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Abstract— We prove that the XCP equilibrium solves
a constrained max-min fairness problem by identifying
it with the unique solution of a hierarchy of optimization
problems, namely those solved by max-min fair alloca-
tion, but solved by XCP under an additional constraint.
We describe an algorithm to compute this equilibrium
and derive a lower and upper bound on link utilization.
While XCP reduces to max-min allocation at a single
link, in a network the additional constraint can cause a
flow to receive an arbitrarily small fraction of its max-
min allocation. We present simulation results to confirm
our analytical findings.

Index Terms— Mathematical programming /
optimization, Flow control.

I. INTRODUCTION

TCP congestion control [1] has prevented severe
congestion while the Internet underwent explosive
growth during the last decade. However, the algo-
rithm has shown serious difficulties as the network
continues to scale in size and capacity [2], [3]. This
has motivated several recent enhancements [4–9]. (See
[6] for extensive references.) Of these, XCP [9] has
received much attention for grid computing networks
such as the OptIPuter, where its need for explicit
communication between the traffic sources and the
network is less of a deployment barrier than in the
current Internet. Unlike most proposals, which set
the flow rates according to the sum of congestion
measures at the links of their paths, XCP sets them
according to the minimum “available capacity” in their
paths. This has the same flavor as MaxNet [10], [11].
XCP has been shown [9] to be stable when all round
trip times (RTTs) are equal; however, no other analytic
results are known. In this paper, we reverse engineer
XCP to understand its equilibrium properties.

A deterministic fluid model of a general XCP
network with multiple links and multiple flows is
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presented in Section II. Section III analyzes the equi-
librium rates of XCP, and shows that all queues are
empty in equilibrium. We prove the existence and
uniqueness of XCP equilibrium rates by identifying
them with the unique solution to a hierarchy of
optimization problems. This is the same set of prob-
lems solved by the standard max-min fair allocation,
but XCP solves them under an additional constraint.
While XCP reduces to max-min allocation at a single
link, its behavior in a network can be very different.
We describe an algorithm to compute this equilibrium
and derive bounds on link utilization.

In Section IV, we use these bounds to investigate
the impact of the choice of protocol parameters on link
utilization under the additional constraint. We show
that flows can receive an arbitrarily small fraction
of their max-min fair allocations. Specifically, with
a max-min fair allocation, as long as a link is a
bottleneck for some (not necessarily all) flows that
pass through it, it will be fully utilized. Under XCP,
this is no longer true: when the majority of flows
using a link are bottlenecked at other links, the
remaining flows at that link may not make efficient
use of the residual bandwidth. With the parameters
suggested in [9] however link utilization is at least
80% at any link. XCP has a “shuffling parameter”
����� to prevent the network from settling into an
unfair state [9]. We show that, given any network
topology, we can choose � sufficiently small so that
the resulting allocation is close to max-min fairness.
For any fixed ����� , however, there are topologies
in which some flow rates can be far away from their
max-min allocations.

These properties and the accuracy of our algorithm
are verified by NS-2 simulations in Section V. We
conclude in Section VI with limitations of this work.
Some proofs are omitted due to space limitation but
can be found in the full version on our web site [12].
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II. MODEL

Consider a network with � links shared by � flows.
Sources are indexed by �������
	
	
	���� , links by �����
	
	
	���� and packets by � . Let � be the ����� routing
matrix: ��������� if flow � uses link  and 0 otherwise.
Let ������� be the set of links in the path of flow � :

������� �!� "#�$%�����&�'��(
and )*�+,� be the set of flows that use link  :

)*�+,� �!� "��-$.���/�0���1(
Note that 324�����5�367�829)*�+,� .

We will present a continuous-time fluid model of
XCP. For flows � , define the following variables::<; � ��=�� : window size at time = , in packets.:?> � : round-trip propagation (and fixed processing)

delay.:A@ � ��=B� : round-trip time (RTT) at time = .:<C � ��=��D�!� ; � ��=��BE @ � ��=�� : flow rate at time = .
For links  , define the following variables::?F � : capacity, in packets/sec.:HG �I��=�� : backlog at time = , in packets.:<J �I��=����!� K � �L�/� C � ��=�� : aggregate input rate at

link  at time = . In equilibrium, we sometimes
write J �I� C � to emphasize the dependence on
equilibrium rates C .

XCP divides time into control intervals of durationM
, nominally the mean RTT of the flows at a link [9].

The RTT varies throughout the network and in time,
and for simplicity we model

M
as a global constant.

To simplify notation, we assume all packets have
the same size of 1 unit. We use “flow” and “source”
interchangeably.

A. XCP description

We now summarize the XCP algorithm. See [9]
for a detailed description. We do not model feedback
delay because we consider only equilibrium properties
in this paper.

For each packet, XCP generates a feedback signal
prescribing a change in window size. Let NO �/PQ��=B� be
the feedback generated by link  for packet � at time= . The acknowledgment for packet � received by its
source contains in its header the smallest feedbackR�SUT � O �/PQ��=B� generated by links along its path. The

source adds this quantity to its current window size.1

We now describe how to compute the feedback.
Let V

�W��=B�X� Y M � F �[Z J �I��=��B�\Z^] G �W��=B�
where Y , ] � � are constants, F � is the link capacity,J �,��=�� is the aggregate input rate, and G �W��=�� is the
backlog at time = . Let

V0_
� ��=��`� R�acb �

V
����=B�d� � � and

V�e
� ��=B�f� R�acb �5Z

V
�W��=B�d� � � . The feedback on the � th

packet at link  is
NO �!Pg��=��X� Nh �!PQ��=��iZ Nj �!Pg��=��

where Nh �/Pg��=�� and Nj �/PQ��=B� are the increase and decrease
components respectively:

