
Revenue Models for Streaming Applications over
Shared Clouds

Rafael Tolosana-Calasanz, José Ángel Bañares
Dpto. de Informática e Ingenierı́a de Sistemas

Universidad de Zaragoza, Spain
rafaelt@unizar.es,banares@unizar.es

Congduc Pham
LIUPPA Laboratory

University of Pau, France
congduc.pham@univ-pau.fr

Omer F. Rana
School of Computer Science & Informatics

Cardiff University, United Kingdom
o.f.rana@cs.cardiff.ac.uk

Abstract—When multiple users execute their streaming appli-
cations over a shared Cloud infrastructure, the provider typically
captures the Quality of Service (QoS) for each application at
a Service Level Agreement (SLA). Such an SLA identifies the
cost that a user must pay to achieve the required QoS, and
a penalty that must be paid to the user in case the QoS
cannot be met. Assuming the maximisation of the revenue as the
provider’s objective, then it must decide: (i) which user streams
to accept for storage and analysis; (ii) how many (computational
/ storage) resources to allocate to each stream in order to
improve overall revenue and minimise cost. In this paper, we
analyse revenue models for in-transit streaming applications,
executed over a shared Cloud infrastructure under the presence
of faulty computational resources. We propose an architecture
that features a token bucket process envelop to accept user
streams; and a control loop to enable resource allocation, while
minimising operational cost.

Index Terms—Streaming workflows; Cloud computing

I. INTRODUCTION

The number of applications that process data in a stream
basis has increased significantly over recent years. Such ap-
plications include weather forecasting and ocean observation
from sensors, text analysis, and more recently data analysis
from electricity meters to support “Smart (Power) Grids”.
Sensor nodes can vary in complexity from smart phones
to specialist instruments, and can consist of sensing, data
processing and communicating components. Similarly, a Smart
Grid comprises a number of power generation companies that
gather and use data about electricity consumption, in order
to accurately adapt energy generation and tariffs to real-time
demand. Smart Grids record electrical energy consumption
with digital meters, which periodically stream this information
in real time to utility companies.

Data streams in such applications are generally large-scale
and distributed, and generated continuously at a rate that
cannot be estimated in advance. Data elements are streamed
from their source to their sink, and may typically be processed
at distributed nodes in transit, rather than accomplishing it
entirely at source / destination. The benefit of such an approach
is many fold: (i) to reduce power consumption at source (which
may have limited battery capacity) and sink (which may have
limited data storage space); (ii) enable the outcome of data
analysis to be shared between multiple users; (iii) alter the
processing rate at intermediate (in transit) nodes to achieve a

particular QoS requirement; (iv) combine data streams with
archived data at intermediate nodes; (v) enable fault tolerance
to be supported at intermediate nodes – thereby providing an
overall resilient infrastructure that masks faults generated due
to the generation of large data volumes (referred to as data
inflation) or failure of resources involved in data processing.
We describe revenue models for such in-transit analysis and
demonstrate how fault tolerance can be used in this context.

Various existing works [1], [2], [3], [4] identify how Cloud
infrastructures can be used to support data stream analysis,
where each stream must be isolated from another and for the
underlying coordination mechanism to adapt the infrastructure
to either: (i) run all instances without violating their particular
Quality of Service (QoS) constraints; or (ii) indicate that, given
current resources, a particular instance cannot be accepted
for execution. The QoS demand of each stream is captured
in a Service Level Agreement (SLA) – which must be pre-
agreed with each in-transit node prior to analysis. Such an
SLA identifies the cost that a user must pay to achieve the
required QoS and a penalty that must be paid to the user
if the QoS cannot be met. In [3], we proposed a system
architecture that enforces QoS, measured exclusively in terms
of throughput, for the simultaneous execution of multiple
streaming applications, expressed as workflows over a shared
in-transit, data processing infrastructure. We then considered
a “data acceptance rate”, different from the physical link ca-
pacity connecting two processing stages, to support admission
control. The objective was to prevent one workflow stream
from affecting the QoS properties of another by monopolizing
computing resources. The token bucket (TB) model [5] was
used to regulate on a per-stream basis the input (data injection
rate) of each workflow stage.

We investigate two aspects in this work – understanding
revenue models for in-transit analysis and the impact on
faults on such revenue models. We extend the architecture
in [3] so that multiple workflow streams can be executed
simultaneously on a shared Cloud infrastructure, and their
QoS (throughput) can be enforced under the presence of
faulty computational resources. A faulty resource can distort
an application’s performance –due to the overhead of the fault
tolerance mechanism and therefore an SLA violation (resulting
in a penalty the must be paid by the provider).

We assume a workflow is composed of a sequence of stages

and datasets are transmitted through the stages following the
pipeline streaming model of computation [6]. Each workflow
stage is mapped to a node in the infrastructure, though a
node can enact more than one workflow stage. Using this
approach, each node is able to self-regulate its behaviour
dynamically. The remainder of this paper is structured as
follows. Section II describes revenue models for in-transit
analysis and Section III the system architecture based on
the token bucket model. The extension of the architecture
with a fault-aware dynamic resource provisioning model is
presented in Section IV. Section V shows our evaluation
scenario and simulation results. In Section VI, related work is
briefly discussed. Finally, conclusions are given in Section VII.

