TCP; while with a low bandwidth, BIC has the same RTT 
unfairness as STCP. However, since under small windows, 
synchronized loss is less frequent, we believe that this unfairness 
can be managed to be low. We verify this in Section VII. 
 
3) Setting the parameters 
In this section, we discuss a guideline to determine the preset 
parameters of BIC: β, Smin, Smax and low_window in Section 
VI-A.  

From (6) and (7), we observe that reducing β increases the 
sending rate. Reducing β also improves utilization. However it 
hurts convergence since larger window flows give up their 
bandwidth slowly. From the equations, we can infer that β  has a 
much less impact on the sending rate than Smax. So it is easier to 
fix β and then adjust Smin and Smax. We choose 0.125 for β . 
Under steady state, this can give approximately 94% utilization 
of the network. STCP chooses the same value for β .  

For a fixed β = 0.125, we plot the response function as we 
vary Smax and Smin. Figure 6 shows the response function for 
different values of Smax. As Smax increases, the sending rate 
increases only for low loss rates using 1e-4 as a pivot. Smax 
allows us to control the scalability of BIC for large windows. We 
cannot increase Smax arbitrarily high since it effectively increases 
the area of RTT unfairness (the area where the slope is larger 
than TCP’s). Recall that when Wmaxβ ≤ 2Smax, the protocol is less 
RTT fair. This area needs to be kept small to reduce the RTT 
unfairness of the protocol. 

Figure 7 plots the response function for various values of Smin. 
As we reduce Smin, the sending rate reduces around high loss 
rates (i.e., small windows) and the cross point between TCP and 
BIC moves toward a lower loss rate. Since we can set 
low_window to the window size corresponding to the cross point, 
reducing Smin improves TCP friendliness.  However, we cannot 
reduce Smin arbitrarily low because it makes the slope of the 
response function steeper before merging into the linear growth 
area, worsening RTT unfairness. HSTCP crosses TCP at 
window size of 31, and STCP at 16. 

For a fixed β = 0.125, we plot the response function of BIC 
with Smax = 32 and Smin = 0.01 in Figure 8. For comparison, we 
plot those of AIMD (α = 32, β = 0.125), HSTCP, STCP, and 
TCP. We observe that BIC crosses TCP around p = 1e-2 and it 
also meets AIMD around p=1e-5 and stays with AIMD. Clearly, 
BIC sets an upper bound on TCP friendliness since the response 
functions of BIC and TCP run in parallel after some point (at 
p=1e-5). BIC’s TCP-friendliness under high loss rates is 
comparable to STCP’s, but less than HSTCP’s. BIC crosses TCP 
at the window size of 14 (lower than STCP and HSTCP). The 
sending rate of BIC over extremely low loss rates (1e-8) is less 
than that of STCP and HSTCP. 

Fig. 6: Response functions of BIC for different values of Smax. 
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VII. SIMULATION STUDY 
In this section, we compare the performance of BIC using 
simulation with that of HSTCP, STCP, and AIMD. Every 
experiment uses the same simulation setup described in Section 
II. Unless explicitly stated, the same amount of background 
traffic is used for all the experiments. In order to reduce noise in 
data sampling, we take measurement only in the second half of 
each run. We evaluate BIC, AIMD, HSTCP, and STCP for the 
following properties: bandwidth utilization, TCP friendliness, 
RTT unfairness, and convergence to fairness. For BIC, we use 
Smax=32, Smin =0.01, and β = 0.125, and for AIMD, α = 32 and 
β = 0.125. All high-speed protocols are implemented by 
modifying TCP/SACK. 

 
Utilization: In order to determine whether a high-speed 

protocol uses available bandwidth effectively under 
high-bandwidth environments, we measure bandwidth 
utilization for 2.5 Gbps bottleneck. Each test consists of two 
high-speed flows of the same type and two long-lived TCP flows. 
In each test, we measure the total utilization of all the flows 
including background traffic. In drop tail, all protocols give 
approximately 97% utilization, and in RED, AIMD and BIC 
consume about 95% of the total bandwidth while HSTCP and 
STCP consume about 92%. The drop tail experiment consumes 
more bandwidth because drop tail allows flows to fill up the 
network buffers. Note buffers are part of the capacity.  

