
SUBMITTED FOR PUBLICATION, ALL RIGHTS RESERVED. 1

An Implementation and Experimental Study of the
eXplicit Control Protocol (XCP)

Yongguang Zhang
HRL Laboratories, LLC, Malibu, California

ygz@hrl.com

Tom Henderson
Boeing Phantom Works, Seattle, Washington

thomas.r.henderson@boeing.com

Abstract—The eXplicit Control Protocol (XCP) has been proposed as a
multi-level network feedback mechanism for congestion control of Inter-
net transport protocols. Theoretical and simulation results have suggested
that the protocol is stable and efficient over high bandwidth-delay product
paths, while being more scalable to deploy than mechanisms that do require
per-flow state in routers. However, there is little operational experience with
the approach. Since the deployment of XCP would require changes to both
the end hosts and routers, it is important to study the implications of this
new architecture before advocating such wide scale changes to internets.

This paper presents the results of an experimental study of XCP. We
first implemented XCP in the Linux kernel and solved various systems is-
sues. After validating previously reported simulation results, we studied
the sensitivity of XCP’s performance to various environmental factors and
identified two sources that can significantly reduce XCP’s ability to control
congestions and achieve fairness. Our contributions are two fold. First,
through implementation we have revealed the challenges in platforms that
lack large native data types or floating point arithmetic, and the need to
keep fractions in XCP protocol header. Second, through experiments and
analysis we have identified several possibilities that XCP can enter into in-
correct feedback control loops and adversely affect the performance. These
are deployment challenges intrinsic to XCP design. More research is needed
before we can advocate a wide scale adoption.

I. INTRODUCTION

XCP is a new Internet congestion control protocol developed
by Katabi, Handley, and Rohrs [1]. XCP has attracted at-

tention in the research community because of its promise to po-
tentially obtain high utilizations in high bandwidth-delay prod-
uct networks, while maintaining low standing queues in routers,
without requiring that per-flow state be kept in routers. Rather,
XCP allows the state to be kept in the packet headers, and re-
quires routers to perform operations in aggregate.

Like the reliable transport protocols TCP and SCTP, XCP is
a window-based protocol and implements congestion control at
the endpoints of a connection. Senders maintain their conges-
tion window (cwnd) and round trip time (RTT) and communi-
cate these to the routers via a congestion header in every packet.
Routers monitor the input traffic rate and persistent queue size
to each of their output queues. Based on their difference from
the output link capacity and the flow’s cwnd and RTT, the router
tells each flow sharing that link to increase or decrease its cwnd
by annotating the feedback in the congestion headers. A more
congested downstream router can further reduce this feedback
by overwriting it. Ultimately, the packet will contain the feed-
back from the bottleneck along the path. When the feedback
reaches the receiver, it is returned to the sender in an acknowl-
edgement packet, and the sender updates its cwnd accordingly.
The process is continuous and the responses by the sender to the
network feedback take on the order of one round trip time to
take effect. The control laws ensure that the system converges
to optimal efficiency and min-max fairness [1], [2].

Although the simulation results have shown that XCP con-
trollers are stable and robust to estimation errors, and require
only a few per-packet arithmetic operations [1], because it relies
on floating-point operations, it has not been clear how the sim-
ulation models might translate to implementation code. Also,
it is not well understood how XCP might perform in a partially
deployed environment. We are aware of only one other ongoing
XCP implementation effort, at USC’s Information Science Insti-
tute. Initial implementation results were published in February
2004 [3]. The FreeBSD-based kernel does not have the same
limitations on double long division that we encountered in the
Linux kernel, and the initial results presented do not consider
operation in mixed deployment scenarios. XCP itself is one of
several proposals in the area of “high-speed” TCP extensions
that have been recently proposed, including Scalable TCP [4],
HighSpeed TCP [5], FAST TCP [6], and BIC-TCP [7]. The
main difference between XCP and the other high-speed TCPs
is that XCP relies on explicit router feedback, while high speed
TCPs are end-to-end and can only indirectly infer the congestion
state of routers along the path.

We have conducted an experimental study on XCP and its de-
ployment. We have implemented XCP in Linux and conducted
a comprehensive experimental evaluation. While our initial val-
idation results match the previously reported simulation results,
we do have some surprising findings. We first met an implemen-
tation challenge that arise from the lack of double-long or float-
ing point arithmetic in Linux kernel. We then discovered that
the choice of data type affects accuracy and the performance of
XCP. Next, our experimental results revealed that XCP’s perfor-
mance can be adversely affected by environment factors includ-
ing TCP/IP configuration, link sharing, non-congestion loss, and
the presence of non-XCP queues. And finally, our analysis
would show several such possibilities for XCP to lose its ability
to control congestions and achieve fairness.

This paper reports on the findings of this study. Section II de-
scribes our implementation approach, the challenges discovered
in implementing the protocol in the Linux kernel, and our reso-
lutions of those problems. Section III begins our experimental
evaluation with a number of simple experiments that confirm
the performance previously reported in simulation studies. Sec-
tion IV extends the experiments to cover various operational and
environmental factors that may affect XCP performance. Sec-
tion V further analyzes the XCP control laws to identify areas
of potentially incorrect feedback control loops where XCP must
avoid. Finally, we discuss a number of deployment issues in
Section VI, followed by the conclusion of this study.
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II. IMPLEMENTATION DETAILS

A. Overall Architecture

For evaluation purposes, we have implemented XCP as a TCP
option. Other possible approaches would be to implement XCP
as a separate transport protocol, to implement XCP as a “layer
3.5” header between the IP and transport headers, or to imple-
ment XCP as an IP header option. There are pros and cons to
each approach, as discussed later in Section VI. Most of the
implementation issues and performance results presented below
are independent of this design choice.

For applications communicating with XCP, TCP is still the
underlying transport mechanism that connects and delivers flow
data. The effect of the XCP option is to modify TCP sender’s
cwnd (congestion window) value according to the XCP proto-
col. Implementing XCP as a TCP option allowed us to borrow as
much as possible from the existing protocol and software struc-
ture, resulting in a much faster development cycle, and back-
ward compatibility to legacy TCP stacks.

