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Abstract 
TCP congestion control has been designed to ensure Internet 
stability along with fair and efficient allocation of the network 
bandwidth. During the last decade, many congestion control 
algorithms have been proposed to improve the classic Tahoe/Reno 
TCP congestion control. This paper aims at evaluating and 
comparing three control algorithms, which are Westwood+, New 
Reno and Vegas TCP, using both Ns-2 simulations and live 
Internet measurements. Simulation scenarios are carefully 
designed in order to investigate goodput, fairness and friendliness 
provided by each of the algorithms. Results show that Westwood+ 
TCP is friendly towards New Reno TCP and improves fairness in 
bandwidth allocation whereas Vegas TCP is fair but it is not able 
to grab its bandwidth share when coexisting with Reno or in the 
presence of reverse traffic because of its RTT-based congestion 
detection mechanism. Finally results show that Westwood+ 
remarkably improves utilization of wireless links that are affected 
by losses not due to congestion.  
 
1. INTRODUCTION 
Internet stability is still largely based on the congestion control 
algorithm proposed by Van Jacobson at the end of the eighties [1], 
which is known as Tahoe TCP, on its first modification, which is 
known as Reno TCP, and other variants described in [3]-[5]. The 
Van Jacobson congestion control algorithm has been designed by 
following the end-to-end principle and has been quite successful 
from keeping the Internet away from congestion collapse [18]-
[20]. Two variables, congestion window (cwnd) and slow start 
threshold (ssthresh), are used to throttle the TCP input rate in 
order to match the network available bandwidth. All these 
congestion control algorithms exploit the Additive-
Increase/Multiplicative-Decrease (AIMD) paradigm, which 
additively increases the cwnd to grab the available bandwidth and 
suddenly decreases the cwnd when network capacity is hit and 
congestion is experienced via segment losses, i.e. timeout or 
duplicate acknowledgments. AIMD algorithms ensure network 
stability but they don’t guarantee fair sharing of network resources 
[1], [6],[ 7], [21]. 
After the introduction of the Van Jacobson algorithm research on 
TCP congestion control become very active and several end-to-
end congestion control algorithms have been proposed since then 
to improve network stability, fair bandwidth allocation and 
resource utilization of high-speed networks and wireless networks 
[2,3,4,9,12,14,20,32,33,39]. In fact, today TCP is not well suited 
for wireless links since losses due to radio channel problems are 

misinterpreted as a symptom of congestion by current TCP 
schemes and lead to an undue reduction of the transmission rate. 
Thus, TCP requires supplementary link layer protocols such as 
reliable link-layer or split-connections approach to efficiently 
operate over wireless links [2,10,21,33,34]. 
Vegas TCP was the first attempt to depart from the loss-driven 
paradigm of the TCP by introducing a mechanism of congestion 
detection before packet losses [9]. In particular, Vegas TCP 
computes the difference between the actual input rate (cwnd/RTT) 
and the expected rate (cwnd/RTTmin), where RTT is the Round 
Trip Time and RTTmin is the minimum measured round trip time, 
to infer network congestion. In particular, if the difference is 
smaller than a threshold α then the cwnd is additively increased, 
whereas if the difference is greater than another threshold β then 
the cwnd is Additively Decreased; finally, if the difference is 
smaller than β and greater than α, then the cwnd is kept constant 
[9]. In [11] it has been shown that Vegas TCP ensures network 
stability but it is not able to grab its own bandwidth share when 
interacting with algorithms that systematically hits network queue 
capacity as Reno.  
Westwood TCP is a new congestion control algorithm that is 
based on end-to-end bandwidth estimate [12]. In particular, 
Westwood TCP estimates the available bandwidth by counting 
and filtering the flow of returning ACKs and adaptively sets the 
cwnd and the ssthresh after congestion by taking into account the 
estimated bandwidth. The original bandwidth estimation 
algorithm fails to work properly in the presence of ACK 
compression [41]. Thus a slightly modified version of the 
bandwidth estimation algorithm has been proposed in [14] to cope 
with ACK compression effect. We call Westwood+ the original 
Westwood algorithm with the enhanced bandwidth estimate. 
Furthermore, in [14] it has been shown via a mathematical 
analysis that Westwood+ is friendly towards Reno TCP and fairer 
than Reno in bandwidth allocation.  
This paper aims at comparing Westwood+, New Reno and Vegas 
TCP. New Reno is an improved version of Reno that avoids 
multiple reductions of the cwnd when several segments from the 
same window of data get lost [3]. New Reno TCP has been 
considered because it is the leading Internet congestion control 
protocol [27]. Vegas TCP has been considered because it also 
proposes, as Westwood+, a new mechanism for throttling the 
congestion window that is based on measuring the network 
congestion status via RTT measurements. Moreover, Vegas TCP 
provides the basic ideas behind the new Fast TCP congestion 
control algorithm, which has been recently proposed by 
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researchers at Caltech [39]. In authors’ words, “Fast TCP is a sort 
of high-speed version of Vegas” [40]. At the time of this paper 
Fast TCP is still in a trial phase and authors do not have released 
any kernel code or ns-2 implementation. Being based on RTT 
measurements to infer congestion, it could inherit all drawbacks 
of Vegas that will be illustrated in this paper, mainly the 
incapacity to grab bandwidth when coexisting with Reno traffic or 
in the presence of reverse traffic.  
For evaluation and comparison purposes, computer simulations 
using the ns-2 simulator [16], and measurements using a Linux 
implementation, over the real Internet, have been collected. In 
particular, ns-2 simulations have been carried out over single and 
multi bottleneck scenarios with link capacities ranging from 
1Mbps to 100Mbps, for various buffer sizes and in the presence of 
homogeneous and heterogeneous traffic sources. Moreover, 
Medium Earth Orbit (MEO) and Geosynchronous Earth Orbit 
(GEO) satellite scenarios in the presence of lossy links have been 
simulated. Simulation results have shown that: (1) Westwood+ 
TCP is friendly towards New Reno TCP; (2) Weswtood+ TCP 
improves the fairness in bandwidth sharing with respect to New 
Reno TCP; (3) Vegas TCP is not able to grab its own bandwidth 
share when coexisting with New Reno TCP [11] or in the 
presence of reverse traffic; (4) Westwood+ improves the 
utilization of wireless (i.e. satellite) links with respect to both 
Vegas and New Reno in the presence of uniform or bursty losses.  
The paper is organized as follows: Section 2 outlines the 
Westwood+ algorithm; Section 3 compares New Reno, Vegas and 
Westwood+ using the ns-2 simulator; Section 4 compares New 
Reno and Westwood+ using live Internet experiments; finally, the 
last section draws the conclusions. 
 
