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Abstract—
In today’s heterogeneous Internet, bandwidth available to TCP

flows is often variable. However, current TCP cannot perform
optimally under such dynamically varying bandwidth conditions.
This paper addresses this problem by introducing a new architec-
ture to improve TCP performance with explicit bandwidth noti-
fication (EBN). It uses a normalized bandwidth feedback method
to provide accurate and timely bandwidth estimations. Then, a
new TCP control algorithm (TCP-EBN) is proposed to promptly
respond to any bandwidth changes. Our simulation results have
shown that TCP-EBN performs much better than several other
variations of TCP.

I. INTRODUCTION

TODAY’S Internet is inherently heterogeneous. As a result,
bandwidth available to a TCP flow is increasingly vari-

able. There are three main reasons why the available band-
width is increasingly volatile: multiplexing, access control, and
mobility. First, the bandwidth available to TCP flows will be
affected by other flows sharing the same bottleneck link. In a
QoS network where TCP flows are multiplexed in the best effort
category, the available bandwidth fluctuates when higher prior-
ity flows and other TCP flows come and go. Second, in medium
access links like wireless network, the bandwidth available to a
TCP flow depends on the channel utilization and medium ac-
cess protocol dynamics. Finally, in mobile networks where fre-
quent mobility leads to hand-offs among paths with different
characteristics, both bandwidth and delay can change signifi-
cantly from an end-to-end [1] perspective.

Research has shown that the current congestion control
mechanisms in TCP cannot effectively handle dynamic band-
width between two TCP end-points, and TCP performance may
suffer as a result [2], [3]. One explanation is that TCP does
not directly take measure of the bandwidth currently available
to the flow, and TCP does not use this knowledge in its con-
trol algorithms. We believe that, if accurate information about
bandwidth changes is available, TCP can improve its perfor-
mance under highly variable bandwidth environment. We have
verified this hypothesis through a simulation study.
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In this paper, we introduce a new architecture for improv-
ing TCP performance in these variable bandwidth environment.
This architecture is based on network providing feedback of
current available bandwidth to TCP source. Through simula-
tion, we show that our scheme results in better performance
compared to TCP NewReno and other related work.

II. RELATED WORK

There has been few extensive studies on how to use band-
width estimation in TCP control algorithms. TCP West-
wood [4] estimates the available bandwidth by applying a dis-
crete time low pass filter on the ACK stream, and uses this
knowledge to do faster recovery on packet losses. Their scheme
works well with coarse bandwidth changes where the variation
follows a step function.

In an earlier work, TCP Vegas [5] uses fine-grain system
timers to achieve more accurate RTT estimates. It then uses
these estimates to calculate the expected throughput. If the ex-
pected throughput does not agree with the measured through-
put TCP Vegas will adjust the congestion window accordingly.
(through linearly increase or linear decrease).

Both TCP Vegas and TCP Westwood use tradition ways of
estimating bandwidth based on measurements at the network
end-points, usually through timing of ACK packet arrivals. The
above approaches may have its limitation due to return path
congestion and the TCP ACK compression effort.

Another approach is to augment the end-point measurement
with feedback from the intermediate nodes. This may produce
more accurate bandwidth estimation for the end-point to im-
plement any performance improvement. The idea of sending
feedback from intermediate routers is not new; DECbits and
ECN [6] uses feedbacks from intermediate routers to pass con-
gestion information. The question is what information should
be passed, and how. and where to encode this information. One
mechanism is to encode this information in the packet header,
like the ECN bits [6]. Another mechanism is to use a ICMP
packet or a lightweight signaling protocol or piggyback the
bandwidth back to the source [7] which needs the explicit use
of the true bandwidth.