In such an architecture, whenever TCP sends a data segment,
the XCP congestion header is encoded in a header option and
attached to the outgoing TCP header. The feedback field of
the XCP option can be modified by routers along the path from
sender to receiver, and the receiver returns the feedback in TCP
ACK packets, also in the form of an XCP option in the TCP
header. Upon receiving an XCP option from an incoming ACK
packet, the TCP sender updates its cwnd accordingly.

Our software architecture for the XCP implementation in-
cludes two parts. The first is a modification to the Linux TCP
stack to support XCP end-point functions, and the second is
a kernel module to support XCP congestion control in Linux-
based routers. In addition, a simple API is provided so that any
application can use XCP by opening an TCP connection and
setting a special socket option.

B. XCP Option Format

Two XCP option formats are defined, one on the forward di-
rection that is part of the data segments from sender to receiver,
and the other on the return direction that is part of the ACK seg-
ments from receiver to sender. Since routers should only process
the forward-direction XCP option, having two option formats
makes it easy for the routers to know which direction the XCP
option is traveling. Further, it paves the way to support two-way
data transfer in a TCP connection, which will have forward-
direction XCP options traveling in both directions (from both
end-points).

opt optsize
Forward direction: 14 8 H feedback

H rtt H cwnd

opt optsize
Return direction: 15 4 H feedback

Fig. 1. XCP option formats in both directions

Fig. 1 illustrates the two formats. As a prototype, we simply
pick two unused values (14 or 15) for TCP option without mak-
ing any attempt to go through IETF standardization. Other than

opt and optsize, the remaining three are XCP congestion header
fields [1]. They are each 16 bits long.
H_cwnd stores the sender’s current cwnd value, which is

measured in packets (segments). H_feedback is also mea-
sured in packets because this is the unit of change in TCP’s
cwnd in Linux kernel. However, we should not simply use a
short integer type because that would limit the value to plus
or minus 32,000 packets, which may not be sufficient in some
cases with extremely large delay-bandwidth product. Further, as
we will explain later in Section II-E.2, the XCP feedback value
must not be rounded to an integer. Therefore, we choose a a
split mantissa-exponent representation that interprets the 16-bit
H_feedback as the following:
• The most significant 13 bits is the signed mantissa (m)
• The remaining 3 bits is the unsigned exponent (e)
• The value stored in H_feedback is m · 16(e−3)

This format can represent a cwnd value from ±2−12 (0.000244)
to ±228 (268,435,456) and 0.
H_rtt is measured in milliseconds. Given that it is 16-bit,

the maximum round trip time supported by this XCP implemen-
tation is around 65 seconds, which should be suitable for most
cases.

C. XCP End-point Functions

C.1 XCP Control Block and cwnd updates

Like TCP, there is a control block for each XCP connection
endpoint to store XCP state information. Since XCP is imple-
mented as a TCP option, the XCP control block is part of the
TCP control block (struct tcp_opt). It has the following
major variables:

int xcp; /* whether to use XCP option */
struct xcp_block {

__u16 rtt; /* RTT estimate for xcp purpose */

__s16 feedback_req; /* cwnd feedback request */
__s16 feedback_rcv; /* received from XCP pkt */
__s16 feedback_rtn; /* returned by receiver */

__s16 cwnd_frac; /* cwnd fractions */
__u32 force_cwnd; /* restore cwnd after CC */

} xcp_block;

The three feedback variables correspond to the H_feedback
field: feedback_req is the requested amount that XCP
sender will put in outgoing XCP packets, feedback_rcv is
the feedback amount that XCP receiver receives before pass-
ing back to the sender, and feedback_rtn is the amount
that XCP sender finally receives. To support delayed ACK,
feedback from several packets can be accumulated at both
feedback_rcv and feedback_rtn. The same mantissa-
exponent data type is used in these three variables.

We add steps in TCP’s usual ACK processing to han-
dle XCP options. Upon receiving a TCP packet with
XCP option, it updates one of the above variables. At
sender, the feedback_rtn amount is added to TCP’s cwnd
(snd_cwnd). Since cwnd grows or shrinks in integer units,
the leftover fractional part is stored in cwnd_frac and will be
added back to feedback_rtn next time.
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C.2 Integrating with TCP congestion control

An artifact of implementing XCP as an TCP option is that
we have to integrate it with TCP congestion control. Since XCP
should change cwnd only through router feedback, we could dis-
able TCP congestion control altogether. It is however difficult
to do so reliably because the Linux TCP implementation inter-
mixes congestion control with other TCP functions. Further, we
believe that mechanisms like fast retransmission are still useful
in XCP. We therefore choose to preserve the TCP congestion
control code but remove its effect on cwnd change, except in
RTO case where cwnd is reset to one.

We do so with the force_cwnd variable in XCP control
block. After the sender updates its cwnd from XCP feedback, it
stores the new cwnd value in force_cwnd. After subsequent
TCP ACK processing and before any retransmission event, the
sender restores the cwnd value from force_cwnd. This in ef-
fect allows fast retransmission but disallows slow start and con-
gestion avoidance (linear increase and multiplicative decrease).
We will further discuss the issue of how XCP should respond to
lost packets in Section VI.

C.3 Increasing advertised window

In TCP, the sender’s cwnd is bounded by the receiver’s adver-
tised window size. Therefore, XCP may not be able to realize
all of its cwnd value if the receiver’s advertised window is not
sufficiently large (meaning that the receiver cannot receive as
much data). In the Linux implementation, the receiver grows
its the advertised window linearly by 2 packets per ACK. This
is suitable for normal TCP but will be insufficient for XCP as
XCP feedback may open up the sender’s cwnd much faster than
that. We therefore modify the TCP receiver so that the adver-
tised window grows by the integer value of feedback_rcv.
This modification is very important, as we will see later (Sec-
tion IV-A) that there is an adverse effect if XCP cannot utilize
all of its cwnd window.