Nh �/PQ��=B�k� �ml%����=B��n
V _
� ��=��B� N@ Po��=��M N@ Po��=B�BE N; P.��=��Kqp3rUs!tvuwyx{z N@ w ��=B�BE N; w ��=B� (1)

Nj �/PQ��=B�k� �ml%����=B��n
V0e
� ��=��B� N@ Po��=��M �| �I��=�� (2)

where N@ PQ��=�� and N; Po��=B� are the round-trip time and
window size, respectively, of the flow which transmit-
ted packet � , and

| ����=B� is the total number of packets
seen by link  over the time interval ��=\Z M �B=W} . Here

l%�W��=��k� R1acb � � � � M J �W��=��\Z~$
V
�I��=��
$��

is a “traffic shuffling” term with ����� a constant.
(Note that we are using the definition of � from the
appendix of [9], which differs by a factor of

M
from

that used in the corresponding equation in [9].)

B. Dynamic model

We now translate the per-packet feedback NO �!Pg��=��
into per-flow feedback. Let

O �/����=�� be the feedback
generated by link  for flow � at time = . In general, a
quantity with a tilde ( N ) pertains to a packet while
the corresponding variable without a tilde pertains to
a flow.

Substituting NC PQ��=B�8� N; PQ��=��BE�N@ Po��=�� in (1) gives

Nh �!Pg��=��k� N@ Pg��=��
NC Pg��=��

l[�W��=��0n
V _
� ��=B�M K p3rUs�tvu� x.w ��E NC w ��=�� 	 (3)

| �W��=B� is the total number of packets arriving at link 
in period ��=3Z M �B=W} . For simplicity, we assume that| �I��=��X� J �,��=B� M � M�� � �L�/� C � ��=��

1In practice, the window size has a lower bound of 1 packet,
but for notational simplicity, we ignore this.



3

Of these packets, we assume that ���/� C � ��=�� M packets
are from flow � . Hence

p r s!tvu�wyx{z �NC w ��=B� � �� � x{z ����� C � ��=B� M�� �C � ��=�� � ��� M
Thus the per-packet feedback (3) becomes per-flow
feedback

h �/�5��=�� � @ � ��=��M�� l[�I��=B�&n
V _
� ��=����� C � ��=B�

Using
| �W��=�� � J �I��=B� M again, the per-packet feedback

(2) becomes

j ���B��=��k� @ � ��=��M�� l%�W��=B��n
V0e
� ��=��J �,��=B�

The feedback per packet to flow � from link  is then

O �/�5��=�� � @ � ��=��M � � l%�I��=���n V _� ��=B��#� C � ��=�� Z l%�I��=���n
V e
� ��=��J �I��=�� �

If flow � does not use link  , then set
O �/�5��=�� ��� .

Let
O � ��=�� � R�SUT �
	�� s � u O �/�5��=�� be the minimum

feedback along � ’s path. Since source � receives C � ��=��
feedback packets per unit time (assuming every packet
carries control information and is acknowledged), its
window evolves according to:; � ��=B�X� C � ��=B� � O � ��=��
Substituting C � ��=B�3� ; � ��=��BE @ � ��=�� , we have; � ��=�� �; � ��=B�M � R�SUT��	�� s � u

� l%����=B�0n V _� ��=����� C � ��=�� Z l%�W��=B��n
V e
� ��=��J �,��=B� �

Remark: The pseudo code in [9] contains additional
“residual” terms. These use the feedback from up-
stream links to modulate the positive and negative
components Nh �!PQ��=�� and Nj �/PQ��=B� to prevent excessive
positive or negative feedback in each control period.
However, it can be proved that the modulation ofNh �!Pg��=�� has no effect on the XCP equilibrium, and
the modulation of Nj �/Po��=�� also has no effect on the
equilibrium if the average rate of flows bottlenecked
at upstream links is significant (at least half that of
flows bottlenecked at link  itself). Otherwise, the
link utilization is slightly increased (by around 4%
in Scenario 1 of Section V). Since these residual
terms seem to impact primarily on dynamic rather
than equilibrium properties, for simplicity, we ignore

them in the analysis (but not the simulations) in this
paper.

In summary, an XCP network is described by the
following set of equations:; � ��=�� � ; � ��=B�M�� R�SUT��	�� s � u�� �/�5��=�� (4a)G �I��=�� � � J �,��=��\Z F � if G �I��=�� � �R�acb � J �I��=��\Z F �m� � � if G �I��=�� � � (4b)

where

� ������=B�k� l%�I��=���n
V _
� ��=����� C � ��=�� Z l%�W��=B��n

V e
� ��=��J �,��=B� (5a)V

�I��=B�k� Y M � F �*Z J �,��=��B�\Z^] G �W��=B� (5b)

l%����=B�k� R�acb � � M J ����=B�iZ $
V
����=B�
$!� � � (5c)

C � ��=B�k� ; � ��=��@ � ��=�� (5d)

J �I��=B�k� � � ����� C � ��=�� (5e)

@ � ��=B�k� > � n � � �����
G �I��=B�F � (5f)

Here, Y � � , ] � � , � � � are constants, and
V _
� ��=B� � R1acb �

V
�I��=��d� � � ,

V�e
� ��=B� � R1acb �5Z

V
�I��=��d� � � .

Standard XCP uses Y^� � 	�� , ]`� � 	������ and � � � 	U� .
We will study the behavior of the general model,
which includes this as a special case. As we will
see below, the qualitative properties, such as existence
and uniqueness of equilibrium rates and their fairness
properties, do not depend on specific values of these
parameters (as long as � � � ).

III. EQUILIBRIUM RATES

This section characterizes the equilibrium of XCP
and describes an algorithm to compute it; the next
considers the implications of these results on utiliza-
tion and fairness.

