
Manuscripts, submitted to IEEE COMMUNICATIONS LETTERS 1

SABUL: A High Performance Data Transfer Protocol

Yunhong Gu, Student Member, Xinwei Hong, Member, Marco Mazzucco, and Robert Grossman, Member, IEEE

Abstract -- The paper describes SABUL, an application level

data transfer protocol for data intensive applications over high
bandwidth-delay product networks. SABUL is designed for
reliability, high performance, fairness, and stability. This uni-
directional protocol uses UDP to transfer data and TCP to send
back control messages. A rate based congestion control that tunes
the inter-packet transmission time helps achieve both efficiency
and fairness. To remove the fairness bias between flows with
different network delays, SABUL adjusts its rate control at
uniform intervals, instead of at intervals determined by round
trip time. The protocol has demonstrated its efficiency and
fairness features in both experiments and practical applications.

Index Terms -- SABUL, transport protocol, rate control,
bandwidth-delay product, high performance data transport

I. INTRODUCTION AND RELATED WORK

ith the rapid increase of network bandwidth and the
emergence of new routing/switching technology, data

transfer protocols are becoming bottlenecks for many
applications. This is particularly common in scientific
computing and data intensive grid applications [2].

Although TCP is still dominant in the Internet, the
drawbacks inherent in its window based congestion control
mechanism prevent its use in high bandwidth-delay product
(BDP) environments. The AIMD (additional increase
multiplicative decrease) algorithm takes too long a time to
discover the available bandwidth [5, 6]. Meanwhile, the link
error prohibits TCP from obtaining high throughput [9],
especially in wireless networks. In addition, there is fairness
bias between TCP flows sharing the same bottleneck with
different round trip times (RTTs) [9]. The performance of
applications involving multiple TCP streams is sometimes
limited by the slowest one [17].

Network researchers have been improving TCP for many
years and have published a series of TCP variations, including
high speed TCP [14] and scalable TCP [15]. Meanwhile, ECN
[12] and XCP [1] have also been put out as open looped
congestion control methods. However, these solutions are not
expected to be deployed widely in the near future due to the
changes that may be required in the infrastructure.

The authors are with the National Center for Data Mining, University of
Illinois at Chicago. M/C 249, 715 SEO, 851 S MORGAN ST, CHICAGO, IL,
60607. Robert Grossman is also with the Two Cultures Group. (email:
gu@lac.uic.edu, xwhong@lac.uic.edu, marco@dmg.org, grossman@uic.edu)

The work is supported by NSF under grant ANI-9977868.

A solution at the application level is provided by parallel
TCP implementations, such as PSockets [7] and GridFTP [8],
which obtain high throughput with multiple parallel TCP
connections. In practice, however, parallel TCP requires
extensive tuning and displays performance shortcomings in
lossy, wide area networks [13].

Rate based protocols have been regarded as a better
solution for congestion control than window based protocols
[3]. This idea can be found in NETBLT [10], VMTP [11], and
more recently, Tsunami [16].

This background motivated us to design and develop a
high performance application-level reliable data transfer
protocol, named SABUL, or simple available bandwidth
utilization library. It uses UDP with a rate based congestion
control mechanism. In section 2 we will describe the details of
the SABUL protocol. The simulation and experimental results
will be discussed in section 3. The paper is concluded in
section 4 with a brief look at future work.

II. PROTOCOL SPECIFICATIONS

A. Design Rationale

SABUL is designed to be a reliable transfer protocol,
which means loss detection and retransmission are needed.

To achieve high performance SABUL must discover
available bandwidth and react to congestion as soon as
possible. Meanwhile, it should be lightweight with small
packet and computation overhead.

Fairness is necessary for SABUL to be accepted on public
networks. First, all SABUL flows, independent of initial rates
and network delays, should reach similar rates ultimately.
Second, SABUL should be TCP friendly. However, this is in
conflict with the previous rules since TCP throughput is
dependent on RTT and not efficient over high BDP links. We
have to make a trade-off: the TCP friendliness rule should be
obeyed in small BDP links where TCP can work well;
otherwise SABUL can allocate more bandwidth than TCP but
should leave acceptable space for TCP to increase. In fact,
most times a single TCP flow can only utilize a small portion
of the bandwidth over high BDP links [5].