C.4 Reducing the maximum number of SACK blocks

Although congestion loss is a diminishing event in an all-XCP
network, there can be other sources of packet losses such as er-
rors in wireless networks. As the selective acknowledgement
(SACK) mechanism has been proven effective in dealing with
losses in TCP, and many TCP implementation already include
SACK option, we should support SACK in our XCP implemen-
tation as well. In fact, we have validated this assertion through
experiments (Section IV-C), and concluded that it is very impor-
tant for XCP to have the SACK mechanism to deal with non-
congestion loss.

Our approach of implementing XCP as an TCP option has
made this an easy task. The only code modification needed
is to reduce the maximum number of SACK blocks allowed
in each TCP ACK packet. Given that the maximum size of a
TCP header (including options) is 60 bytes, with timestamp op-
tion and XCP option, we can now have at most 2 SACK blocks,
compared to maximum 3 SACK blocks before we added XCP.
We will demonstrate later that, even with a reduced number of
SACK blocks, it still provides significant performance improve-
ment in wireless networks. If XCP is deployed not as a TCP op-

tion but as a separate protocol header, this point becomes moot.

D. XCP Router Module

Much of the complexity in the XCP protocol resides in the
XCP router implementation. The router has to parse the conges-
tion header in every XCP packet, compute individual feedback,
and update the congestion header if necessary. This XCP router
function is divided into two parts: the XCP congestion control
engine that acts on the information encoded in each congestion
header, and the kernel interface that retrieves such information
from the passing XCP packets.

D.1 Kernel Support and Interface

The Linux kernel has two mechanisms that will allow easy
insertion and interface of the XCP engine: loadable module
and device-independent queueing discipline layer. First, the
entire XCP router function is implemented as a kernel load-
able module with no change to the kernel source. Second, the
Linux network device layer includes a generic packet queue-
ing and scheduling mechanism called Qdisc. Its basic func-
tions are to enqueue an outgoing packet whenever the network
layer passes one down to the device layer, and to dequeue when-
ever the device is ready to transmit next packet. The Linux ker-
nel includes several built-in Qdisc like FIFO, CBQ, RED, etc.;
more elaborate ones can be implemented and added as load-
able modules. The XCP router module provides two functions
that any Qdisc can call to invoke the XCP engine (see Fig. 2):
xcp_do_arrival() is called when an XCP packet is en-
queued, and xcp_do_departure() is called when the XCP
packet is ready to be transmitted in hardware. A new built-in
Qdisc called “xcp” is included to operate XCP with a standard
drop-tail queue (fifo).

statec.c.

XCP engine

 FIFO RED XCP/fifo

enqueue

Qdisc

stack
network
Linux

dequeuenetwork
device
driver

IP out

xcp_do_departure()
xcp_do_arrival()

...

(new)(existing Qdisc)

Fig. 2. Structure of XCP router module w.r.t. networking stack in Linux kernel

To manage the new XCP Qdisc, we have implemented a load-
able module for the Linux traffic control command tc. With this
command, it is very easy to use XCP Qdisc at any network de-
vice or as part of another complex queueing system, such as at
a leaf of a hierarchical token buffer. For example, the following
command enables XCP for a 10Mbps link:

tc qdisc add dev eth2 root xcp capacity 10Mbit

The configuration parameter capacity should indicate the
hardware-specified raw bandwidth. Proper adjustment has been
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made to count for the framing overhead when XCP router cal-
culates the true output link capacity.

D.2 Per-link State Information

XCP routers never maintain any per-flow state, and the XCP
engine is completely stateless. Instead, the per-link congestion
control state information is stored at each XCP-enabled Qdisc
(“c.c. state” in Fig. 2). When the Qdisc invokes the XCP en-
gine, it passes the packet (in skbuff structure) along with the
“c.c. state” structure.

D.3 Per-Packet and Per-Interval Computation

Following the algorithms described by Katabi et al [1], the
XCP router implements two per-packet processing functions:
xcp_do_arrival() updates the running traffic statistics
when the packet arrives, and xcp_do_departure() calcu-
lates the individual feedback when the packet departs the queue.
In addition, the XCP router must do per-interval processing to
calculate the aggregate feedback, feedback distribution factors,
and the length of next interval. Usually, this should be done at
the the end of a control interval but it will require a variable-
interval kernel timer. To avoid managing a high resolution timer
in Linux kernel, we adopt a delayed computation approach – the
end-of-interval computations will take place when either of the
two per-packet processing functions is called next. The advan-
tage is that we don’t need to maintain kernel timers and the XCP
engine is completely packet-driven.

E. Integer Arithmetic and Scalability Issue

The complex computation in XCP engine involves several
real number multiplications and divisions, as well as summa-
tions over many packets. However, many kernels support lim-
ited integer arithmetic only. For example, 32-bit Linux has no
double long arithmetic or floating point operations in kernel
mode. We must therefore carefully design the data types to fit
XCP feedback calculations in 32-bit integer space. This unfor-
tunately may limit the scalability, precision, and granularity in
XCP control. Below, we present an analysis to study the impact
of these arithmetic limitations on XCP’s scalability.

E.1 Scaling Analysis

To implement all calculations in integer arithmetic, we must
first determine the right unit, or scale, for each variable used
in the XCP computation. By scale, we mean the range of val-
ues that a variable can represent as a function of the size of
the variable (in terms of bits). That is, if a variable is size
s, the range of values that it can represent after scaling is
[c1 + c2, (2

s − 1) · c1 + c2], where c1 and c2 are the scaling
factors – c1 for granularity and c2 for offset. For example, to
represent a range from 1ms to 65sec round trip delay with 1ms
granularity, we need a 16-bit variable and here c1 is 1ms and c2

is zero.
We start by taking as input the scales of XCP operation envi-

ronment parameters – the number of flows (#flow), bandwidth
(bw), round trip time (rtt), and MTU (mtu). The following ta-
ble lists these parameters and gives each a reasonable range that
we think an XCP implementation should support.