III. EARLY BANDWIDTH NOTIFICATION (EBN)

The basic idea of this approach is as follows. The interme-
diate router would measure or estimate the current bandwidth
available to a TCP flow (or aggregate of flows), and feedback
such information to the TCP sender. The TCP sender will re-
spond to this feedback information by adjusting its congestion
window size. This concept is analogous to ECN [6], where
routers feed network congestion state information back to TCP
senders and they respond by invoking congestion control.

A. Architecture

Consider the network given in Figure 1. The router at C has
implemented mechanisms to estimate the bandwidth available
to TCP flows (which will be further explained in the next sec-
tion). For every packet passing the link, the bandwidth infor-
mation is then encoded into certain reserved bits in the packet
header. We call these bits Early Bandwidth Notification (EBN)
bits. Currently we are using 8 bits to encode bandwidth infor-
mation.
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Fig. 1. Basic EBN Architecture

Suppose a packet travels from
�

to � and toward � . The
router at � will look at this packet and from the bits will try to
ascertain the bandwidth available to the flow till C. Then it will
try to estimate the bandwidth from � to � . After that it will
normalize this estimate with the encoding that is present in the
packet header and send it to � . Fig. 1 illustrates the procedure.

Say, the TCP agent is getting acknowledgments from the re-
cipient at � . Each such packet has a bandwidth encoding in it.
The source looks at this and tries to estimate the available band-
width. It then checks whether the bandwidth is going down
or up. If the current bandwidth shows a downward trend, it
will try to behave very much like TCP. It has been shown that
multiplicative decrease leads to network stability [8]. On the
other hand, if the bandwidth increases, then there is scope for
improvement. A normal TCP agent would actually wait for a
couple of ACKs before its congestion window is increased sig-
nificantly. In our work, we try to make the TCP respond faster
by increasing the congestion window size. Thus TCP can send
more data. Since the available bandwidth is greater, the network
can handle this increased window.

B. Estimating Available Bandwidth

This can be done by several ways. The most common method
is to have the router keep track of all the input and the output in-
terfaces. Now the feedback can be flow based or it can be based

on the aggregate. For flow based feedback, the router keeps
track of all the flows and the bandwidth they use. Now, this
does not add significant overhead since WRR and fair queuing
is done anyway. So these measurements can be done at a per
flow basis. This method has scalability issues at the core but it
will work fine at the edges. This is where bandwidth estimation
is important. We assume that most of the congestion is due to
the edge and the core is over-provisioned. For the core routers,
we have to estimate the bandwidth used by a flow. We can only
approximate it. We use the Fair Share Approximation. In this,
we simply find the aggregate bandwidth and divide it equally
amongst all the flows. Sometimes this is bound to be erroneous
especially with the over-provisioning. But we will see later that
such errors can be taken care of due to our novel scheme of
using normalized available bandwidth.

C. Changing the TCP Algorithm

Now that TCP has accurate information about bandwidth
changes, we can take advantage of this information to do better
flow control that matches the changing bandwidth condition.
One obvious approach is to increase the congestion window
size (cwnd) when more bandwidth becomes available, and to
reduce it when the bandwidth decreases. While there can be
many ways to achieve this goal, we have developed the follow-
ing empirical formula. We have proved through simulation (see
subsequent sections) that this formula has achieved our objec-
tive.

Our mechanism is based on utilizing the EBN feedback de-
scribed in the previous subsections. Let’s denote the value of
instant bandwidth encoded in the current EBN feedback to be
currebn, and let’s denote the previous instant bandwidth value
to be lastebn. Our algorithm is as follows:

1) �����	��
��������������
��� : we do nothing.
2) �����	��
��������������
��� : we will reduce the current con-

gestion window (cwnd), by multiplying it with ���� 
���!�"��
���$#%�&�'����
	�� . Here � � is a correction factor that we
set to ( .

3) �����	��
���*) ���'�+��
��� : we will increase the conges-
tion window (cwnd), by multiplying it with �-,. 
���!�"��
���$#%�&�'����
	�� . Here �!, is a correction factor that we
set to / .