B. General Architecture

SABUL uses two connections: the control connection over
TCP and the data connection over UDP. Note that the data
connection is only a logical abstract, and it is not connected
physically since UDP is connectionless. By using TCP in the
control connection we want to reduce the complexity of
reliability control.

A SABUL session is uni-directional. Data can only be sent
from one side (the sender) to the other side (the receiver) over
UDP and the control information is only from the receiver to
the sender over TCP. The sender initializes the connection,
waits for the receiver to connect to it and constructs the

W

Manuscripts, submitted to IEEE COMMUNICATIONS LETTERS 2
control connection. The data connection is built up following a
successful control connection.

C. Packet Formats

There are three kinds of packets in SABUL. The
application data is packed in the DATA packet with a 32-bit
sequence number. The other two are control reports. ACK
packet is positive acknowledgment telling the sender that the
receiver has received all the packets prior to the sequence
number it carries. NAK packet is negative acknowledgment
that carries the number of lost packets and their sequence
numbers (loss list). All packets are limited to MTU (maximum
transfer unit) size such that they will not be segmented.

D. Data Sending and Receiving

Both the sender and the receiver maintain a list of the lost
sequence numbers sorted ascendingly.

The sender always checks the loss list first when it is time
to send a packet. If it is not empty, the first packet in the list is
resent and removed; otherwise the sender checks if the number
of unacknowledged packets exceeds the flow control window
size, and if not, it packs a new packet and sends it out. The
sender then waits for the next sending time decided by the rate
control. The flow window serves to limit the number of
packet loss upon congestion, when TCP control reports can be
delayed. The maximum window size can be set up by
application, which is suggested to be Bandwidth * RTT (use
SYN instead of RTT if SYN > RTT).

After each constant synchronization (SYN) time, the
sender triggers a rate control event that will update the inter-
packet time.

The receiver receives and reorders data packets. The
sequence numbers of loss packets are recorded in the loss list
and removed when the resent packets are received.

The receiver sends back ACK periodically if there is any
newly received packet. The ACK interval is the same as SYN
time. The higher the throughput is, the less ACK packets are
generated. NAK is sent once loss is detected. The loss will be
reported again if the retransmission has not been received after
k*RTT, where k is initialized as 2 and is increased by 1 each
time the loss is reported. The increase of k is to avoid that the
sender is blocked by continuous arrival of loss report. Loss
information carried in NAK is compressed, considering that
loss is often continuous.

In the worst case, there is 1 ACK for every received
DATA packet if the packet arrival interval is not less than the
SYN time; there are M/2 NAKs when every other DATA
packet gets the loss for every M sent DATA packets.

E. Rate Control

The constant synchronization (SYN) interval in SABUL is
0.01 second. This number is used to reach an acceptable trade-
off between efficiency and fairness (both self-fairness and
TCP-friendliness), rather than a theoretical value.

Every SYN time, the sender calculates the exponential
moving average of the loss rate. If the loss rate is less than a
small threshold (0.1%), the number of packets to be sent in the
next SYN time is increased by:

)/1,1000/10max()/(log10 MTUinc intsyn=

where inc is the number of packets to be increased, syn is the
SYN time (i.e., 0.01), int is the current inter-packet time. The
inter-packet interval is then recalculated.

The inter-packet time is increased by 1/8 as soon as the
sender receives an NAK packet and

1) If the lost sequence number is greater than the
largest sent sequence number when last decrease
occurs, or

2) If it is the 2dec_countth NAK since last time condition
1) is satisfied, where dec_count is set to 4 once 1) is
satisfied and increased by 1 each time 2) is satisfied.

The packet sending is frozen (no data is sent out) for a
RTT once condition 1) is satisfied.