Parameter Corresponding variable and its typical range
x (bits) #flows: 1, ..., 1M (x = 20)
y (bits) bw: 1KBps, ..., 1TBps (y = 30)
z (bits) rtt: 1ms, ..., 65535ms (z = 16)
t (bits) mtu: 512, ..., 8000 bytes (t = 4)

We then estimate the scales for all other variables used in XCP
calculations relative to these environmental parameters. We take
into account how they are calculated, their ranges, and granular-
ities. For example, the size for cwndi (cwnd in flow i) should
be y + z − 9, because its value converges to bwi×rtti/mtui,
which can range from 0 to 1TBps×65s/512 with the granularity
of 1 (packet). The following table lists such estimation for other
XCP variables (due to space limitation, please refer to the XCP
paper [1] for the meaning of each variable).

variable range or approximation est. scale
input traffic 0 ... bw×rtt y + z
Queue 0 ... bw×rtt y + z
cwndi 0 ... bwi×rtti/512 y + z − 9

rtti/cwndi mtui/bwi y + t
rtt2

i
/cwndi mtui×rtti/bwi y + z + t

sum rtt by cwnd rtti/cwndi ...
∑

i
rtti x + y + z

sum rtt2 by cwnd rtt2
i
/cwndi ...

∑
i
rtt2

i
x + y + 2z

ξp bw/sum rtt by cwnd x + 2y + z
ξn bw/rtt/input traffic 2y + 2z

Based on this analysis, we are able to choose the scale and
hence the data type for each variable based on the range of net-
working environment we hope to support. For example, if we
are to support the range given before the previous paragraph, we
will need triple-long (96-bit) integer arithmetic. Of course, this
assumes the extreme scenario of 1 million flows passing through
the same router, some having 1ms RTT and 1TBps bandwidth
while some others having 64s RTT and only 1KBps bandwidth.
If we are willing to give up the range or the precision (granular-
ity), we can use a shorter integer, such as double-long (64-bit).

Since the 32-bit Linux kernel does not even have native sup-
port for double-long operations, we have to design a special
data type called shiftint to accommodate the wide range of
scales. It consists of a 32-bit integer to store the most significant
bits, a short integer to store the scaling factor, and another short
integer to store the shifting factor. Integers of any scale can be
shifted and stored in a variable of this data type. Much of the
XCP algorithm is implemented as operations on this data type.
The tradeoff is that we will lose precision in some calculations.
A simulation study that compared the shiftint results with
floating point operations puts the precision at ±0.001%. The
advantage is that we don’t need to worry about manually scal-
ing each variable as the scaling factor component automatically
keeps track of the change.

E.2 Feedback Fractions

In Linux and many other TCP stacks, the unit of change in
cwnd is a whole packet. Therefore, one would have easily used
an integer type for H_feedback. However, the following anal-
ysis contradicts this intuition and shows that if H_feedback
is measured in packets we must keep the fractional part and not
round it off.

Consider a single flow with round trip delay rtt and band-
width bw. Under XCP, its cwnd would converge at cwnd =
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rtt×bw/mtu packets. That is, during one XCP control in-
terval, the router will encounter cwnd packets from this flow.
Now, let’s assume that the available bandwidth for this flow has
changed from bw to (1 + ∆) · bw. If everything else is equal
and unchanged, the individual feedback according to the XCP
algorithm [1] will be

H feedback =
h + max(φ, 0)

rtt ·
∑

rtt·s

cwnd

·
rtt2

cwnd
−

h + max(−φ, 0)

rtt · y
·rtt

packets, where h = max(0, γ · y − |φ|), φ = α · rtt · (1 + ∆) ·
S − β · Q, and S = bw − y/rtt. Considering that at previous
convergence φ′ = α · rtt · S − β · Q = 0 and input traffic y
should equal cwnd · mtu, we can deduce that H feedback is
α · ∆ (packets).

If we look at this intuitively, when the bandwidth changes by
a factor of ∆, the sender should match with a cwnd change by a
factor of α ·∆ (where α = 0.4 is the stability constant [1]). This
amount will be divided into small individual feedback shares
among all packets during a control interval (also a round trip
time). So if we only use integers to represent H_feedback
and if the individual feedback share is small (|α · ∆| < 0.5),
we will lose all the individual feedbacks to rounding. And we
will also lose the accumulative feedback since the sender can
only accumulate cwnd changes by adding individual feedbacks
together.

The above analysis justifies the mantissa-exponent data for-
mat as described in Section II-B. We further back this up with
an experiment that compares XCP performance using this for-
mat and using an integer format to store feedback. The experi-
ment setup and procedure are those described in Section III-A.
The result (Fig. 3) shows that XCP sustains higher performance
than with the alternative implementation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20
time (seconds)

With mantissa-exponent format

1 flow
2 flows
4 flows
8 flows

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20
time (seconds)

With integer format

1 flow
2 flows
4 flows
8 flows

Fig. 3. Bandwidth utilization (total goodput of all flows as a ratio of raw band-
width) comparison when 1, 2, 4, or 8 flows sharing the same bottleneck.

III. EXPERIMENTAL EVALUATION

A. Experimental Setup

Our experimental study has been conducted in a real test net-
work illustrated in Fig. 4. XCP end-system code runs at end-
hosts S1...S4 and D. XCP router code runs at router R. The
end-to-end latency is emulated by placing a dummynet [8] host
between R and D. The bottleneck link is between R and D,
whereas the bandwidth between sources S and R is higher, and
the transmission queue will build up at R’s network interface
to D. XCP router code will operate on that interface to regulate
flow throughput.

R

S1

S2

S3

S4

DB100Mbps

XCP router
bottleneck link (10Mbps)

enforcing link delay
dummynet bridge

Fig. 4. Experimental network configuration

The round trip delay is set at 500ms and the bottleneck link is
10Mbps full-duplex, unless specified otherwise in some particu-
lar experiments. Flows start at sources S1...S4 and end at D. We
follow the TCP performance tuning guides (such as [9]) to set
optimal values for TCP parameters. We use large buffer sizes
and set the TCP window scaling option so that the connection
can sustain the throughput in this large bandwidth-delay-product
network. The maximual router queue size is set to twice that
product, as is a common assumption for Internet networking.