2. WESTWOOD+ TCP 
This section describes the Westwood+ congestion control 
algorithm. In particular, Section 2.1 describes the control 
algorithm, Section 2.2 the bandwidth estimation algorithm used 
by the control algorithm and section 2.3 summarizes some results 
on mathematical evaluation of fairness and friendliness of Reno 
and Westwood+ TCP. 
 
2.1 The algorithm 
The Westwood+ algorithm is based on end-to-end estimation of 
the bandwidth available along the TCP connection path [12],[14]. 
The estimate is obtained by filtering the stream of returning ACK 
packets and it is used to adaptively set the control windows when 
network congestion is experienced. In particular, when three 
DUPACKs are received, both the congestion window (cwnd) and 
the slow start threshold (ssthresh) are set equal to the estimated 
bandwidth (BWE) times the minimum measured round trip time 
(RTTmin); when a coarse timeout expires the ssthresh is set as 
before while the cwnd is set equal to one.  
The pseudo code of the Westwood+ algorithm is reported below: 
a) On ACK reception: 
 cwnd is increased accordingly to the Reno algorithm; 

the end-to-end bandwidth estimate BWE is computed; 
b) When 3 DUPACKs are received: 

ssthresh =max(2, (BWE* RTTmin) / seg_size);  
cwnd = ssthresh; 

c) When coarse timeout expires: 
ssthresh = max(2,(BWE* RTTmin) / seg_size);  
cwnd = 1; 

From the pseudo-code reported above, it turns out that 

Westwood+ additively increases the cwnd as Reno, when ACKs 
are received. On the other hand, when a congestion episode 
happens, Westwood employs an adaptive setting of cwnd and 
ssthresh so that it can be said that Westwood+ follows an 
Additive-Increase/Adaptive-Decrease paradigm [14].  
It is worth noting that the adaptive decrease mechanism employed 
by Westwood+ TCP improves the stability of the standard TCP 
multiplicative decrease algorithm. In fact, the adaptive window 
shrinking provides a congestion window that is decreased enough 
in the presence of heavy congestion and not too much in the 
presence of light congestion or losses that are not due to 
congestion, such as in the case of unreliable radio links. 
Moreover, the adaptive setting of the control windows increases 
the fair allocation of available bandwidth to different TCP flows. 
This result can be intuitively explained by considering that the 
window setting of Westwood+ TCP tracks the estimated 
bandwidth so that, if this estimate is a good measurement of the 
fair share, then the fairness is improved. Alternatively, it could be 
noted that the setting cwnd = B×RTTmin sustains a transmission 
rate (cwnd/RTT) = (B×RTTmin)/RTT that is smaller than the 
bandwidth B estimated at the time of congestion: as a 
consequence, the Westwood+ TCP flow clears out its path 
backlog after the setting thus leaving room in the buffers for 
coexisting flows, which improves statistical multiplexing and 
fairness. 
 
2.2 The end-to-end bandwidth estimate 
The AIMD algorithm can be viewed as an end-to-end method to 
obtain a “rough” but robust measurement of the best effort 
bandwidth that is available along a TCP path.  
The first attempt to exploit ACK packets to improve bandwidth 
estimation is the packet pair (PP) algorithm, which tries to infer 
the bottleneck available bandwidth at the starting of a connection 
by measuring the interarrival time between the ACKs of two 
packets that are sent back to back [23]. Hoe proposes a refined PP 
method for estimating the available bandwidth in order to properly 
initialize the ssthresh: the bandwidth is calculated by using the 
least-square estimation on the reception time of three ACKs 
corresponding to three closely-spaced packets [24]. Allman and 
Paxson evaluate the PP techniques and show that in practice they 
perform less well than expected [25]. Lai and Baker propose an 
evolution of the PP algorithm for measuring the link bandwidth in 
FIFO-queuing networks [26]. The method consumes less network 
bandwidth while maintaining approximately the same accuracy of 
other methods, which is poor for paths longer than few hops. The 
inaccuracy of the algorithms based on the packet pair approach is 
due to the fact that the interarrival times between consecutive 
segments at the receiver can be very different from the interarrival 
times between the corresponding ACKs at the sender. It will be 
shown in the following section that this effect is much more 
significant in the presence of congestion along the ACK path. Jain 
and Dovrolis propose to use streams of probing packets to 
measure the end-to-end available bandwidth, which is defined as 
the maximum rate that the path can provide to a flow, without 
reducing the rate of the rest of the traffic. The estimate is 
computed over an averaging interval [36]. Finally, they focus on 
the relationship between the available bandwidth in a path they 
measure and the throughput of a persistent TCP connection. They 
show that the averaged throughput of a TCP connection is about 
20-30% more than the available bandwidth measured by their tool 
due to the fact that the TCP probing mechanism gets more 
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bandwidth than what was previously available in the path, 
grabbing part of the throughput of other connections. We notice 
that the latter result is not surprising being a consequence of the 
fundamental property of the TCP congestion control algorithm for 
which a new joining TCP flow must get its bandwidth share from 
existing flows.  
A similar technique, based on using streams of probing packets, 
has been proposed by Melander et. al [37]. It uses sequences of 
packet pairs at increasing rates and estimates the available 
bandwidth by comparing input and output rates of different packet 
pairs. 
Westwood+ TCP proposes an end-to-end estimate of the “best-
effort” available bandwidth by properly counting and filtering the 
flow of returning ACKs [12]. A sample of available bandwidth 