The objective of the increase formula is to maintain an
acceptable bandwidth share between coexisting TCP and
SABUL, while keeping a fast bandwidth discovery
independent of network delay. However, it causes unfairness
between flows with different initial rates. This problem is
alleviated by the decrease formula, supposing all flows sharing
the same bottleneck link have the same loss rate in the long
run. Flows with higher sending rates will decrease more. In
addition, setting dec_count as 4 after the first decrease favors
lower rate flows. The rate control algorithm is basically a
combination of AIMD for fairness and stability and MIMD
(multiplicative increase multiplicative decrease) for efficiency.

During high congestion, the sending rate can be decreased
continuously. Meanwhile, the increase becomes slower as
sending rate decreases. The flow window limits the number of
unacknowledged packets and the feedback mechanism limits
the frequency of control reports. So congestion collapse is
avoided.

The initial flow window is 1 packet, and increases its size
to the number of acknowledged packets after each received
ACK until it reaches the maximum window size or loss
occurs. The flow window is set to the maximum value after
slow start phase. The initial sending rate can be set up by
application, and it does not increase during slow start phase.

III. SIMULATION AND EXPERIMENTS

Both simulation on NS-2 and experiments on real
networks were done to examine the efficiency and fairness of
SABUL. In all the simulations, the maximum flow window
size is large enough so that it doesn’t limit the packet sending.

Figure 1 shows how coexisting SABUL and TCP flows
share the bandwidth in the simulation. TCP obtains higher
bandwidth in low RTT environments, but SABUL still has an
acceptable throughput. In high RTT environments, TCP’s
performance is poor and SABUL obtains much higher
bandwidth. These results comply with our design rationale for
TCP friendliness.

Simulation to check the fairness between SABUL flows
with different initial rates and RTTs is in Figure 2. The
unfairness caused by initial sending rates does exist
occasionally. However, it has been constrained by the
decrease formula to an acceptable bandwidth share. In Figure
2 we found that the RTT bias is almost completely avoided.

At IGrid 2002 (3rd International Grid Conference) we
successfully reached about 2.8Gbps through 3 SABUL
connections from StarLight (Chicago) to SARA (Amsterdam,

Manuscripts, submitted to IEEE COMMUNICATIONS LETTERS 3
Holland) [4], which has 10Gbps link capacity (the throughput
is limited by the 3 pairs of GigE NICs) with 110ms RTT.

Figure 1. This figure summarizes the results of simulations where TCP and
SABUL flows share the same link for various different bandwidth and RTTs.
In low BDP environments, TCP obtains more of the available bandwidth. In
high BDP environments where TCP is less efficient, SABUL is able to
effectively use the available bandwidth.

Figure 2. This graph shows the performance of three simulated SABUL flows
sharing a 1 Gbps link. The flows have different RTTs and different initial
sending rates. The flows all converge at about 280 Mbps, showing that the
performance is independent of RTTs and fairly distributes the available 1
Gbps bandwidth.

The SABUL and TCP relationship when sharing the same
link in real networks is also examined. In the first experiment,
4 TCP streams and 2 TCP/2 SABUL streams were compared
in StarLight Local networks (Table 1), where the link capacity
is 1Gbps and the RTT is 0.0004 seconds. Notice that the
introduction of SABUL streams doesn’t significantly impact
the TCP flows, experimentally demonstrate the fairness in
small RTT links.

The second experiment shows the performance of a very
large number of small TCP flows on a 1 Gbps link connecting
Chicago and Amsterdam in the presence of between 0 and 9
SABUL flows (Table 2). The first row shows the number of
SABUL flows running, while the second row shows the total
bandwidth in Mbps of all 500 TCP flows sharing the link with
the indicated number of SABUL flows.

The TCP version used in these experiments is SACK and
the buffer size is set to at least bandwidth-delay product.

Table 1. SABUL and TCP coexist on local high speed network
4 TCP flows (Mbps) 226 225 227 225
2 SABUL / 2 TCP (Mbps) 251 237 230 (TCP) 231 (TCP)

Table 2. 500 1MB TCP streams with background SABUL flows
SABUL num. 0 1 2 3 4 5 6 7 8 9
TCP (Mbps) 82 98 78 40 65 37 37 40 36 32

IV. CONCLUSION WITH FUTURE WORK

The objective of SABUL is to provide an application level
library for data intensive applications over high performance
networks such as computational grids. At the same time, it can
coexist with TCP in traditional low BDP environments.