We measure and compare the flow performance in each ex-
periment. We are able to extract the following performance data
from the traces that we collect during the experiments:
• Bandwidth utilization – the ratio (between 0 and 1) of total
flow goodput to the raw bottleneck bandwidth, measured every
RTT as time progresses.
• Per-flow utilization – the ratio of each flow’s goodput to the
raw bottleneck bandwidth.
• cwnd value – the progress of XCP sender’s cwnd size (in
packets), sampled by recording XCP packet’s H_cwnd field.
• Router queue length – the standing queue size at bottleneck
link, sampled whenever a packet enters the queue at router R.
• Packet drops – the number of queue drops at bottleneck link,
recorded every RTT at router R.

In rest of this paper, we will frequently show these perfor-
mance data in time-progressive charts. Unless marked other-
wise, the untitled horizontal axis is time progress in seconds.

B. Validation Experiments

The propose of this set of experiments is to validate our XCP
implementation and to validate the previously published simula-
tion results on the XCP protocol. The XCP paper by Katabi [1]
presents extensive packet-level simulations and shows that XCP
achieves fair bandwidth allocation, high utilization, small stand-
ing queue size, and near-zero packet drops. We are able to arrive
at similar conclusion through controlled experiments on a real
network with our XCP implementation.

The first experiment compares XCP performance with TCP
performance under FIFO and RED [10] queuing disciplines. We
start four flows at the same time, one from each source S, to D.
For the XCP test case, the flows are XCP flows (TCP with XCP
options); otherwise they are normal TCP flows. For the RED
test case, router R is configured with RED queue management
with the drop probability 0.1 and with the minimum and the
maximum thresholds set to one third and two thirds the buffer
size, respectively.

Fig. 5 plots the performance measurement results. We can see
that XCP has the best and most stable performance, in terms of
better bandwidth utilization, smaller queue buildups, and zero
packet drops. The per-flow utilization charts further illustrate
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Fig. 5. Performance comparison between XCP and TCP.

that XCP flows share the bandwidth equally and stably, but both
TCP cases experience significant fluctuations among flows. The
per-flow cwnd chart also reveals that XCP flows can quickly
converge to an optimal cwnd value.

We further study XCP fairness toward flows that do not start
at the same time or have different RTTs but that share the bottle-
neck link – a well-known limitation of TCP congestion avoid-
ance. In the next experiment, the setting is same except that the
first flow starts at time zero and each additional flow starts at 30
seconds later. Each flow lasts approximately 130 seconds. In
the third experiment, we modify the dummynet setting so that
the delay is 50ms between S1 and D, 100ms between S2 and D,
250ms between S3 and D, and 500ms between S4 and D. That is,
we change the four flow’s RTTs to 100ms, 200ms, 500ms, and
1000ms, respectively. Fig. 6 shows that XCP exhibit fairness in
both experiments. In summary, under controlled settings, we are

able to demonstrate very good performance with XCP.
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Fig. 6. Fair shares among 4 XCP flows with different start time or different
RTT.

C. Fine-tuning the Link Capacity

To accurately calculate feedbacks, XCP router must know the
precise link capacity in advance. It must factor in proper framing
and MAC overhead in the raw bandwidth given in tc command.
This is important because if we overestimate the overhead, we
will under-utilize the link and lower the performance. Likewise,
if we underestimate it, we will over-promise capacity, inflate
feedbacks, and drive up the queue. Unfortunately, this overhead
cannot be easily predicted because it varies by datalink format
and sizes of actual data packets.

We have taken an empirical approach to estimate this over-
head. In the same validation experiment setup, we vary the
number of bytes to add as per-packet overhead estimate and the
packet sizes (through MTU setting). We then compare the link
utilizations and queue lengths. The result (Fig. 7) shows that 90-
bytes is a good estimate to balance both performance metrics –
optimal bandwidth utilization and minimal queue buildup.
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Fig. 7. Per-packet overhead estimates

We have included this estimation in XCP router’s link capac-
ity calculation. We note that this value is from experiments us-
ing 10Mbps full-duplex Ethernet. The number may be different
for other types of links but the same approach can be followed
to arrive at the best estimation.

IV. SENSITIVITY STUDY

XCP’s control law requires the use of correct information.
However, when XCP is deployed and integrated in a real system,
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unforeseen environmental factors like system configurations and
network connections may affect the accuracy of XCP’s control
information. We have given one such example in the previous
subsection on how XCP should make proper assumption of un-
derlying link framing overhead. There can be additional and
more subtle operational sensitivities. In this section, we look in
more detail at other protocol sensitivity issues under the follow-
ing four operational conditions:
• TCP/IP parameter configuration. Linux and many other op-
erating systems provide mechanisms for user to tune TCP/IP
stack parameters, such as kernel buffer size, receiver’s kernel
buffer size, sender’s socket buffer size, and receiver’s socket
buffer size. These memory allocations can affect XCP’s per-
formance because the throughput is limited not only by cwnd
value but also by the buffer space available at both sender and
receiver.
• Link sharing. Not all links in the Internet are point-to-point
or have deterministic amounts of bandwidth. There are many
contention-based multi-access links such as Ethernet and IEEE
802.11, and the true link capacity may be difficult or impossible
to obtain. This may affect XCP feedback calculations.
• Wireless networks. Wireless networks almost always have
the same link-sharing problem because the media is shared
multi-access and interference-prone. In addition, wireless net-
works often have frequent non-congestion losses due to imper-
fect channel condition, interference, mobility, terrain effects,
etc. Wireless networks can also have temporary blockage or
blackout period when the link experiences 100% loss for a short
period of time.
• Hybrid networks, where not all queues are XCP-capable.
XCP is designed assuming an all-XCP network, but it will have
to co-exist with non-XCP queues if it is to be incrementally de-
ployed in the Internet. Further, many link-layer devices (such
as switches) have embedded queues for better traffic control and
XCP will need to handle this type of hybrid networks as well.

A. Sensitivity to TCP/IP Parameter Configuration

By XCP’s control law, the XCP sender informs XCP routers
of its current cwnd value and gets feedback for the new value to
use during the next interval. For convenience of discussion, we
call the value that XCP sender puts in the H_cwnd field the ad-
vertised cwnd value. For the control law to work properly, XCP
routers must expect the sender to send the advertised amount
during an RTT. However, if other factors limit XCP’s sending
rate, such as memory buffer shortage at the sender or receiver,
the control law can be broken and XCP may not converge.