Here, �0� and � , are smoothing factors that determine how
much should cwnd be tuned to follow the bandwidth changes.
Their values are empirically chosen through simulation study.

IV. EXPERIMENTAL RESULTS

To evaluate our EBN strategy, we have implemented it in
NS2 [9] (version 2.1b7a) and conducted simulations to com-
pare its performance with several other TCP variations, namely,
TCP-NewReno, TCP-Vegas and TCP-Westwood. The modifi-
cation to TCP algorithm is implemented as a derivative of TCP-
NewReno to add bandwidth estimation. We call it TCP-EBN.
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Fig. 2. The Simulation Network with Changing Bandwidth

Fig. 2 illustrates the simulation network topology. Here the
links between

�
and � , � and � , and between � and � sim-

ulate the local access networks from
�

or � to the Internet.
The bandwidth for both links is fixed at 10Mbps and the delay
is fixed at 10ms. The link between � and � simulates a het-
erogeneous inter-network (the Internet) with dynamic changing
bandwidth characteristics. We make this link a predominant
and bottleneck part of the whole network so that its link char-
acteristics can be manifested in the end-to-end performance be-
tween

�
and � or between � and � . To implement this link

in NS2, we have introduced a new type of link called variable-
bandwidth-link – where the instantaneous bandwidth changes
over time according to a pre-defined bandwidth function.

We have implemented a bandwidth function in which the
bandwidth changes according to sine wave: ����� ���	�
����	��� �
��� � (����
� � ������� � ���"��������� where � , � , � , and � are tunable
control parameters. Here � defines the bandwidth average, �
(the amplitude ratio no less than 1) controls how drastic is the
change, � (the angular frequency) controls how frequent is the
change (note that the period of change is /��$# � ), and � defines
the phase of the oscillation (which is usually zero in our sim-
ulations). While a sine function may not be the most suitable
approximation for studying the bandwidth dynamics in the In-
ternet, its versatility allows us to see quickly how TCP responds
to slow or fast changing bandwidth.

In addition to the bandwidth characteristics, the delay pa-
rameter ( ! ) for the link between � and � is also configurable
to facility simulation.

During the simulation experiments, there are TCP flows from�
to � and from � to � . The flow from � to � is a small

20Kbps flow to provide competing background traffic. This is
to ensure that we avoid the synchronizations due to the inher-
ently deterministic nature of packet level simulations.

The data sets are denoted using a simple naming schema.
For example, the label tcp-100-200-0.1-3 means that it is for
tcp with the average bottleneck bandwidth ( � ) set to 100 Kbps,
the delay of the bottleneck bandwidth link set to 200 ms, the
angular frequency ( � ) to be 0.1, and the amplitude ratio of the
variance ( � ) to be 3 (i.e., the bandwidth would vary within " 1/3
around the average). If the last parameter is not included, we
assume a default value of 3.

A. Comparison of TCP-EBN with TCP-NewReno

In this section, we compare the performance of TCP-EBN
with TCP-NewReno. The results are plotted in Fig. 3. We first
consider cases (a) to (d). In all these cases, TCP-EBN outper-
forms TCP-NewReno. It is interesting to note that EBN deliv-
ers better performance gains when the delays are smaller. This
is because smaller delays implies smaller the buffer buildup,
hence the drop probabilities are smaller. According to Pad-
hye et al [10], throughput can be written as # �%$ # �'&(## �) *,+

#�-.� . Then, a shorter delay will ensure a better throughput.
Our scheme is aggressive and ensures that the sender shall try
its best to send as much as the bandwidth can allow. The inter-
esting conclusion is that buffer sizes at routers should be chosen
appropriately to tackle variable bandwidth (the buffer size was
50 packets in our simulation).