kkk /db ∆=  is computed every RTT, where dk is the amount of 
data acknowledged during the last RTT = k∆ . The amount dk is 
determined by a proper counting procedure that considers delayed 
ACKs and duplicate ACKs: a duplicate ACK counts for one 
delivered segment, a delayed ACK for two segments, a 
cumulative ACK counts for one segment or for the number of 
segments exceeding those already accounted for by previous 
duplicate acknowledgements (see [12] for more details on this). 
Bandwidth samples bk are low-pass filtered since congestion is 
due to low frequency components [31], and because of delayed 
ACK option [13,22].  In [42] the following time-invariant low-
pass filter has been proposed as an alternative to the original time-
varying filter of Westwood TCP [12]: 

kkk bbb ⋅−+⋅= − )1(ˆˆ
1 αα  (1) 

where α is a constant set equal to 0.9. The filter (1) reveals to be 
particularly suited for kernel code implementation, where floating 
point operations should be avoided [44]. 
It should be noted that bk are samples of used bandwidth that 
coincide with the “best-effort” available bandwidth when the 
connection hits network capacity and experiences losses. 
Measuring the actual rate a connection is achieving during the 
data transfer as done by Westwood+ TCP is a different and much 
easier task than estimating the bandwidth available at the 
beginning of a TCP connection going over a shared FIFO queuing 
network. 
To give an insight into the bandwidth estimation algorithm, Fig. 1 
shows the bandwidth computed at congestion instants by 20 
Westwood+ or 20 Westwood flows sharing a 10Mbps bottleneck 
in the presence of reverse traffic contributed by 10 TCP long lived 
New Reno connections. Fig. 1(a) shows that all the 20 
Westwood+ connections estimate a best-effort available 
bandwidth that reasonably approaches the fair share of 0.5Mbps. 
On the other hand, Fig. 1(b) highlights that Westwood 
overestimates up to 100 times the fair share due to ACK 
compression.  
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Figure 1. Bandwidth estimates of 20 TCP flows in the presence 
of ACK compression: (a) Westwood+; (b) Westwood. 
 
To conclude this section we report some considerations on the 
end-to-end bandwidth estimate of Westwood+ and on the backlog 
estimate of Vegas. The bandwidth estimate employed by 
Westwood+ TCP measures the low frequency components of the 
used bandwidth samples bk, which coincides with the “best-effort” 
available bandwidth of a TCP sender at the end of the slow-
start/congestion-avoidance probing phase. We remark that the 
estimate (1) is different from measuring the low frequency 
components of the sending rate cwnd/RTT, where cwnd/RTT is the 
measure of the instantaneous throughput employed by Vegas 
TCP. In fact, the Vegas actual rate cwnd/RTT is a measure of the 
available bandwidth that is based on the number of sent packets 
(cwnd) and not on the number of acknowledged packets dk. As a 
consequence, Vegas samples do not take into account that a 
fraction of sent packets could be lost thus leading to available 
bandwidth overestimate. To illustrate this point, we simulate a 
single Westwood+ connection that sends data through a 1Mbps 
bottleneck link. Fig. 2 shows the bandwidth estimates obtained by 
filtering the bk samples or the cwnd/RTT samples using the filter 
(1). Results confirm that the bandwidth estimate obtained by 
filtering the ACKs is more accurate and less oscillating than the 
one obtained by filtering the input rate, which, in fact, provides an 
overestimate of the available bandwidth. 
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Figure 2. Bandwidth estimate and input rate. 
 
2.3 Mathematical evaluation of fairness and 

friendliness 
This section investigates the intra-protocol fairness in bandwidth 
allocation provided by Reno and Westwood+ and their inter-
protocol friendliness using the mathematical models of the Reno 
and Westwood+ throughputs reported in [14,27,28]. In particular, 
it has been shown that when the average segment loss probability 
p is low, the Reno throughput is proportional to the inverse of the 
average round trip time RTT and to p/1  as follows [28]: 

p
)p(

RTT
T Reno −= 121

 (2) 

Under the same assumptions, it has been shown that Westwood+ 
TCP provides the following steady state throughput [14]: 

p
p

TRTT
T

q

West −
⋅

= 11  (3) 

where Tq is the average queuing time equal to the difference 
between RTT and the minimum round trip time RTTmin. 
By comparing (2) and (3) it results that both throughputs of 
Westwood+ and Reno depend on p/1 , that is Westwood+ and 
Reno are friendly to each other. Moreover, since flows with 
different RTTs experience the same mean queuing time Tq, Eq. (3) 
shows that the throughput of Westwood+ depends on round trip 

time as RTT/1  whereas the throughput of Reno as RTT/1 , 
that is, Westwood+ increases fair sharing of network capacity 
between flows with different RTTs. Friendliness and fairness will 
be investigated through simulations in the next sections to confirm 
these theoretical results. 
 