To prove this point, we repeat the above validation experiment
with a single XCP flow. We first use the system default buffer
size (64K) at the receiver. We then repeat with a larger value
matching the bandwidth-delay-product (640K). Fig. 8 compares
the bandwidth utilization of these two flows. Obviously, due
to buffer limitation, the flow with small buffer size cannot fully
utilize its cwnd to fully utilize the bandwidth.

If the sender fails to send as much as advertised, XCP routers
will see the difference as spare bandwidth. Since XCP does not
keep per-flow state to monitor the sending rate, when a router
sees spare bandwidth, it will use positive cwnd feedback to in-
crease a sender’s allocation. This goes into a loop such that the
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Fig. 8. XCP bandwidth utilization under different parameter tuning.

XCP sender can keep increasing its cwnd value monotonically,
well beyond the convergence point.

Fig. 9 shows such a negative effect. When we use large buffer
sizes, the cwnd value has converged quickly to the optimal value
around 400 packets. But when we use the default buffer size,
the cwnd value increases linearly to well above 10,000 packets.
Although the actual sending rate is still small due to buffer lim-
itation, this limit may be removable when a possibly transient
memory buffer shortage is eased later. At that point, the conges-
tion may become severe because the sender can suddenly send
more than the network can handle under the inflated cwnd value.
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Fig. 9. XCP flow cwnd convergence under different parameter tuning.

One way to avoid this problem is for the XCP sender to ad-
vertise the true cwnd limit instead of the cwnd face value. For
example, if the additional limiting factor is the receiver’s adver-
tised window size, an XCP sender can put the lowest of either
these limits or the current cwnd value as the advertised cwnd
in H_cwnd field. The sender could also put the lowest limit in
H_feedback field to set an upper bound on the positive feed-
back.

B. Sensitivity to Link Contention

All the above experimental results are based a point-to-point
full-duplex Ethernet link (cross-over cable) at the bottleneck.
However, if XCP operates in a multiple-access shared network,
there will be cross traffic and media-access contention. Unfortu-
nately, there is no easy way for one to predict and plan for such
contention in calculating the true output capacity. XCP can only
take link capacity at its face value. The damage will be self-
inflicted: XCP will generate inflated feedbacks, the senders will
send more than the link can transfer, and queue will build up.

To demonstrate this, we repeat the above validation experi-
ment with a 10Mbps Ethernet hub for the bottleneck link. We
first set the hub to be half-duplex, in which case the XCP data
packets will have to compete with the ACKs for the link access.
Then, we add another host to the same hub and dump an addi-
tional 4Mbps UDP traffic onto the link, creating media-access
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contention.
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Fig. 10. XCP performances with different link environment.

The results (Figure 10) clearly fault the XCP algorithm when
the link is half-duplex or is not contention-free. It is understand-
able that utilization is reduced because the link capacity is re-
duced, but since XCP does not know this it will over-estimate
the spare bandwidth and inflate the feedbacks. That is why the
results show inflated cwnd values and significant queue buildups
(compared to nearly zero queue length). If we look at per-flow
utilization, we can see that individual XCP flows all have trouble
converging (compared with Fig 5).

Unfortunately, there is not much one can do at the network
layer to remedy this deficiency, unless we add MAC delays or
conservative assumptions into the XCP control law.

C. Sensitivity to Non-congestion Loss

To study the effect of non-congestion losses on XCP, we con-
ducted a set of experiments that injected losses artificially and
randomly at a fixed probability, to emulate a lossy wireless chan-
nel. We injected packet losses at one of the three locations:
in the forward direction between the XCP sender and the XCP
router, in the forward direction between the XCP router and the
XCP receiver, and on the return direction. Since the XCP router
does not process return-direction XCP options, it is unnecessary
to make a distinction as to where to drop the return-direction
XCP packets. We label these three different loss sources as
“pre”, “post”, and “ack”, and we varied them in different exper-
iments to understand how to cope with different loss sources.

We also varied the loss probability (packet loss ratio), in dif-
ferent experiments. We chose ten different levels of loss ra-
tios: 0.0001, 0.00025, 0.0005, 0.001, 0.0025, 0.005, 0.01, 0.025,
0.05, and 0.1. They cover a wide range of loss ratios typically
seen in a wireless network. In each experiment, we let XCP con-
verge first, and then started the loss period after 15 seconds. The
loss period lasted 60 seconds, and we measured the bandwidth
utilization during this period. In addition to varying the loss
source at “pre”, “post”, and “ack”, we repeated all the experi-
ments with SACK option turned off and included a TCP case
(with SACK) as a comparison.

Fig. 11 compares the bandwidth utilization averages under all
different settings. The label “nosack” in the legend denotes an

XCP experiment with SACK option turned off, and the data set
“tcp” denotes the TCP case. Because the cwnd value converges
around 400 in our network configuration, loss ratio 0.0025 is
roughly 1 loss per RTT and is marked with “1 loss/rtt” in the
chart.
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Fig. 11. XCP performance under non-congestion loss

The first clear observation is that XCP can handle non-
congestion losses much better than TCP in all cases, if XCP
makes the assumption that observed losses are not due to con-
gestion. As indicated in many prior studies, packet losses on
a high bandwidth-delay product path can substantially degrade
TCP throughput because TCP cannot distinguish it from con-
gestion loss. XCP, in this experiment, assumes all losses as
non-congestion losses because it handles congestion separately
through feedback.

The next observation is that the loss of return-direction XCP
packets (ACKs) does not have a noticeable impact in the whole
range of loss rates, either with or without the SACK option.
This is because ACKs are accumulative so a loss of an ACK
can be recovered by the subsequent ACK. Further, when XCP
converges, the feedback carried in each ACK and the total feed-
back in a RTT is diminishing (see discussions in Section II-E.2),
losing a small number of feedback packets (say, 10%) will not
affect the throughput by much.