Next we look at case (e). In this case, we simply varied
� , i.e., the frequency of the bandwidth oscillation, while fixed
other parameters. In this graph, we can see that EBN had much
better performance than TCP-NewReno under all oscillation
frequencies. Ideally, we had expected that the faster we vary
the bandwidth, the better EBN should perform. But the sim-
ulation result shows that not to be the case. We believe that
buffers at the router and the the standard max-receiver window
and the maximum congestion window have contributed to this
smoothing effect.

In case (f), we varied the delay and fixed the other parame-
ters. EBN again delivered better performance. We believe the
reason is that EBN helps to alleviate TCP slow start. This can
be verified by comparing the curves of 1000ms delay.

B. Comparison of TCP-EBN with different TCP variations

In this section, we compare the performance of our TCP-
EBN with the different variations of TCP. We add TCP-Vegas
because we believe that it is the first to use RTT measurement to
estimate bandwidth. We also compare our approach with TCP-
Westwood [2] because it is a significant piece of related work.
The results of this comparison are in Fig. 4.

We first look at case (a) to (d). These four cases have the
same network parameters except � . In all four cases, TCP-
EBN outperforms the other variations and the performance gap
increases as � (oscillation frequency) increases. This matches
our predictions. With a faster variation, explicit feedbacks from
intermediate routers can give a much more accurate estimate of
the bandwidth.

Another interesting observation is that TCP-Newreno outper-
forms TCP-Vegas and TCP-Westwood in all cases. This is con-
tradicting to the previous published results that TCP-Westwood
outperforms TCP [2]. This is because, the bandwidth varia-
tion in their study was in the form of sudden steps, while in
our study, we use continuous variation. We believe that their
bandwidth estimation algorithms are not being able to detect the
continuous changes prevalent our scenarios. Finally, the reason
why TCP-Vegas does very badly in all the cases is probably due
to the lack of fast retransmits and fast recovery in TCP-Vegas.
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(a) � = 100Kbps, � = 100ms, � = 0.1 (b) � = 200Kbps, � = 100ms, � = 0.1
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Fig. 3. Comparisons between TCP-EBN and TCP-NewReno ( � = 3)

For case (e) and (f), we stepped up the average bandwidth
( 	 ) to 200Kbps. And for case (g) and (h), we further stepped
up the delay (of the bottleneck link) to 200ms The simulation
data clearly indicate that for these cases TCP-EBN still per-
forms much better than the other TCP variations. We should
also note that the performance gap is slightly bigger when the
delay is lower.

V. DISCUSSIONS, FUTURE WORK AND CONCLUSIONS

The results show that TCP-EBN has better throughput than
TCP-NewReno and TCP-Westwood. This has been possible
due to the more accurate feedback that was available from the
intermediate routers. We believe that the such feedback will
become more popular to give the extra support to the already
steady congestion control algorithms present in TCP. TCP-
Westwood does a nice job of estimating bandwidth when the
variations are not very quick.

This paper assumes that the routers can estimate the available
bandwidth and send this as feedback. A complete discussion of
this issue is beyond the scope of this paper. Most routers have

some AQM or QoS policies that operate on a per-flow basis.
We believe that such routers can be modified to incorporate our
EBN scheme without any increase in complexity.

We are currently investigating means to make this architec-
ture more robust and stable. Key issues are TCP-friendliness
and the dynamics of TCP-EBN in failure conditions. We are
also looking into effects of routing failures, transients on TCP-
EBN.

In this paper, we have demonstrated that TCP NewReno is
incapable of handling network conditions where the available
bandwidth varies to a great extent. It was also shown that there
were inherent limitations to the performance improvement that
can be obtained with end-2-end feedback. This was primarily
due to the phenomena like ACK compression. Then we intro-
duced a novel approach to help improve TCP performance in
variable bandwidth heterogeneous networks. This was based on
the intermediate routers sending a few bits of information that
encoded the available bandwidth at that router. Using this feed-
back, we have modified the TCP window size to give much bet-
ter performance compared to TCP NewReno, TCP Vegas and
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TCP Westwood [2].
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