Equations (4)–(5) describe the evolution of the
window vector ; ��=�� � � ; � ��=�� , for all �5� and the
backlog vector G ��=�� � � G �I��=�� , for all ,� . A pair of
rate and backlog vectors � C � G � , with window vector; given by ; � � C � � > � n K � ����� G ��E F �+� , is said to be
in equilibrium if both

; ��=B�3� � and
G ��=��3� � .

We start by defining a bottleneck link and other
notation for XCP equilibrium. In general quantities
without = dependence denote equilibrium quantities,
e.g., ; � � @ � � C � � � ��� , etc.
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Definition 1: A link  is said to be a bottleneck
for source � with respect to (w.r.t.) C if � ��� is min-
imum among all the links that � uses, i.e., � ��� �R�SUT�� 	�� s � u � � � . In this case, source � is said to be
bottlenecked at link  w.r.t. C .
By definition, every source � has a bottleneck. Lemma
1 below implies that � �/�^� � in equilibrium at a
bottleneck  .

We distinguish between links that are bottlenecks
and those that are not. Let � z ���5� be the set of links that
are bottlenecks for source � w.r.t a given equilibrium
rate C :
� z ����� �!� "#\2f�L������$ � �/�&� R�SvT� 	�� s � u�� � � (

and ��� ����� �!� �����5� � � z ����� . We also distinguish
between sources that are bottleneck locally and those
that are not. Let ) z �+,� be the set of sources bottle-
necked at link  w.r.t. a given equilibrium rate C :
) z �+,� �!� "���2f)*�+,�-$ � ����� R1SUT� 	�� s � u�� � � (

and ) � �+,� �!�k)*�+,� � ) z �+,� . Let �#� �!� $ ) �+m�
$ be the
number of sources at link  , � � � �!� $ )�� �+,�
$ , and �#� z �!�$ ) z �+,�
$ . Let �g�9�!�X�#� � Ey��� be the fraction of flows
through link  which are not bottlenecked at link  ,
and �*�0�!� J � � E F � be the fraction of the link’s capacity
consumed by such flows. Note that while ������� , )*�+,� ,
and �#� depend only on the routing matrix � , � z ����� ,� � ����� , ) z �+,� , ) � �+,� , �#� � , ��� z , �g� and �*� depend also
on the equilibrium rate C through � �/� .From (4) and the definition of ) � �+,� , we have

Lemma 1: The rate and backlog vector � C � G � is in
equilibrium if and only if

1) for all  , J �	� F � with equality if G � � � and
2) for all � , R1SUT ��	�� s � u � ���&� � .Moreover,

3) if �42')
���+,� and �q2') z �+,� then � ��� � � and

� � w � � .4) if ) z �+,����� then l[�*� � implies

V
�*� � .

Proof: Parts 1 to 3 are immediate. To see part 4,
note that l[� � � implies

� ��� �
V _
��#� C � Z
V�e
�J �

By part 2, � ���&� � for all �82f) z �+m� . Since at most one
of

V _
� and

V e
� can be nonzero,

V _
� �
V e
� � � , whence

V
�*� � .

A. The need for bandwidth shuffling

Without bandwidth shuffling, XCP would have � �
� , giving l[�I��=�� � � for all  and = . In particular, l*� � �
in equilibrium.

Theorem 2: Suppose � � � . Then � C � G � with C � �; � E > � is an equilibrium if and only if

1) for all  , J ��� F � and G �*� � , and
2) for all � , there exists 324�L����� with J �[� F � .

Proof: The first condition in the theorem implies
that for all  ,

V
� � � . Combined with l*��� � , this

implies � �/� ��� for all � . The second condition then
implies that for all � , R�SvT �
	�� s � u � ����� � . Hence, the
conditions in the theorem are sufficient, by (4) and
the first part of Lemma 1.

For necessity, there are two cases. If ) z �+,����� then
V
� � � by the second part of Lemma 1, and (5b)

implies J � � F � and G ��� � , since J ��� F � , G � ��� ,
and ] � � . Otherwise L2�� � � � ����� and � �/� � � by
definition of ��� ����� . This implies

V _
� � � , and henceJ �	� F � , G �*� � in equilibrium.

Remark: Without bandwidth shuffling, any (possibly
unfair) boundary point of the set " C $ � C � F ( would
be an equilibrium. These are exactly the rates C which
maximize aggregate throughput. This is why XCP
uses � � � [9].

The rest of the paper considers the more compli-
cated case of � � � .

B. � � � case: main results

This subsection provides a conceptually simple
characterization and uses it to prove the existence and
uniqueness of XCP equilibrium. In the next subsec-
tion, we provide an iterative algorithm to compute this
equilibrium.

From (4)–(5) and Lemma 1, � C � G � is an XCP
equilibrium if and only if

1) For all  , J �	� F � with equality if G � � � .
2) For all sources � , R�SUT ��	�� s � u � ���&� � .Using (5a), condition 2 becomes: for all � , for all \2�����5� , C � � J ��#� l[�gn

V _
�l[�gn
V�e
� �#��� � (6)

with equality for some \2f�L����� . Hence for links  with) z �+,������ , all flows � 2 ) z �+,� that are bottlenecked
at link  must have the common rate � � . This has
important implications as we will see below.
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Several of the results will use the following tech-
nical lemma, whose proof is omitted.

Lemma 2: For all 
1) C � � C w � � � if ��2f)�� �+,� and �129) z �+m� .
2) �*�	� �Q� if )�� �+m� ���� .
3) � � � J � Ey��� with equality if and only if ) � �+,� ��� .
4) l[� � � if ) z �+,����� .
5) J ��E F � � �[� with equality if and only if ) z �+,� ��� .
Unlike in the � � � case, we characterize the equi-

librium backlogs and rates separately. The following
result says that the equilibrium queue under XCP
is zero. This originates from the definition of

V
� in

(5b), which is nonnegative in equilibrium. The same
property is used in REM [13] to drive the queue to
zero, or more generally, to a target value.