However, if forward-direction XCP packets are frequently
lost, the impact on XCP performance can be significant be-
cause the lost segments must be retransmitted. Here, however, it
makes a significant difference whether the SACK option is used
or not. Without SACK, XCP’s performance will suffer even with
infrequent losses at a ratio as small as 0.001. But with SACK,
XCP will not have noticeable degradation until the loss ratio is
more than 25 times higher, at more than 0.025. And even at
that high loss ratio, the degradation is much smaller with SACK
than without SACK. This result validates our assertion earlier
that it is very important for XCP to include SACK to deal with
non-congestion loss.

D. Sensitivity to Blockage

Wireless networks can often have a temporary blockage or
blackout period when the link experiences 100% packet loss for
a short period of time. This can be caused by mobility when
two nodes move out of range from each other, or by environ-
mental effects like terrain or moving objects. It is obvious that
no transport mechanism can communicate during the blockage
period, but it is important to see how it can recover quickly to
the previous state when the blockage ends.
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In this experiment, we emulated blockage by setting firewall
rules at the router to drop all packets during the blackout period.
The blackout period started at 15 seconds after the flows start
so as to let XCP first converge. We measured the bandwidth
utilization and observed its behavior before, during, and after
the blackout period. We repeated the measurement using 1, 2
or 4 XCP flows. The result of a 2-second blackout period is
illustrated in Fig. 12. We also included 1, 2, and 4 TCP flows as
a comparison.
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Fig. 12. XCP behavior around 2-second blockage (15th-17th second)

The result shows that XCP can climb out of a blockage
quickly, as fast as during the start of a flow. In comparison,
TCP is much slower as it must go through slow-start. Also, the
number of flows does not make much of a difference in the XCP
case.
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Fig. 13. XCP bandwidth utilization during and after blockage of various length

We further explored the blockage problem by varying the du-
ration of blackout period, including 10, 20, 50, and 100 sec-
onds. The results, in Fig. 13, show that there is a gap between
the end of a blackout period and the start of XCP’s climb when
the blackout period is longer. A further study of the packet trace
revealed that this is an effect of using our XCP implementation
on top of TCP. Since XCP does not define its policy dealing with
blockage, it inherits TCP’s exponential back-off of its retransmit
timer.

In TCP, when the blockage is much longer than round-trip
time, a retransmission timeout (RTO) event will happen. Then
the first unacknowledged packet will be retransmitted and the
RTO value will double. To illustrates this, we plot the RTO
expiration events along the bottom of each chart in Fig. 13. We

can see that XCP will not recover until an RTO expires after the
blackout period. The longer the blockage period lasts, the larger
the RTO value will be, and the longer XCP may have to wait
until it recovers.

Barring a notification from the network routers, XCP can only
rely on retransmissions to learn when the blockage ends. One
way to improve the inefficiency due to RTO growth is to re-
place the exponential back-off with a fixed RTO strategy similar
to [11]. Since XCP handles congestion loss extremely well, con-
sective RTO can only imply route failure or blockage. If RTO
does not double, a retransmission event can happen much sooner
after the blockage ends, and XCP can recover right after that.

E. Sensitivity to Non-XCP Queues

We hypothesized that XCP will perform poorly in a hybrid
network, worse than TCP, if the bottleneck is a non-XCP queue.
Since the XCP router with the lowest per-flow link capacity in
the path will dictate the sender’s cwnd, if this capacity is still
higher than the actual bottleneck link, the cwnd may still be
high enough to cause congestion and packet losses. Unlike TCP
which reacts to packet losses by reducing cwnd, XCP flows can
only take commands from XCP feedbacks – it has no mecha-
nism to react to this congestion.

To verify this hypothesis, we conducted two experiments: one
put a tighter non-XCP queue after the XCP router and the other
put it before (Fig. 14). In both cases, the non-XCP queue is a
fifo with a 100-packet queue limit and its output is limited to
5Mbps, half of the XCP link capacity at router R. Rest of the
setup remains the same as the previous experiments.
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DB R100Mbps
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10Mbps

non−XCP queue XCP queue

100Mbps

XCP queue non−XCP queue
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Case 1: non−XCP queue after an XCP queue

Case 2: non−XCP queue before an XCP queue

Fig. 14. Network configuration for hybrid network experiments

We measured utilization and packet drops as before but on the
non-XCP queue because it is now the new bottleneck. Results
from the first experiment validate our hypothesis (see Fig. 15).
Since XCP assumes that all losses are due to link impairments,
it does not reduce its sending rate upon loss detection. As a
result, XCP has lower utilization and much higher packet drops
than with TCP. This is severe congestion on the bottleneck link
and bandwidth waste elsewhere, as XCP senders transmit nearly
50% more than they should and XCP is not able to correct that.
In addition, XCP flows fail to achieve fair bandwidth sharing, as



SUBMITTED FOR PUBLICATION, ALL RIGHTS RESERVED. 10

shown by the per-flow utilization and cwnd charts in Fig. 16.
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Fig. 15. XCP and TCP performance in the first experiment
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Fig. 16. XCP fails to converge (case 1)

Results from the second experiment show a similar picture
(see Fig. 17). The congestion is even worse this time – XCP
senders over-transmit by nearly 100%. And as before, XCP fails
to converge to a fair sharing state (see Fig. 18).
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Fig. 17. XCP and TCP performance in the second experiment
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Fig. 18. XCP fails to converge (case 2)

This study shows that XCP is incapable of dealing with the
presence of non-XCP queue if it becomes the bottleneck. This
will have significant implications in XCP deployment and we
will further discuss it in the next two sections.

V. ANALYSIS OF XCP CONTROL LAW APPLICABILITY

The above sensitivity study suggests that XCP must have ac-
curate input for its control law to work properly. External fac-
tors, including OS setting and network configuration, can have
significant effects on the behavior of XCP control law. To fur-
ther understand this effect, we analyze the control law input and
incorrect control loop scenarios.