3. SIMULATION-BASED COMPARISON  
In this section we evaluate and compare Westwood+, New Reno 
and Vegas TCP using the ns-2 simulator [16,38]. Simple scenarios 
are considered in order to illustrate the fundamental features of the 
considered protocol dynamics whereas more complex topologies 
are considered to test the protocols in more realistic settings. In 
particular, single, multi-bottleneck and mixed wired/wireless 
scenarios are considered. Each considered scenario is particularly 
useful to highlight a particular feature of the dynamic behavior of 
the protocols or to evaluate a specific metric. In all considered 
scenarios, unless otherwise specified, the timestamp option is 
enabled; destinations implement the delayed ACK option except 
when Vegas is used, since its congestion avoidance mechanism is 

based on RTT measurements [9, 22].  Packets are 1500 Bytes long 
and buffer sizes are set equal to the link bandwidth times the 
maximum round trip propagation time unless otherwise specified. 
The initial congestion window has been set equal to 3 segments 
[43]. The receiver window size and the initial ssthresh are set 
equal to a value greater than the pipe network capacity so that 
flows are always network constrained and grab the available 
bandwidth using slow-start when the connection starts. 
 
3.1 A simple single-connection scenario 
In order to analyze the fundamental dynamics of the considered 
TCP congestion control algorithms, we start by considering the 
single connection scenario depicted in Fig. 3. The TCP1 
connection is persistent and sends data over a 2Mbps bottleneck 
link. The RTT is 250ms. Ten ON-OFF New Reno TCP senders 
inject traffic along the ACK path of the single TCP connection, 
i.e. they generate reverse traffic for the TCP connection on the left 
side of Fig. 3. Reverse traffic aims at provoking congestion along 
the ACK path and at exciting ACK compression, which is 
important to be considered since it exacerbates the bursty nature 
of the TCP [41].  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Simulation scenario. 
 

The TCP1 connection starts at t=0. The 10 TCP connections on 
the backward path follow an OFF-ON-OFF-ON pattern in order to 
investigate the effect of reverse traffic. In particular, the reverse 
traffic is ON during the intervals [250s, 500s] and [750s, 1000s] 
and is silent during the intervals [0s, 250s] and [500s, 750s].  
Tables I reports the goodputs that have been measured during 
each interval.  
 

Table I. Goodputs of a single TCP connection. 
  [0s,250s] 

(Mbps) 
[250s,500s] 

(Mbps) 
 [500,750s] 

(Mbps) 
 [750s,1000s] 

(Mbps) 
New Reno 1.86 1.62 1.99 1.64 
Vegas 1.97 0.48 1.97 0.51 
Westwood+ 1.86 1.68 1.99 1.69 
 
 
The Goodput has been computed as follows: 
 

timetransfer
datatedretransmitdatasentGoodput

_
)__( −=  

 
When the reverse traffic is OFF, goodputs of all considered TCPs 
approaches the bottleneck link capacity. However, when the 
reverse traffic is ON Vegas provides the worst goodput whereas 
Westwood+ obtains a slightly better goodput with respect to New 
Reno TCP. 
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To get a further insight, Figs. 4-5 plot the cwnd and the ssthresh 
dynamics. New Reno and Westwood+ TCP achieve a larger cwnd 
during the time intervals when the reverse traffic is off. The 
reason is that, when the reverse traffic is silent, New Reno and 
Westwood+ TCP increase the cwnds up to the bandwidth delay 
product, which is roughly 40 segments, plus the bottleneck queue 
size, which is 40 segments too, before experiencing congestion; 
this is shown in Figs. 4 and 5 where the cwnds of New Reno and 
Westwood+ systematically reach the value of 80 segments before 
being reduced by following the Multiplicative Decrease or 
Adaptive Decrease mechanism, respectively. On the other hand, 
when the reverse traffic is turned on, both New Reno and 
Westwood+ can experience a congestion episode as soon as the 
cwnd is larger than the buffer size because of the burstiness of the 
TCP due to ACK compression. However, it should be noted that 
the ssthresh dynamics of Westwood+ is less sensitive to 
congestion along the ACK path with respect to New Reno because 
of the bandwidth estimate used for its setting. 
Regarding Vegas, Fig. 6 shows that the cwnd is constant and 
approaches the bandwidth delay product when the reverse traffic 
is off, thus providing an efficient link utilization. On the other 
hand, when the reverse traffic is on, the cwnd keeps very low 
values thus preventing link utilization. The reason is that the 
reverse traffic provokes queuing delays along the backward path, 
which increases the RTT. 
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Figure 4. cwnd and ssthresh of a single New Reno TCP flow 
with reverse traffic contributed by 10 New Reno TCP flows. 
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Figure 5. cwnd and ssthresh of a single Westwood+ TCP flow 
with reverse traffic contributed by 10 New Reno TCP flows. 

0
10
20
30
40
50
60
70
80
90

100

0 100 200 300 400 500 600 700 800 900 1000
s

Se
gm

en
ts

cwnd
ssthresh

 
Figure 6. cwnd and ssthresh of a single Vegas TCP flow with 
reverse traffic contributed by 10 New Reno TCP flows  
 
As a consequence, the Vegas connection on the forward path 
additively shrinks the cwnd thus obtaining a poor utilization of the 
bottleneck link. We have investigated more this point to see if the 
kind of used reverse traffic is of importance. Fig. 7 shows that 
Vegas is not able to grab the bottleneck link also when the reverse 
traffic is contributed by 10 Vegas connections, that is, Vegas does 
not provide full link utilization whatever source type of reverse 
traffic is considered. To complete the comparison we report, for 
this time only, the behavior of Reno TCP. Fig. 8 shows that Reno 
is heavily affected by the presence of reverse traffic. Therefore, 
since now on, we will always consider the New Reno TCP. 
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Figure 7. cwnd and ssthresh of a single Vegas TCP flow with 
reverse traffic contributed by 10 Vegas TCP flows. 
 