 
RTT Fairness: In this experiment, two high-speed flows 

with a different RTT share the bottleneck. The RTT of flow 1 is 
40 ms. We vary the RTT of flow 2 among 40ms, 120ms, and 
240ms. The bottleneck link delay is 10ms. We run two groups of 
simulation, each with different values of bottleneck bandwidth: 
2.5 Gbps, and 100 Mbps. This setup allows the protocols to be 
tested for RTT fairness for different window sizes. According to 
our analysis in Section VI, around small window sizes, BIC 
shows the worst RTT unfairness. BIC has window sizes about 
7000 (loss rate 0.0003) for 2.5Gbps and 300 (loss rate 0.004) for 
100Mbps.  

Tables 2 and 3 show the results for the runs in 100Mbps and 
2.5Gbps, respectively. We show the results of drop tail only. The 
RTT unfairness under RED is close to the inverse of RTT ratio 
for every protocol. We omit the RED figures. It can be seen that 
the RTT unfairness of BIC is relatively comparable to AIMD. 
This result verifies our analysis in Section VI. In Table 2, the 
performance of BIC does not deteriorate much while HSTCP 
and STCP have improved RTT unfairness. This is because in 
100 Mbps, the window size of all the flows is much smaller than 
in 2.5Gbps run. Therefore, the degree of synchronized loss is 
very low. Although the RTT unfairness of BIC gets worse 
around this window size by the analysis, this deficiency gets 
compensated by lack of synchronized loss so that it does not 
have much performance degradation. Overall, its RTT 
unfairness is much better than HSTCP and STCP. HSTCP and 
STCP tend to starve long RTT flows under high bandwidth 
environments. 

 

TCP-friendliness: We run four groups of tests, each with 
different bottleneck bandwidth. Each group consists of four 
independent runs, each with a different type of high-speed flows. 
In every run, the same number of network flows (including 
background) is used.  

Figure 9 shows the percentage of bandwidth share by each 
flow type under drop tail. (RED gives approximately similar 
results as drop tail.) Three flow types are present: background 
(web traffic and small TCP flows), long-lived standard 
TCP/SACK flows, and high-speed flows. 

Under bandwidth below 500Mbps, the TCP friendliness of 
BIC is comparable to that of STCP. At 20Mbps, long-lived TCP 
and background flows with BIC flows consume slightly less 
bandwidth than those with HSTCP and STCP. However, in 
HSTCP and STCP simulations, the unused bandwidth is slightly 
more than that in BIC. That is, while BIC consumes more 
bandwidth than HSTCP and STCP, it takes bandwidth not only 
from TCP, but also from unused bandwidth. However, AIMD is 
too aggressive, and it takes too much bandwidth from TCP. 

For 500Mbps and 2.5Gbps, the amount of shares by 
background and long-lived TCP flows substantially reduce due 
to TCP’s limitation to scale its bandwidth usage in 
high-bandwidth. Under 500Mbps, STCP, BIC, and AIMD use 
approximately the same share of bandwidth. Under 2.5Gbps, the 
bandwidth share of background TCP traffic is very small. STCP 
becomes most aggressive. BIC becomes friendlier to TCP.  

To sum, BIC achieves good TCP fairness for all window 
sizes. Around high loss rates where TCP performs well, its TCP 
friendliness is comparable to STCP’s. The result closely follows 
our analysis in Section VI-B.  

 
Fairness:  Synchronized loss has impact also on bandwidth 
fairness and convergence time to the fair bandwidth share. In 
this experiment, we run 4 high-speed flows with RTT 100ms. 
Two flows start earlier randomly in [0:60] seconds, and the other 
two flows start later randomly in [100:160] seconds. The total 
simulation time is 600 seconds. The bottleneck link bandwidth is 
2.5Gbps. For this experiment, we measured the fairness index  
[20] at each 50-second interval, and we take samples only after 
the first 100 seconds. This result gives an indication on (1) how 

Table 2: The throughput ratio of protocols under 100 Mbps 
 
Inverse RTT Ratio 1 3 6 
AIMD 1.04 7.08 25.77 
BIC 0.99 11.78 27.48 
HSTCP 1.06 8.86 39.12 
STCP 0.95 19.05 64.97 

Table 3: The throughput ratio of protocols under 2.5Gbps 
 
Inverse RTT Ratio 1 3 6 
AIMD 1.11 6.68 22.03 
BIC 0.88 11.96 40.04 
HSTCP 1.01 29.19 107.90 
STCP 1.01 127.23 389.13 



 

fast it converges to a fair share, and (2) even after convergence to 
a fair share, how much it oscillates around the fair share. 