The XCP feedback control operates on the following five in-
put values: cwnd and RTT for each flow, link capacity, aggre-
gated input traffic, and queue length. The first two are carried in
each XCP packet and indirectly imply a flow’s maximum rate.
The third, link capacity, is a run-time configuration parameter.
The last two are accurately measured at the XCP router itself.

This opens two possible ways for incorrect feedback calcula-
tions.
• XCP can mis-calculate the flow rate. Since an XCP router
doesn’t keep per-flow information, it relies on sender’s adver-
tised cwnd/RTT value. As we have seen above, the actual rate
can be less than what the sender advertises if there is limiting
factors at the end host (like low receiver-window or low buffer
size) or at the network (like non-XCP queue). In this case,
there is a mismatch between the perceived aggregated flow send-
ing rate and the actual measured aggregated input traffic. XCP
router sees this as spare bandwidth and produces positive feed-
backs to artificially drive sender’s cwnd over the stable value.
• XCP can mis-estimate the link capacity. XCP must know the
true link capacity to produce correct feedback. However, as we
have seen in many cases, the real output capacity can be dy-
namic and difficult to estimate. Link-layer factors like shared
medium acess and non-XCP queues can lower the capacity than
the usual estimation (hardware-specific raw bandwidth). In this
case, XCP will again over-estimate spare bandwidth and overly
inflate sender’s cwnd.

In both cases, the network can be thrown into an unstable
state, incurring more severe congestion than with TCP. Unfor-
tunately, there is no mechanism within the existing XCP frame-
work to remedy this situation. For XCP to be deployable, we
must tighten the environment and remove these two possibili-
ties, or we must find a fail-safe mechanism for XCP to detect
and break out from a misbehaving control loop.

VI. DEPLOYMENT ISSUES

XCP faces a number of significant deployment challenges
were it to be deployed on a wide scale. The most apparent im-
pact is that it would require changes to the operating systems
of the end hosts and also routers. With the rise of middleboxes
such as firewalls and network address translators in the Internet,
it has become increasingly difficult to deploy even new purely
end-to-end protocols. XCP faces this and the following addi-
tional challenges.

A. Incremental Deployment

As shown above in Section IV-E, XCP performance is sensi-
tive to the absence of XCP-capable routers on the path. There
is no apparent way for an XCP endpoint to reliably determine
that it is running over XCP-capable queues across the end-to-
end path.

B. XCP Responses to Lost Packets

An open issue is how XCP should respond to lost packets.
Above, in Section IV-C, we showed that XCP would perform
well in a lossy environment if the loss was not caused by con-
gestion. However, if the loss was indeed due to operation over
a congested non-XCP queue as described in Section IV-E, XCP
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would perform poorly. This is because XCP relies on its feed-
back loop to control congestion and considers all loss as rare
events with no significance in congestion control.

An alternative, more conservative strategy would be to still
follow TCP rules for cwnd reduction upon a loss, in case the
loss was due to congestion. This however may not yield good
performance in a truly lossy environment like wireless networks.
Further, it has not been studied whether the XCP control laws
can still can holds with the addition of TCP congestion control
AIMD rules.

This dilemma is difficult to solve. Studies have shown that
it is often difficult to distinguish congestion loss from non-
congestion loss in TCP. The same conclusion may apply to XCP.

C. XCP in the Internet architecture

As mentioned above, XCP could be deployed at different lay-
ers in the Internet architecture, including as a new transport pro-
tocol, as an existing transport protocol extension, as an inter-
posed protocol layer between the IP and transport layers, or as
an IP header option. Although we implemented XCP as a TCP
option, for ease of experimental evaluation, it is not desirable to
have to implement XCP extensions for every possible transport
protocol, and routers will not likely want to have to parse differ-
ent transport header formats. From an architectural standpoint,
XCP is probably appropriate as an interposed protocol layer, but
there may be deployment issues with respect to middleboxes and
firewalls that preclude that approach.

As presently specified, XCP requires an additional 64 bits per
data segment for the XCP header, plus potentially an extra 32
bits of XCP feedback header. The addition of an extra 64 or 96
bits per packet places additional load on the network, and can
be particularly expensive for satellite links. Satellite and wire-
less links often use header compression, and any XCP approach
should also be compatible with such compression. One possible
avenue to explore is whether XCP headers are required on every
packet or whether only some subset of the packets could carry
an (aggregated) XCP header. This type of compression would
likely be less robust to packet loss and may lead to a more com-
plicated router algorithm.

D. Security considerations

XCP opens up another vector for denial-of-service attacks,
because malicious hosts can potentially disrupt the operation of
XCP by promising to send at one rate but sending at another,
or by disrupting the flow of XCP information. Above in Sec-
tion IV, we demonstrated the sensitivity of XCP’s control algo-
rithm to the use of correct information. When deploying XCP
in public networks, it would seem that steps need to be taken
to avoid malicious activity. This suggests that ingress nodes in
each network area probably need to police the XCP flows to
some degree, on a per-flow basis. Such a requirement likely un-
dermines one of the attractive features of XCP: its avoidance of
requiring per-flow state in the network.

In addition, XCP presently is incompatible with IPsec encryp-
tion, unless bypasses are defined to allow the XCP header to be
copied over to the encrypted tunneled packet and back again to
the plaintext side.

VII. CONCLUSION

This paper has reported on a study to implement XCP in
the Linux kernel and to examine its performance in real net-
work testbeds. The goal of this study was to identify issues
important to XCP deployment and we have found several chal-
lenges. We first found that the implementation was challeng-
ing because of the lack of support for precision arithmetic in
the Linux kernel. We also found that it is important to use
a floating point data type in the XCP protocol header. When
we studied the sensitivity of XCP to accurate reporting of the
sending rate, to operation over contention-based media-access
protocols, to non-congestion induced losses, and to incremental
deployment, we found that XCP has potentially significant per-
formance problems unless mis-configuration, estimation errors,
and XCP-induced congestion can be detected and prevented. We
believe we are among the first to report such deployment chal-
lenges that XCP must overcome to see widespread deployment
in IP-based networks. These deployment challenges are signif-
icant and appear to present a formidable barrier to acceptance
of XCP unless additional XCP extensions are researched and
developed.
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