Theorem 3: In equilibrium, G ��� � and

V
� � � for

all  .
Proof: Links can be of three types: (a) ) z �+,����� ,) � �+,� ��� , (b) ) z �+m�8��� , ) � �+,����� , and (c) ) z �+,����� ,) � �+,����� . Each of these will be considered in turn.

Type (a) links are bottlenecks for all flows passing
through them, i.e., links  where (6) holds with equal-
ity for all � 2 )*�+,� . Since all flows have common
rate � � , J � � �#� � � , whence equality in (6) impliesV _
� �
V e
� . Thus

V
�-� � , and (5b) implies J � � F �

and G �*� � , i.e., they share the link capacity fully and
equally, with no queueing delay.

Type (b) links are not bottlenecks for any of the
flows they carry. Hence, for all �D2f)*�+,� ,

C � � J ���� l[�gn
V _
�l[�gn
V�e
�

Multiplying both sides by � ��� and summing over � ,
we have

J � � J ��#� l[�Qn
V _
�l[�Qn
V e
�

� �
� �����

Hence

l%�gn
V _
�l%�gn
V�e
� � �

Since both numerators and denominators are positive,
V _
� �
V e
� . This implies

V
� � � whence J � � F � andG �*� � .

Type (c) links are bottleneck links for some but not
all of the flows using them. From (6), we have

l%�on
V _
�l%�on
V�e
� �

� �J � Ey�#� � �

where the inequality follows from Lemma 2. As for
type (b) links, this implies

V
� � � , J ��� F � and G � � � .

We next characterize the equilibrium rates of XCP.
Define � � as

� �I� C � �!� � J ���#��� � � nHYi� J �[Z Y F �U}
where J �[� K � ����� C � . Since � �I� C � depends on C only
through J � , we will abuse notation and also write� �I� J � � or � �I� J �I� C �B� . Define the feasible set of source
rates C to be
� � �!��� C 2�� �_ $ � �W� J � � � � or C � � � �W� J � �d�
	 W�B�D2f)*�+,���

(7)
where �

_
denotes the set of nonnegative real num-

bers. We will later show that the XCP equilibrium
must be in

� � . Note that C 2 � � implies

� C � F
To see this, multiply both sides of the inequality in
(7) by ���/� and sum over � to get

J � � � � ����� C � �
� J ��� � nHYi� J �[Z Y F �

Rearranging the above inequality yields J � � F � . The
converse may not be true, i.e.,

� � may be a strict
subset of " C $ � C � F ( .

Our main result is to prove the existence and
uniqueness of XCP equilibrium in a general network,
and that this equilibrium solves a constrained max-
min fairness problem.

Definition 4: A rate vector C � 2 � � is constrained
max-min fair if for any other feasible C 2 � � , C � � C ��
implies that there is a � with C w � C �w and C �w � C �� .
Intuitively, a constrained max-min fair vector C � is
such that it is not possible to increase a component C ��
without reducing another smaller or equal componentC �w . This differs from standard max-min fairness only
in that the feasible set

� � is a subset of " C $ � C � F (
[14]. This restriction has important ramifications, as
we will see in the next section.

We will prove constructively that the unique XCP
equilibrium is constrained max-min fair by identifying
it with the solution of a hierarchy of optimization
problems over the feasible set

� � : it maximizes the
smallest source rates in

� � , and then maximizes the
second smallest rates over all rates that solve the first
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problem, and so on. These maximization problems are
defined inductively, following the idea of [15].

Let � � � � and ) � ��� . The sets �+� � ��) � � � � � define
the first problem P z , whose solution is described by
the sets �+� z ��) z � � z � . These sets in turn define the
second problem P � , and so on. To simplify notation,
let

���1�!� �
��� � �

� )��1�!� �
��� � )

�

Given sets � � � ��� � ��) � � , 	
	
	 , � � � e z ����� e z ��)�� e z � , if) � e z contains all flows, then we stop. Otherwise, we
define problem P � and its solution ���[��)�� � � � , j � � ,
as follows.

P � : R�acb� 	
	����� R�SvT���	 ������ C � (8)

Let

��� �!� R�SUT���	 � ���� R�acb� 	�	 ���� � �W� C � (9)

� � �!� " minimizing  in (9) ( (10)

)�� �!� �
�
	���� )*�+,� � )�� (11)

� � �!� � C 2 � � e z����� C � � � ���*��	*�D2f)��� ���*��	*� �2 )��
�

(12)

A few important properties are immediate from
these definitions. First, the rates �
� are monotonic:

R1SUT�
F ���� � � z � � � � � � � � � � (13)

Second, ��� and )�� are nonempty; moreover they are
disjoint from � � e z and ) � e z , respectively. Hence ) �
will eventually contain all the flows and there are
only a finite number of problems P � . Finally,

� � are
strictly nested:

� ��� � z � � � � � � �
Indeed it will become clear that

� � is exactly the
set of solutions to problem P � , i.e.,

� z is the set
of feasible rates C 2 � � whose smallest rates are
maximized,

� � is a subset of
� z whose second

smallest rates are also maximized, and so on. We
prove below that if P ��� is the last problem, then

� ���
is a singleton that solves all problems P z �
	
	
	 , P � � .

To contrast XCP equilibrium with the standard
max-min fair allocation, we derive a “bottleneck”
characterization that is analogous to that for max-min
fairness; see the beginning of Section IV.

Lemma 3: Suppose C is the XCP equilibrium rate
vector. Link  is a bottleneck for source �82f) �+,� w.r.t.C if and only if

1) C � � � ��� C � , and
2) C � � C w for all �124) �+,� .