Based on the simulations above reported and on others that we do 
not report here, we can conclude that the reverse traffic heavily 
affects protocol behaviors. Therefore, the reverse traffic will be 
always active in all scenarios we will consider in the sequel. 
Moreover, since we have seen that the effect of reverse traffic 
does not depend significantly on the TCP control algorithm that 
generates it, we will consider always New Reno type reverse 
traffic because it is the more efficient and today used TCP. 
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Figure 8. cwnd and ssthresh of a single Reno TCP flow with 
reverse traffic contributed by 10 New Reno TCP flows. 
 
We conclude this section by noting that Fig. 4 and 5 show that 
Westwood+ and Reno exhibit a cyclic behavior that continuously 
probes for network capacity. The main consequence of this 
behavior is that, when Westwood+ and New Reno coexist, they 
are friendly to each other; on the other hand, when Vegas coexists 
with New Reno or Westwood+ it gives up bandwidth to New 
Reno or Westwood+ since Vegas lacks of this probing behavior 
[11].  
 
3.2 Single bottleneck scenario 
The scenario depicted in Fig. 11, where M TCP sources with 
different RTTs share a 10Mbps bottleneck link, is particularly 
suited for evaluating goodput and fairness in bandwidth 
allocation. The M TCP flows are persistent and controlled by the 
same algorithm in order to evaluate the intra-protocol fairness. 
RTTs are uniformly spread in the interval [20+230/M, 250]ms, 
with M ranging from 10 to 200, to investigate the fairness with 
respect to the round trip time. Simulations last 1000s during which 
all the TCP sources send data. In order to obtain ACK 
compression, 10 TCP New Reno senders inject traffic along the 
ACKs path of the M connections.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Single bottleneck scenario. 
 

Fig. 12 shows the total goodput, which is defined as the sum of 
the goodputs of all the M TCP connections on the forward path. In 
particular, the figure shows that when M is larger than 40 the total 
goodput approaches the bottleneck link capacity. On the other 
hand, when M is smaller than 40, Vegas provides a very low total 
goodput. Again this phenomenon is due to the TCP traffic on the 
backward path, which has a significant impact on Vegas TCP (see 
also Figs. 6, 7).  

 
Figure 12. Total goodput of M TCP connections 

 

 
Fig. 13 plots the Jain fairness index [17]: 
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where bi is the goodput of the ith connection and M are the 
connections sharing the bottleneck. The Jain fairness index 
belongs to the interval [0,1] and increases with fairness reaching 
the maximum value at one. 
Fig. 13 shows that Westwood+ improves fairness in bandwidth 
sharing with respect to New Reno TCP when M<60. The reason is 
that RTTs are uniformly spread over the interval [20+230/M, 
250]ms so that, for smaller M, RTTs are more distant, which 
increases the unfair behavior of TCP as stated by Eqs. (2) and (3). 
Regarding Vegas, it exhibits the best jain fairness index, but with 
the lowest goodput (see Fig. 12).   

 
Figure. 13. Jain fairness index over a 10Mbps bottleneck. 

 
To provide a “visual” look into the fairness issue, the sequence 
numbers of 20 New Reno or 20 Westwood+ or 20 Vegas 
connections sharing a 10Mbps bottleneck are shown in Figs. 14-
16, respectively. Figs. 14 and 15 show that the New Reno final 
sequence numbers are spread in the interval [26693, 64238] 
whereas the Westwood+ ones are in the shorter interval [28822, 
53423]. Fig. 16 shows that Vegas is fair but provides very low 
goodput due to the presence of reverse traffic (see Fig. 12).  
To summarize simulation results of this section, we can say that 
both Westwood+ and New Reno achieve full link utilization with 
Westwood+ providing improved intraprotocol fairness with 
respect to New Reno. On the other hand, Vegas is fair but it is 
unable to utilize the network bandwidth.  
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Figure 14. Sequence numbers of 20 New Reno TCP 

connections  
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Figure 15. Sequence numbers of  20 Westwood+ TCP. 
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Figure 16. Sequence numbers of  20 Vegas TCP connections. 

 
3.3 Multi bottleneck scenario 
The multi-bottleneck scenario is particularly suited to investigate 
the inter-protocol friendliness of New Reno, Westwood+ and 
Vegas TCP. The topology depicted in Fig. 17 is characterized by: 
(a) N hops; (b) one persistent connection C1 going through all the 
N hops; (c) 2N persistent sources C2;C3;C4 … C2N+1 transmitting 
cross traffic data over every single hop. The capacity of the 
entry/exit links is 100Mbps with 20ms propagation delay. The 
capacity of the links connecting the routers is 10Mbps with 10ms 
propagation delay. Router queue sizes have been set equal to 125 
packets, which corresponds to the bandwidth delay product of a 
typical RTT of 150ms. Simulation lasts 1000s during which the 
cross traffic sources are always active. The connection C1 is 

persistent and starts at time t = 10s. Notice that the described 
scenario is a ”worst case” scenario for the source C1 since: (1) C1 
starts data transmission when the network bandwidth has been 
grabbed by the cross traffic sources; (2) C1 has the longest RTT 
and experiences drops at each router it goes through. 