Figure 10 shows the result for drop tail routers. At time around 
150 seconds, the second set of two connections just start while 
the first two connections consuming almost all the bandwidth. 
Therefore, the difference between these four connections is the 
largest, and hence the fairness index is the lowest. As the latter 
two connections get more bandwidth, the fairness index 
increases. The protocol whose fairness index reaches 1 the 
fastest has the fastest convergence speed. BIC and AIMD give 
the best results, and they quickly converge to the fair share 
(where the fairness index is close to 1). STCP is the worst, and 
even after 600 seconds, the fairness index is still below 0.95. We 
observe that the fairness index of all protocols first increases fast, 
and then slowly reaches to 1. The reason is that the congestion 
windows of the latter two connections first increase 
exponentially in the slow start state; after the first loss event, 
they enter the congestion avoidance state, and increase slowly as 
specified by each protocol. 

Figure 11 shows the result for RED routers. We observe 
much better convergence for HSTCP and STCP than in drop tail. 
This is because RED does not incur as much synchronized loss 
as drop tail. However, after convergence, HSTCP with RED 
shows a larger oscillation around the fair share than HSTCP with 
drop tail, and also than the other three protocols with RED. We 
note that the fairness index of HSTCP increases earlier than 
others in Figure 11. The reason is the latter two connections in 
HSTCP simulation start earlier than those in other simulations, 
since the simulation script randomly generates the starting time 
of each connection.  

VIII. RELATED WORK 
As HSTCP and STCP have been discussed in detail in this paper, 
we examine other high-speed protocols that are not covered by 
this paper. 

Recent experiment [9] indicates that TCP can provide good 
utilization even under 10Gbps when the network is provisioned 
with a large buffer and drop tail. However, the queue size of 
high-speed routers is very expensive and often limited to less 
than 20% of the bandwidth and delay products. Thus, generally, 
TCP is not suitable for applications requiring high bandwidth. 
FAST [7] modifies TCP-Vegas to provide a stable protocol for 
high-speed networks. It was proven that TCP can be instable as 
delay and network bandwidth increase. Using delay as an 
additional cue to adjust the window, the protocol is shown to 
give very high utilization of network bandwidth and stability. It 
fairness property is still under investigation. XCP [5] is a 
router-assisted protocol. It gives excellent fairness, 
responsiveness, and high utilization. However, since it requires 
XCP routers to be deployed, it cannot be incrementally 
deployed. 

IX. CONCLUSION 
The significance of this paper is twofold. First, it presents RTT 
fairness as an important safety condition for high-speed 
congestion control and raise an issue that existing protocols may 
have a severe problem in deployment due to lack of RTT 
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fairness under drop tail. RTT fairness has been largely ignored in 
designing high-speed congestion control. Second, this paper 
presents a new protocol that can support RTT fairness, TCP 
friendliness, and scalability. Our performance study indicates 
that it gives good performance on all three metrics. 

We note that the response function of BIC may not be the 
only one that can satisfy the three constraints. It is possible that 
there exists a better function that utilizes the tradeoff among the 
three conditions.  This is an area of more research. Another point 
of discussion is that high-speed networks can greatly benefit 
from the deployment of AQM. Our work supports this case since 
a well-designed AQM can relieve the protocol from the burden 
of various fairness constraints caused by synchronized loss. 

One possible limitation of BIC is that as the loss rate reduces 
further below 1e-8, its sending rate does not grow as fast as 
HSTCP and STCP. This is because of the lower slope of its 
response function. Hence, it may seem that there is a 
fundamental tradeoff between RTT fairness and scalability. We 
argue it is not the case. Under such a low loss rate, most of loss is 
due to signal or “self-inflicted”, i.e., loss is created because of 
the aggressiveness of the protocol. As a protocol gets more 
aggressive, it creates more loss and thus, needs to send at a 
higher rate for a given loss rate. The utilization of the network 
capacity is more important under such low loss rates, which is 
determined mostly by the decrease factor of congestion control. 
For TCP, the utilization is 75% and for STCP and BIC, around 
94% (these numbers are determined from β).  In addition, we 
believe that by the time that much higher bandwidth (in the order 
of 100 Gbps) becomes available, the network must have more 
advanced AQM schemes deployed so that we can use a higher 
slope response function. Then again, a less aggressive (i.e., 
lower slope) protocol, however, is less responsive to available 
bandwidth; so short file transfers will suffer. There are many 
facets to the problems, requiring more research efforts. We 
believe that fast convergence to efficiency requires a separate 
mechanism that detects the availability of unused bandwidth 
which has been an active research area lately ([22, 23]). We 
foresee that advance in this field greatly benefits the congestion 
control research. 
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