Proof: Suppose link  is a bottleneck link
for source � w.r.t. equilibrium C . Then Lemma 1(2)
implies that � ���&� � , i.e., equality holds in (6). Since
V
� � � by Theorem 3 and l[� � � by Lemma 2, (5c)

becomes l[� � � M J �%Z
V
� . Thus from (6)

C � � � � � J ����
� M J �
� M J �%Z

V
� � � �I� C � (14)

proving the first condition. Condition (6) then implies
the second condition.

Conversely, suppose the two conditions are satis-
fied. If l[�{� � , then � ��� � � from (5a). Lemma 1(2)
then implies � �/� is the minimum among links in source� ’s path, i.e., link  is a bottleneck. On the other hand,
if l[� � � , then, as above,

V
� � � and l[� � � M J �oZ

V
� .

Then C � � � �I� C � is equivalent to � ���&� � , proving that is a bottleneck.
Motivated by this lemma, we call link  a nonbottle-
neck w.r.t. C if either � �I� C � � � or C � � � �W� C � for all�82f) �+,� .

Our main result is
Theorem 5: The problems P � are well-defined and

have a unique solution. Moreover, the following are
equivalent:

1) C � is an XCP equilibrium.
2) C � is the unique rate vector that solves all the

problems P � .
3) C � is constrained max-min fair.
4) C � 2 � � and every flow has a bottleneck w.r.t.C � , i.e., for all � , there is an \2f�L����� such thatC �� � � �I� C � � and C �� � C �w for all �12f) �+,� .
Before presenting our proof, we derive a (central-

ized) algorithm to compute the XCP equilibrium.

C. Algorithm for computing equilibrium

The equilibrium rates of XCP can be found using
an algorithm analogous to that of [14] for max-
min fairness. However, because the constraint on the
link throughput in (6) depends on the aggregate flow
rate through l[� and

V
� , some extra bookkeeping is

required.
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Theorem 6: The utilization of a bottleneck link 
satisfies

J �F � � Y nq�
� n Yi� �*�on�� �mY Z~� � n Y\� �[�+� � n � Y � �[���5�.Z �g�+��.� � �g�onHYi�

(15)
The rates of all sources �12 ) z �+,� bottlenecked at 
satisfy

� � � F ��#� ���3�%Z
� �[� �g� }Qn � ���3�gn � �[� �Q� } � Z � Y � �[��� �g�%Z �[� ��.�5� Z��Q� � � � �Q�QnHY\�

(16)
where

�3�*� � � �[�onHY\� �5� Z �[���\Z � �*�I� �g�[Z �[� � (17)

Proof: Substituting � � � � J �{Z J � � �BEo�+���iZ �#� � �
into (14) and solving the resulting quadratic equation
gives

J �*� Y F �Qnq� � nHY\� J � ����� �mY F �Qnq� � nHY\� J � � � � Z |�.� � �#� � Ey�#�Qn?Y\� (18)

where
| � � Y F � J � � � � �#� � Ey�#�on~Yi� . It can be proved

that only the larger solution of (18) satisfies part 5 of
Lemma 2, and is a valid equilibrium. Rearranging the
term in the square root gives (15).

To obtain (16), instead substitute J �q� �+���LZ�#� � � � � n J � � into (14), giving

� � � � � �#�F � � �
n	��� � � �#�F � n�
�� � � � (19)

where
� � � �5��Z �Q� � � � �Q�QnHY\�
��� � � � �*� �g�%Z � �[�*Z YD�5��Z �[���

�� � Z � � �� 	

Since J � is increasing in � � , it is again only the larger
root which represents the XCP equilibrium. Thus

� � ���F � � ���3�[Z
� �[� �Q� }on � ���3�%Z � �[� �Q� } � Z � � ��
���.�5� Z �g� � � � �g�onHYi� �

where �3� is given in (17). Rearranging the expression
in the square root gives (16).

Note that the right-hand side of (16) depends on the
rate vector C throughput �o� and �*� . Hence it is not an
explicit formula for the throughput of a general flow.
However it says that the common “bottleneck” rate at
each link  depends on the rate vector C only throughJ � � and �#� � that are bottlenecked elsewhere. These are
source rates smaller than the “bottleneck” rate at link

 , by Lemma 1. This motivates an algorithm similar
to the max-min algorithm of [14] that calculates the
throughput C � of each flow in increasing order, without
the need for recourse to simulation.

1 Set )���� � , ����� � , �[�I� � ��� � , �g�I� � ��� �
for all  , j � �

2 repeat
2.1 For each link,  �2f� � e z find � � � j � from

(16) using �*�I� j Z ��� and �g�W� j Z ��� from
rates already allocated

2.2 Set ����� R�SvT w � w � j �
2.3 Set ����� "�i� � � � j � � ���%(
2.4 foreach \2f���

2.4.1 Set � � � � �
2.4.2 For each flow �f2�)*�+,� � )�� , setC � � � �

endfor
2.5 Set ) � ��� w 	�� � )*� �g� � ) �
2.6 Set )���� )�� e z�� )��
2.7 Set � � � � � e z � � �
2.8 foreach \2�� ���	����� �L�����

2.8.1 Set �*�W� j � � �[�I� j Z ���?nK � 	�� � �L�/� C � E F �
2.8.2 Set �Q�I� j � � �g�W� j Z ��� nK � 	���� �L�/�mEy�#�

endfor
2.9 Set j � j n �
until )�� �'" all flows (

This solves each of the optimization problems, P � ,
in turn. The key is that, by keeping track of the used
capacity of each link, � �I� j � and �g�W� j � , it can compute
the maximization in (9) in closed form. For each  ,
the values �*�I� j � and �Q�I� j � vary during the algorithm.
For the algorithm to be correct, they must have the
right values when link  is the minimum in step 2.2.
This occurs because the link rates are allocated in
increasing order [12].