 
 
We will consider the following 4 scenarios: 
Scenario 1. The C2,C3,C4 … C2N+1 sources of cross traffic are 
controlled by New Reno TCP whereas the C1 connection is 
controlled by New Reno, Vegas or Westwood+, respectively. This 
scenario aims at comparing New Reno, Vegas or Westwood+, 
when going through an Internet dominated by New Reno traffic. 
In other terms, this scenario allows us to investigate the capacity 
of New Reno, Vegas and Westwood+ to grab network bandwidth 
when competing with New Reno cross traffic, which is the 
friendliness of New Reno TCP towards Vegas or Weswtood+ 
TCP. 
Fig. 18 shows the goodput of the C1 connection as a function of 
the number of hops; the fair share is 5Mbps. The goodput of the 
C1 connection monotonically decreases with the number of hops 
because of increased loss ratio and RTT. Westwood+ roughly 
achieves the same goodput as New Reno, whereas Vegas is again 
not able to grab its bandwidth share in a “New Reno 
environment”. 
Fig. 19 shows that the total goodput, which is now computed as 
the  goodput of the C1 connection + average of the C2,C4..C2N 
connection goodputs, does not vary significantly with the number 
of hops. This is due to the fact that the total goodput mainly 
depends on the behavior of the cross traffic connections 
C2,C4..C2N  whereas the C1 connection has a negligible impact on 
the total goodput.  
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Figure 18. C1 Goodput vs. number of traversed hops in the 
presence of New Reno cross traffic. 

Figure 17. Multi bottleneck topology. 

C1
Sink1

C2

R

Sink2

C3Sink3

R R 

C5 Sink5 

R 

C4 Sink4 

1th hop 2th hop 



 8

3.0E+06

4.0E+06

5.0E+06

6.0E+06

7.0E+06

8.0E+06

9.0E+06

1.0E+07

1 2 3 4 5 6 7 8 9 10
No. of traversed hops

To
ta

l G
oo

dp
ut

 (b
ps

)

New Reno
Vegas
Westwood+

 
Figure 19. Total Goodput vs. number of traversed hops in the 
presence of New Reno cross traffic. 

 
Scenario 2. The C2;C3;C4 … C2N+1 sources of cross traffic are 
controlled by Westwood+ TCP whereas the C1 connection is 
alternatively controlled by New Reno, Vegas or Westwood+. This 
scenario allows us to investigate the friendliness of Westwood+ 
towards New Reno and Vegas TCP. Fig. 20 shows the goodput of 
the C1 connection as a function of the number of traversed hops. 
Again, it shows that Vegas is not able to grab its bandwidth share.  
Moreover, a comparison of the New Reno curves in Fig. 18 and 
Fig. 20 shows that the C1 New Reno achieves a slightly greater 
goodput when going through Westwood+ cross-traffic than when 
going through New Reno cross-traffic, that is, Westwood+ is more 
than friendly towards New Reno. Also in this case, the total 
goodput, which is reported in Fig. 21, does not vary significantly 
with N.  
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Figure 20. C1 Goodput vs. number of traversed hops in the 
presence of Westwood+ cross traffic. 
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Figure 21. Total Goodput vs. number of traversed hops in the 
presence of Westwood+ cross traffic. 
 
Scenario 3. The C2;C3;C4 … C2N+1 sources of cross traffic are 
controlled by Vegas TCP whereas the C1 connection is 
alternatively controlled by Reno, Vegas or Westwood+. This 
scenario investigates the friendliness of Vegas towards Reno and 
Westwood+ TCP. Fig. 22 shows that Reno and Westwood+ 
basically achieve the same goodput, which is larger than the fair 
share for any number of traversed hops: the reason is that the 
Vegas cross traffic, differently from New Reno and Westwood+, 
avoids to systematically fill the queues thus leaving more room 
for the C1 traffic. The total goodput is very low when the C1 
connection is controlled by Vegas, whereas it approaches the 
10Mbps link capacity when the C1 connection is controlled by 
New Reno or Westwood+  (see Fig. 23). This result again shows 
that the Vegas cross traffic connections C2,C4..C2N are far from 
providing an efficient utilization of the network capacity. 
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Figure 22. C1 Goodput vs. number of traversed hops in the 
presence of Vegas cross traffic. 
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Figure 23. Total Goodput vs. number of traversed hops in the 
presence of Vegas cross traffic. 

 
Scenario 4. All traffic sources are controlled by the same control 
algorithm. This is a homogeneous scenario aiming at evaluating 
New Reno, Westwood+ and Vegas TCP in absolute terms. 
Fig. 24 shows that New Reno and Westwood+ provide roughly 
the same goodput, which monotonically decreases when the 
number of traversed hops increases, whereas Vegas achieves the 
highest goodputs when the number of traversed hops is larger than 
3 because the Vegas cross traffic is not efficient as Reno or 
Westwood+. In fact, Fig. 25 shows that the total goodput obtained 
by using Vegas TCP scenario is much smaller than the total 
goodputs obtained by New Reno or Westwood+, which means 
that the Vegas cross traffic do not use the share of link capacity 
left unused by the C1 connection.  
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Figure 24. C1 Goodput vs. number of traversed hops in the 
presence of homogeneous cross-traffic. 
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Figure 25. Total Goodput vs. number of traversed hops in the 

presence of homogeneous cross-traffic. 
 
To summarize, results of this section have shown the inter-
protocol friendliness of New Reno and Westwood+ towards each 
other that is mainly due to the fact that they employs the same 
probing mechanism. On the other hand, the rtt-based congestion 
detection mechanism of Vegas TCP turns out an unfriendly 
behavior of New Reno or Westwood+ towards Vegas, which is 
not able to fully utilize the network bandwidth. For these reasons, 
we will not consider Vegas in the sequel of the paper. 
 
3.4 Wireless scenarios 
This section aims at investigating the behavior of TCP over 
wireless links that are affected by losses not due to congestion. 
This case is particularly interesting since it is well known that 
protocols that react to losses by multiplicatively decreasing the 
control windows do not provide efficient utilization of lossy 
channels. In this scenario we consider Westwood+, New Reno and 
also TCP SACK to investigate the efficiency of SACK to recover 
from sporadic random losses. Since TCP SACK by default does 
not use delayed ACK, we consider Westwood+ and New Reno 
with delayed ACK (default case) and without delayed ACK in 
order to get a fair comparison. 
 