Currently SABUL has been implemented on several
platforms and released as an open source project to the public.
We have used it in several high performance applications,
including high performance FTP, streaming join [17], remote
data replication, and striped file transfer.

The possibility of unfairness between SABUL flows still
exists, but it is limited to an acceptable ratio. We have not
completely removed the effect of network delay. Flows with
longer delay react slower to congestion but suffer more loss.
These issues will be further examined and solved in our future
work.

REFERENCES

[1] D. Katabi, M. Hardley, and C. Rohrs: Internet Congestion Control for
Future High Bandwidth-Delay Product Environments, ACM
SIGCOMM 2002.

[2] I. Foster, C. Kesselman, and S. Tuecke: The Anatomy of the Grid:
Enabling Scalable Virtual Organizations. International J.
Supercomputer Applications, 15(3), 2001.

[3] S. Floyd, M. Handley, J. Padhye, and J. Widmer: Equation-Based
Congestion Control for Unicast Applications, ACM SIGCOMM 2000.

[4] R. L. Grossman, Y. Gu, D. Hanley, X. Hong, D. Lillethun, J. Levera, J.
Mambretti, M. Mazzucco, and J. Weinberger, Experimental Studies
Using Photonic Data Services at IGrid 2002, FGCS, 2003.

[5] Y. Zhang, E. Yan, and S. K. Dao: A Measurement of TCP over Long-
Delay Network, Proc. of 6th Intl. Conf. on Telecommunication Systems

[6] W. Feng, and P. Tinnakornsrisuphap: The Failure of TCP in High-
Performance Computational Grids, Supercomputing 2002

[7] H. Sivakumar, S. Bailey, and R. L. Grossman: PSockets: The Case for
Application-level Network Striping for Data Intensive Applications using
High Speed Wide Area Networks. Supercomputing 2000

[8] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C.
Kesselman, S. Meder, V. Nefedova, D. Quesnal, and S. Tuecke: Data
Management and Transfer in High Performance Computational Grid
Environments. Parallel Computing Journal, Vol. 28 (5), May 2002.

[9] T. V. Lakshman, and U. Madhow: The Performance of TCP/IP for
Networks with High Bandwidth-Delay Products and Random Loss.
IEEE/ACM Trans. on Networking 5, 3 (1997).

[10] D. Clark, M. Lambert, and L. Zhang: NETBLT: A high throughput
transport protocol, SIGCOMM '87, (Stowe, VT), pp. 353--359.

[11] D. Cheriton: VMTP: Versatile Message Transaction Protocol
Specification, RFC1045, April 1993.

[12] Ramakrishnan, K.K., Floyd, S., and Black, D: The Addition of Explicit
Congestion Notification (ECN) to IP, RFC 3168, September 2001.

[13] T. Hacker, B. Athey, and B. Noble: The End-to-End Performance
Effects of Parallel TCP Sockets on a Lossy Wide-Area Network, IPDPS
2002.

[14] HighSpeed TCP, http://www.icir.org/floyd/hstcp.html, retrieved on
04/03/2003.

[15] Scalable TCP, http://www-lce.eng.cam.ac.uk/~ctk21/scalable/, retrieved
on 04.03.2003.

[16] Tsunami, http://www.anml.iu.edu/anmlresearch.html, retrieved on
04/07/2003.

[17] M. Mazzucco, A. Ananthanarayan, R. L. Grossman, J. Levera, and G. B.
Rao, Merging Multiple Data Streams on Common Keys over High
Performance Networks, Proceedings of SC 02.

1 0
-2

1 0
-1

1 0
0

1 0
1

1 0
2

1 0
-1

1 0
0

1 0
1

1 0
2

1 0
3

0

0 .5

1

1 .5

2

2 .5

R T T (m s)B a nd w i d th (M b p s)

R
at

io
 (T

C
P

 /
S

A
B

U
L)