If � � � then (16) reduces to � � ��� F � Z J � � �BEo�+�#� Z�#� � � , and hence the algorithm reduces to the algorithm
in [14] to compute the max-min fair allocation. This
suggests that, given any topology specified by the
routing matrix � and link capacity vector F , one
can choose � � � to be sufficiently small so that
the equilibrium of (4) is close to max-min fair. On
the other hand, with small � , the convergence of
individual rates to fairness can be very slow. We will
return to this point in Section IV.
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D. � � � case: proofs and intuitions

In this subsection we establish Theorem 5. For
the complete proof, see [12]. We start with a simple
observation that greatly simplifies the solution of P � .

Lemma 4: Suppose
� � is nonempty. The maxi-

mization in (9) can be taken over C 2 � � that have
equal C � for � �2 )�� .

In view of Lemma 4, we can replace
� � in (12),

for j � � , by their subsets:

�� � �!� � C 2 � � e z ���� C � � � ���[� 	*�82f)��
����n � � 	*� �2 )��[� � � �

�
(20)

and use them instead of
� � e z in computing � � :

� � �!� R�SUT� �	 � ���� R�acb� 	��	 ���� � �I� C �
This greatly reduces the complexity of (9) from max-
imizing over j -vectors C 2 � � to over a scalar � � � .

Denote an C 2 �� � by C � ��� j � , with

C � � ��� j �k� � � � � �D29) � ��� � j
����n � � � �2 )�� (21)

and let C � � � j ���!�
	 SUR��� � C � ��� j � . Note that C � � � j � ,j � � , is not in
� � according to definition (12),

though it is in
� � . We will see in Lemma 6 below

that C � � � j � plays an important role in the proof of
Theorem 5. The vector C � ��� j � induces link flows

J �I� ��� j �8� � � ����� C � � ��� j �
� ��

� x{z � � �� 	���� �L�/�[n � � ����	 ��� �����[n � ����	 � � ����� (22)

This motivates the following main technical lemma.
Lemma 5: Given any scalars � � � , � � � , and��� � , define

�� �W� � � �!� �� ��� ��� �.���%� �!� � �W���Ln�� � �
� � ���Ln�� � � ����W�B� � nHY\� ����n�� � �\Z Y F � � (23)

for some �#� � � , Y � � , � � � and F � � � .
1) If either

�� �I� � � � � or � � �� �I� � � then there exists
a unique � � � � such that � n�� � � � �� ��� � � � ,
where � �*� � if and only if � � �� �I� � � .

2) Moreover, over " � $ �� �W� � � � � ( , � n�� � � �� ��� � �
if and only if � � � � .

Lemma 5 implies that if link  is a bottleneck for
some source � with respect to an C 2 � � , then the rate
of source � cannot be increased without violating the

feasibility constraint in (7). For instance, let j � � be
such that 82 ��� . Setting �1� J �I� � � j Z ��� , � � � � e z
and �1� K ���	 � ���� ����� gives � �*� � � Z � � e z and  is a
bottleneck for all �829)�� w.r.t. C � � � � j Z���� . Lemma 5(b)
then implies that rates greater than ��� are infeasible
at link  .

The next lemma implies that all links �2H� � are
bottlenecks w.r.t. all C 2 �� � , and all links  �2 � �
are nonbottlenecks w.r.t. C � � � j � . In particular, this
implies that

� � are nonempty.
Lemma 6: For each j � � ,
1) if  2A� � , then C � � � �I� C � for all ��2 ) � w.r.t.

all C 2 �� � .
2) if  �2 ��� , then either � �I� C � � � j �B� � � orC � � � � j � � � ��� C � � � j �B� for all �82f) �+,� .
A sketch of the proof of Theorem 5 is as follows.

For details, see [12]. First note that the optimization
problems are well defined and that characterizations
2 and 3 are equivalent.

Lemma 5 can be shown to imply the equivalence
of characterizations 3 and 4 by the following con-
tradiction argument based on that for standard max-
min fairness [14]. Assume there is an unfair C � , for
which every flow has a bottleneck. Some flow, � ,
bottlenecked at  , can have its rate increased, giving
rates C . There exist an

�C and � such that (a)
�C w � C �w n �

if � 24)*�+,� and
�C w � C �w otherwise, (b) J �I� C �8� J �I� �C � ,

and (c)
�C w � � ��� J �I� �C �B� . Since  is a bottleneck,C �� � � �I� J �I� C � �B� � � . Applying Lemma 5(1) with

� � J �W� C � � , � � C �� and �<� K w ��� w gives � ��� � .
Since

�C w � C �w n � for all �'2 ) �+m� , with � � � � ,
Lemma 5(2) implies that

�C � � � �I� J �I� �C �B� , contradict-
ing (c). Conversely, if source � has no bottleneck, then
Lemma 5 gives an � � R�SUT �I� � � � � � by which rate �
can be increased.

It remains to show that 1 and 4 are equivalent. The
discussion at the beginning of Section III-B shows thatC � is an XCP equilibrium if and only if, for all � , (6)
holds for all \2f�L����� , with equality for some \2f�L����� .
This, with (14), establishes C � 2 � � . As observed
after Definition 1, every flow has a bottleneck by
definition.

To show 4 implies 1, it suffices to show that the
characterization in Lemma 3 implies statements 1.
and 2. at the start of Section III-B. The discussion
after (7), and setting G � � , establishes Statement 1.
This shows

V e
� � � for all  . If C � � � �I� C � then (5c)

and (5a) give � �/� � � , with equality when C � � � �W� C � .
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Otherwise, � ��� C � � � giving l � � and, by (5a),� ��� � � .
IV. UTILIZATION AND FAIRNESS

In this section, we discuss some implications of
the results in Section III on link utilization and
fairness of the equilibrium rates. Theorem 5 shows
that XCP equilibrium is constrained max-min fair. It
is instructive to compare the XCP equilibrium with
the (standard) max-min fair allocation and a class of
algorithms proposed in [15].