3.4.1 Terrestrial scenario 
The first scenario we consider is the hybrid wired/wireless 
topology shown in Fig. 26. The TCP1 connection goes through a 
wired path terminating with a last hop wireless link. The wireless 
last hop models a mobile user accessing the Internet using a radio 
link as in the case of a cellular telephone system. The one way 
delay of the TCP1 connection is 125ms with 20ms delay on the 
wireless link, which is a 2Mbps link [2]. RTTs of the 5 cross 
traffic connections and of the 10 New Reno backward traffic 
connections are uniformly spread in the intervals [66ms,250ms] 
and [46ms,250ms], respectively. We consider a wireless link 
affected by bursty segment losses in both directions. We use the 
Gilbert two state Markov chain to model the loss process [10]. In 
particular, we assume a segment loss probability equal to 0, when 
the channel is in the Good state, and equal to 0.1 when the 
channel is in the Bad state. The permanence time in the Good 
state is assumed deterministic and equal to 1s whereas the 
permanence time in the Bad state is assumed also deterministic 
but this time we consider values ranging from 0.1ms to 100 ms. 
When the permanence time in a state elapses, the state can transit 
to a Good or Bad state with a probability p=0.5. For each 
considered case, we run 10 simulations by varying the seed of the 
random loss process. For each value of the BAD state duration we 
report the maximum, minimum and average goodputs.  
 
 
 
 
 
 
 
 
 
 
 
Figure 26. Mixed wired/wireless scenario. 
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In order to analyze only the impact of bursty losses on the TCP 
behavior, we have first turned off both the cross and reverse 
traffic sources. This simple scenario is particularly useful to 
investigate the effectiveness of the adaptive decrease paradigm 
when losses not due to congestion are experienced by the TCP. 
Fig. 27 (a) shows the goodput of TCP1 Westwood+ and New 
Reno, when the delayed ACK is enabled (default case), as a 
function of the duration of the BAD state. It turns out that 
Westwood+ improves the goodput for a large set of channel 
conditions. In particular, when the delayed ACK option is 
enabled, Westwood+ increases the utilization of the wireless link 
from 70% to 230% with respect to New Reno. Fig. 27 (b) shows 
the goodput of Westwood+, New Reno and TCP SACK when the 
delayed ACK is disabled (default case for TCP SACK). In this 
case SACK TCP provides a goodput similar to that of New Reno, 
whereas Westwood+ improves the link utilization with respect to 
SACK and New Reno from 34% up to 177%. The reason is that 
the adaptive setting of cwnd and ssthresh performed by 
Westwood+ takes into account the bandwidth used at time of 
congestion, so that the TCP sender does not lose ground when in 
the presence of losses not due to congestion. To get a further 
insight into this feature, Figs. 28 and 29 report the cwnd dynamics 
of Westwood+ and New Reno, respectively, obtained when the 
duration of the BAD state is 0.01s and the delayed ACK is 
enabled. In this case, Westwood+ TCP provides a ssthresh 
approaching the bandwidth-delay product of 40 packets, whereas 
New Reno TCP provides a ssthresh that is smaller than one fourth 
the bandwidth-delay product. 
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Figure 27. Goodput of the TCP1 connection without reverse 
traffic: (a) DACK enabled; (b) DACK disabled. 
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Figure 28. Cwnd and ssthresh of Westwood+ when the 
duration of the BAD state is 0.01s. 
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Figure 29. Cwnd and ssthresh of New Reno when the duration 
of the BAD state is 0.01s. 
 
One further point valuable of investigation is when Westwood+ 
shares the wired portion of the network with several TCP flows on 
the forward and backward paths. For that purpose, we turn on the 
cross and reverse traffic in Fig. 26 and we measure the goodput of 
the TCP1 connections for various values of the BAD state 
duration. Fig. 30 shows that the delayed ACK option plays a 
major role in this scenario. In fact, protocols that do not employ 
the delayed ACK option provides goodputs that are roughly two 
times larger than those obtained when the delayed ACK option is 
enabled. The reason is that the delayed ACK option slows down 
the TCP probing phase. In these scenarios Westwood+ TCP 
(DACK disabled) still improves the goodput with respect to New 
Reno (DACK disabled) and SACK TCP, but the improvement is 
now only up to roughly 20%. The reason is that in this case the 
TCP1 connection loses bandwidth in favor of the cross traffic that, 
being wired, is not penalized by losses not due to congestion. 
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Figure 30. Goodput of the TCP1 connection in presence of 
cross and reverse traffic. 
 
3.4.2 Satellite scenario 
This section investigates the performances of New Reno and 
Westwood+ over a large leaky pipe such as in the case of a 
satellite scenario. For that purpose we consider the scenario in 
Fig. 31 where a 10mbps bottleneck link has a one-way delay equal 
to 275ms, which corresponds to a GEO satellite connection [32].  

 
Figure 31. GEO satellite scenario. 
 
We consider 20 TCP forward connections in the presence of 
reverse traffic contributed by 10 long-lived New Reno 
connections. RTTs of the forward connections are equal to 590ms. 
Simulations last 1000s. We assume the same error model used in 
the previous sub-section except for the BAD state duration that 
has been increased up to 1s. The bottleneck link experiences 
segment losses in both directions. Fig. 32 shows the goodput 
provided by the two considered TCP control algorithms. When 
delayed ACK is enabled, Westwood+ TCP provides a goodput 
improvement with respect to New Reno TCP that ranges from 
20% to 160%, whereas, when the delayed ACK is disabled, the 
improvements of Westwood+ with respect to SACK TCP and 
New Reno are up to 80%. Again, the reason is that Westwood+ 
adaptively reduces the cwnd and sstresh by taking into account an 
estimate of the available bandwidth: this mitigates the impact of 
random losses not due to congestion that provokes multiplicative 
reductions of New Reno control windows. 
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Figure 32. Goodput over the GEO satellite scenario. 