It is proved in [15] that a (standard) max-min
fair rate vector C � is the unique solution of the
same hierarchy of problems P � (8)–(12) defined in
Section III, except that the feasible set

� � in (7) is
replaced with the superset

� � �!� " C 2 � �_ $%� C � F ( (24)

The key feature that results from this much simpler
feasible set

� � is that the bottleneck links under a
max-min fair allocation are all fully utilized. Indeed,
a rate vector C � 2 � � is max-min fair if and only if,
for every source � , there is a link \2f�L����� in its path
such that [14]

1) J �W� C � �3� F �
2) C �� � C �w for all �12f) �+,� ,

From Theorem 5, condition 1 is replaced with the
fixed point equation C �� � � �I� J �I� C � �B� for XCP equi-
librium. The simpler condition for max-min fairness
has several implications.

First it allows a much simpler proof of max-min
fair vector as the unique solution of the problems
P � ; see [15]. Second the (centralized) algorithm to
compute the max-min fair rate vector (see [15], [14])
is simpler than that in Section III-C for the constrained
max-min fair vector. Third, and most importantly, the
XCP equilibrium can under-utilize link capacities and
deviate by an arbitrarily large factor from the max-min
fair allocation, as we illustrate below.

Max-min fairness is generalized in [15] by restrict-
ing the feasible set to a (strict) subset of

� � in (24).
Like XCP, the restriction is specified as additional
constraints on source rates C � and link flows J � . An
example is that, in addition to being in

� � , a feasible
rate vector C must also satisfy

C � � �
� � F � � F �[Z J � � � 	*� � 	 \2f�������

This is motivated by an explicit design objective
of trading off full link utilization for the ability to
accommodate random rate fluctuations. If the standard
deviation of the rate of source � is � C � , then it is shown
in [15] that the standard deviation of the link flow J �
is less than the spare capacity F ��Z J � , so that overshoot
is avoided, i.e., J �I��=�� � F � for all = in the absence of
feedback delay. An alternative additional constraint in
[15] is

C � �
� �

� � � F �%Z J � � 	*��� 	 \2f�L�����
This is again motivated by an explicit design objec-
tive: the link parameter � � controls utilization and
source parameter

� � controls fairness, akin to XCP’s
efficiency and fairness controllers. A distributed al-
gorithm to compute the equilibrium rates is also
provided in [15], and its convergence proved. Like
XCP, explicit feedback is required: each link  feeds
back the spare capacity F ��Z J �I��=�� to sources that
go through this link. Sources adjust their individual
rates based on feedback on its path in a way that is
distributed, yet avoids overshoot.

We now illustrate the effect of the additional con-
straint (7) in XCP on link utilization and fairness.

As we explained in the proof of Theorem 3, there
are three types of links. The first type are bottlenecks
for all the flows that go through that link. All links
of this type, such as all #2 � z in problem P z , are
fully utilized, J �*� F � . The second type are bottlenecks
for none of the flows that go through that link. They
are underutilized, J � � F � , because the flow rates
going through the link are constrained elsewhere. The
third type are bottlenecks for some, but not all, of
the flows that go through the link. In contrast to the
standard max-min fair allocation, these links are also
underutilized, J � � F � . We can bound the utilization
of these partial bottlenecks.

Theorem 7: If \2f� z ����� for some � then

Y
� �g�gnHY � J �F � � ��Z � �*�I� �g�*Z �[���� �Q�QnHY
Proof: Noting that �o�	� � (and that �.� � �Q�5n Y\� �

� ), removing the last term from the square root in (15)
gives the lower bound:J �F � � Y4nq�

� nHY\� �[�onq$ �mY`Z � � nHY\� �[�+�
$�.� � �g�onHY\�� Y
� �g�onHY (25)
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where the second inequality is an equality if ���Y\Eo� � n Yi� .
To derive the upper bound, first note that �.� � �*�

from Lemma 2(2). Since �.�5� Z �o� � � � �Q� nAY\� � � and
� � � , removing the last term from the square root
of (16) yields

� � ���F � � ��Z �*���Z �g� Z
� �[�I� �Q�[Z �*� ��5��Z �Q� � � � �Q�QnHY\� (26)

Multiplying both sides by �5�{Z �o�+� and adding �*� lead
to the upper bound on utilization

J �F � � ��Z
� �[�W� �g�%Z �*� �
� �g�gn Y (27)

Substituting either � � � or �o�*� �*� into either the
exact expressions (15) and (16) or the upper and lower
bounds (25) and (26) gives full utilization as in the
max-min case: J �\� F � and � � � F �W�5�LZ �[� �BEo�+�#�W�5�LZ
�g���B� . This shows that XCP could be made to approach
max-min fairness if the bandwidth shuffling were
reduced.

On the other hand, link utilization could be arbi-
trarily low if Y and � had been chosen poorly. With
the values suggested in [9] however the utilization
is at least 80%. Consider a network of two links.
Link 1 has F z ��� and carries � z flows, while link 2
has F � � ��n � E�Y and carries � � � � z n�� flows,
consisting of all the traffic on link 1 plus one other
flow. As � z�� � we get � � � � . This gives
� � � YiEo� � n�Yi� in the limit. Thus, both terms in
the square root of (15) go to zero, and (25) becomes
tight, and J �vE F � � � as � E�Y � � . However, withY^� � 	�� and � � � 	U� [9], (15) gives J �vE F � � � 	�� .