 
 
4. LIVE MEASUREMENTS 
When a new protocol is proposed, it is necessary to collect a large 
set of simulation and experimental results in order to assess its 
validity and the advantages of its deployment in the real Internet 
[29]. In this section we test Linux implementations of New Reno 
and Westwood+ [44] over the real Internet. More than 4000 files, 
with different sizes, have been uploaded via ftp from a host at the 
Laboratory of Communication and Control at Politecnico di Bari 
(South of Italy) to three remote servers, which are located at 
Parma (North of Italy), Uppsala University (Sweden) and 
University of California, Los Angeles (Ucla). For each upload we 
have measured the goodput, the number of retransmitted 
segments, and important variables such as cwnd, sshtresh, RTT 
and bandwidth estimate. Each measurements session collects data 
of many file uploads, which are alternatively executed by using 
Westwood+ or New Reno. Table 2 summarizes the main 
characteristics of the sessions from Bari to the FTP server at 
UCLA, whereas Fig. 33 shows the average goodputs achieved 
during data transfer. 
 
Table 2: FTP uploads from Politecnico of Bari, Italy to UCLA, 
Los Angeles. 
date No. of Uploads Size of uploaded 

files (MBytes) 
Feb,21 2003 117 32 
Feb,26 2003 197 3.2 
Feb,28 2003 702 3.2 
Mar,14 2003 54 32 
Mar,19 2003 79 32 
Mar,21 2003 47 32 

 
 
 
The average goodput of a measurements session is obtained by 
averaging the goodputs of the session uploads. It turns out that 
Westwood+ TCP provides goodput improvements ranging from 
23% to 53% with respect to New Reno. It is also worth noting that 
improvements provided by Westwood+ TCP are not due to a more 
aggressive behaviour, since Fig. 34 shows that Westwood+ and 
New Reno TCP have similar retransmission ratios. 
 
Table 3 summarizes the characteristics of the measurement 
sessions from Bari to the server at the Uppsala University. Figs. 
35 and 36 show the average goodputs and the average 
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retransmission ratio in this case. Westwood+ TCP provides 
goodput improvements ranging from 4% to 40% with respect to 
New Reno with similar retransmission ratios. 
 
Table 3: FTP from Politecnico of Bari, Italy to Uppsala 
University (Sweden) 
date No. of Uploads Size of uploaded 

files (MBytes) 
Dec,14 2002 253 32 
Dec,17 2002 200 3.2 
Jan,10 2003 100 3.2 
Jan,12 2003 100 3.2 
Jan,13 2003 150 32 
Jan,17 2003 1000 3.2 
Feb,3 2003 278 32 
Feb,7 2003 500 32 
 
Table 4 summarizes the characteristics of the measurement 
sessions from Bari to the FTP server located at Parma. Figs. 37 
and 38 show the goodputs and the retransmission ratios that have 
been measured during these data transfer. In this case the 
connection has a national extension and Westwood+ and New 
Reno TCP provide similar goodputs. 
 
Table 4: FTP uploads towards the server located at Parma 
(Italy) 
date No. of Uploads Size of uploaded 

files (MBytes) 
Mar,26 2003 100 32 
Mar,27 2003 98 3.2 
Mar,28 2003 1000 3.2 
Apr,4 2003 390 32 
Apr,7 2003 200 3.2 
Apr,9 2003 200 3.2 
Apr,11 2003 1000 3.2 
 
 

 
Figure 33. Average goodput during ftp to Los Angeles. 

 
Figure 34. Retransmission ratio during ftp to UCLA. 

 
Figure 35. Average goodput during ftp to Uppsala. 

 
Figure 36. Retransmission ratio during ftp to Uppsala. 
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Figure 37. Average goodput during ftp to Parma. 

 
Figure 38. Retransmission ratio during ftp to Parma. 
 
To conclude this section, it is worth to take a look at the pipe size 
of the considered connections. The minimum measured RTT has 
been equal to 190ms, 70ms and 50 ms during transfers to Ucla, 
Uppsala and Parma, respectively. By computing the average 
Westwood+ TCP goodput times the minimum RTT, we get the 
pipe sizes reported in Table 5. This Table shows that when the 
pipe size is larger than few MSS, Westwood+ improves the 
goodput with respect to Reno up to 53%. We were not able to 
execute measurements over larger bandwidth-delay paths where 
we expect that Westwood+ will provide larger goodput 
improvements. 
 
Table 5: Performance analysis (MSS=1500Bytes) 
Server Goodput Improvement Pipe size (MSS) 
UCLA 23% ÷ 53% 3-6 
Uppsala 4% ÷  40% 1-10 
Parma −9% ÷ 10% 0.5-5 
 
 
5. Conclusions 
A detailed evaluation and comparison of Westwood+, New Reno 
and Vegas TCP congestion control algorithms has been developed 
through this paper using the ns-2 simulator. Results have shown: 
(1) the inter-protocol friendliness of Westwood+ and New Reno 
whereas Vegas is not able to grab its bandwidth share when 
coexisting with New Reno or Westwood+; (2) the increased intra-
protocol fairness in bandwidth allocation of Westwood+ TCP 
w.r.t. New Reno; (3) the improved utilization of lossy links 

provided by Westwood+ wrt New Reno. Finally, measurements 
collected over the real Internet have shown that Westwood+ 
improve the goodput with respect to New Reno TCP when the 
pipe size is larger than few segments. 
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