Similarly, a given flow may obtain an arbitrarily
small proportion of its max-min fair bandwidth for
any Y � � and � � � . The ratio of the upper bound on
XCP bandwidth (26) to the max-min fair bandwidth,
� ��� ��� � F �I�5��Z �*� �BEo�+�#�W�5��Z �g� �B� , is minimized with
respect to �*� when �g��� � �[��Z � �� . Substituting this
value into (16) and dividing by � ��� ��� gives

� �
� ��� ��� � 
qZ

�z e � r n
	 


 n �z e � r��

� Z z e � r�.� � � � �[� Z � �� ��nHY\� (28)

where


 � �3� Eo�5� Z �[� �8� � �*�I�5��Z �*� �0nHY8�� � � � �� � � Z �[� �� � � � � �� Y8	
Thus

� �
� ��� ��� � 
4Z

�z e � r n �z e � r
	 �8n s z e � r u��� � � 
 � n ��� � e z e � r���.� � � � �*�*Z � �� �&nHYi�

Applying the identity � �Dn C � �%n C E�� , for C � Z � ,
gives

� �
� ��� ��� �


 n ��Z �[�� � 
 � n � 
 � Z �� ��.� � �[��� ��Z �*� ��n?Y\� 	 (29)

In the limit as �*� � � , the right hand side tends
to 0 for any � �� � . This demonstrates that, for any
non-zero amount of bandwidth shuffling, XCP can be
arbitrarily unfair for some topology.

Hence, although the equilibrium of (4) converges
to max-min as � � � , this convergence is not
uniform with respect to topology. In other words,
given any topology specified by �+� � F � , we can choose
� sufficiently small so that the resulting allocation
is close to max-min fairness. However, for any fixed
� � � , such as 0.1 used by XCP, there are topologies
in which some source rates can be far away from their
max-min allocations.

This behavior can be exhibited by a simple two
link network: one link has capacity 1 and carries j �
flows, while the other carries j � Z � of those same
flows and has capacity � j Z~���BE j . This network has
� � � � j Z~���BE j and � � � � j � Z ���BE j � � � � � Z � �� .
Hence, � � � � as j � � and � � E � � � ��� � � .

These asymptotic results will be illustrated and
confirmed by simulation in the following section.

V. SIMULATION RESULTS

This section presents simulation results using the
implementation from [9] in NS-2. These results verify
the accuracy of our algorithm in Section III-C and
confirm our qualitative discussion in Section IV on
the utilization and fairness properties of XCP.

We assume that all sources always have packets
to send. The topology used for Scenarios 1,2 and 3 is
shown in Figure 1 and consists of two links, with � n �
sources traversing link L1 and � sources traversing L2.
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All links have equal propagation delay of
M � ��� � ms

in both directions and the variable avg rrt in the
XCP implementation (

M
in the analysis) is fixed to

be � M � . The XCP default parameters Y'� � 	�� , ] �
� 	������ and � � � 	U� are used. Although the analysis
neglects the “residual” terms, the simulations include
them. However, as remarked in Section II-B, they
have minimal impact on equilibrium properties. This
is confirmed by the good match between theory and
simulation as we will see below.

Scenario 1 investigates the utilization of L1 as the
number of sources traversing L1 and L2 is changed.
In the experiment � � � , with F z � 155Mbps andF � � 100Mbps. The utilization of L1 for a range of �
and � is shown in Figure 2. A max-min fair allocation
would result in a full utilization of L1 for all � and
� combinations. However, as the number of sources
bottlenecked at L2 increases, XCP’s utilization of L1
decreases.

Since XCP’s “residual” terms depend on feedback
from upstream nodes, the equilibrium rates depend
on the order in which links are traversed. If the
direction of flow in this network were reversed, then
the utilization would be 0–4% higher than for the case
considered and than the theoretical predictions.

Scenario 2 demonstrates that XCP can be arbitrarily
unfair for some topology. Let F z � 155Mbps, F � �F z � j Z ���BE j , � � j � Z � and ��� � . The ratio of the
rate of the source traversing only L1 to the max-min
fair rate is plotted in Figure 3. Indeed the unfairness
increases with the number of sources in the network,
confirming the theory.

Scenario 3 studies XCP with non-standard param-
eters. It verifies that J � E F � � � as � E�Y � � . We setF � � 200Mbps, F z � F � �5�\n � E�Y\� , �\� ����� and � ��� .
The parameter Y is varied from � 	��o� � to � 	 � � � and
the utilization of L1 as a function of � E�Y , as well as
the lower bound from (25), are plotted in Figure 4.

Scenario 4 tests the rate allocation algorithm for a
more complicated topology as shown in 5. The link
one-way delays in ms are

M z ���Q	�� , M � ��� , M�� ��� � ,M�� � � � , M
	 � � � and
M
� � � � . The link capacities

in Mbps are F z ��� � , F � � � , F � � � , F 	 ��� , F � ���
and F � is varied in this experiment. The source rates
are plotted in Figure 6. There is a good agreement
between the predicted and measured rates even though
the lower bandwidth delay product makes the fluid
flow approximation more questionable.

Fig. 1. Topology for Scenarios 1, 2, and 3.
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Fig. 2. Scenario 1: utilization.

VI. CONCLUSION

We have presented a dynamic model of XCP and
used it to completely characterize its equilibrium
properties. We have shown that XCP clears the queues
in equilibrium, and has unique equilibrium rates that
solve a constrained max-min fairness problem. The
additional constraint under XCP can lead to unfairness
for some network topologies. XCP gives a utilization
of at least 80%, but a poor choice of Y or � could
lead to arbitrarily low utilization. We have provided
an algorithm to compute the equilibrium for general
networks, and have presented simulation results to
illustrate these findings.
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