II. REVENUE MODELS FOR IN-TRANSIT ANALYSIS

In-transit analysis provides a useful abstraction for separat-
ing data capture/use and analysis, enabling different actors (i.e.
service providers) to be involved in each of these processes.
Hence data capture may be carried out by a different actor
compared to subsequent analysis – enabling multiple capabil-
ities from different actors to be combined at different costs.
Each actor may differ in their ability to undertake particular
types of analysis that meet varying QoS constraints – leading
to different payments that must be made to them by a user
to achieve the overall operation. In our formulation of this
problem, we first consider a user centric view, identifying the
cost that a user must pay one or more providers to perform
analysis on a data stream.

For instance, consider sensor S providing a data stream at
cost c(S) – this cost may be for a subscription paid by a user
to access a data stream, a one off payment to stream data for
a particular time period, or a licence cost incurred as part of
an analysis operation. Once data from the sensor is available,
it must subsequently be stored and analysed using various
analysis functions, identified as Oi (for the ith function), made
available by a provider P . The cost for carrying out operation
Oi by provider P1 or P2 may be represented as c(O i)P1 and
c(Oi)P2 respectively. The function c() is used to calculate the
price paid by a user for carrying out an operation and may
vary over time. A provider may also use a posted price for
an operation they can provide a user per unit time of resource
use (as currently undertaken by Amazon.com in their EC2
and S3 services), or the price may be based on demand for a
particular operation. This cost may also be negotiated between
the user and the provider. How such a price is set is not the
focus of this work, our primary interest is in identifying that
such a cost exists and must be made known to the user. The
operator Oi in the context of data stream analysis can include
min/max calculations on the data stream, an event analysis, a
summarisation of data over a time window, etc. The total cost
incurred by a user is therefore: c(S)+min(∀j

∑k
i=1 c(Oi)Pj)

for k in-transit operations carried out on a single data stream
by j possible providers.

We can also consider a provider centric view of costs in-
curred to provide function O. Where a shared Cloud infrastruc-
ture is being used, a provider may serve multiple users using a

Fig. 1. Workflow System Architecture: the elements of a node

common resource pool through a “multi-tenancy” architecture,
or offer multiple functions over their shared infrastructure to
one or more users. In both cases, the revenue for the provider is
the sum of all the prices charged to n users for accomplishing
m operations O,

∑n
a=1

∑m
b=1 Pr(Oab). The provider in turn

incurs in a cost for performing such operations, c(Oab), but
can also incur in a financial penalty PSLAa for user a when
the QoS targets, identified in the SLA of user a, are not met.
If we assume the objective of the provider as to maximise
revenue, then it must decide: (i) which user streams to accept
for storage and analysis; (ii) how many resources (including
storage space and computational capacity) to allocate to each
stream in order to improve overall revenue (generally over
a time horizon). Both of these considerations are based on
the SLA that a user and provider have agreed to. However,
from a pure financial perspective, a provider will incur in
SLA penalisation for a user a, when the cost of allocating
the required resources is strictly higher than the penalisation.
Therefore, by minimising the cost either due to allocation
of resources or to SLA penalisation, we get the following
benefit function for the provider:

∑n
a=1

∑m
b=1 Pr(Oab) −

min(
∑n

a=1

∑m
b=1 c(Oab),

∑n
a=1 PSLAa). Our discussion in

subsequent sections takes a provider centric view to achieve
a particular revenue target. This is undertaken by supporting
admission control via a token bucket to achieve (i), which is
explained in section III; and a control loop based architecture
for minimising cost and enabling resource allocation to achieve
(ii) that is shown in section IV.

III. SYSTEM ARCHITECTURE

The system supports the enactment of multiple stream work-
flows simultaneously, each having different QoS requirements
(measured in terms of throughput). We assume that i) data
transmissions required for meeting QoS, on average, do not
exceed the network bandwidth available, and ii) the required
computations on average do not exceed the computational
power of the resources available.

A stream workflow is composed of a sequence of stages
and datasets are transmitted through the stages following
the pipeline streaming model of computation [7]. Within a
streaming based workflow, it is often useful to identify a “data
acceptance rate”, which identifies the rate at which a workflow
stage can receive and process data. This is often different
from the physical link capacity connecting two workflow

Fig. 2. Token bucket: principle (left), rate enforcement (right)

stages. In order to keep the workflow independent of the
resources used to subsequently enact it, a workflow stage
needs to be mapped to one or more nodes, and for the sake
of simplicity, this is arranged by the user, rather than by a
scheduler. Accordingly, nodes can offer different services and
are allowed to perform more than one workflow task and may
have multiple computing resources available.

A node, as depicted in Fig. 1, involves a combination of data
access, computation, and data transfer capability. Data access
is responsible for regulating the entrance of multiple streams
to the computational stage, isolating the rates of different
data streams, while enforcing QoS and avoiding a data stream
starvation. The data access component is based on the token
bucket (TB) model [5] for traffic characterisation. The TB
model supports a variable data rate and burstiness while
enforcing a predefined (negotiated) mean data acceptance rate.

It is characterized by 3 parameters shown in Fig. 2: b, R
and C that are, respectively, the size of the bucket, the token
generation rate and the maximum line/processing capacity.
The token bucket can contain b tokens and may be full at
initialization time. In practice, in the discrete model, a data
packet of S bits can only be sent when there are at least S
tokens in the bucket. Tokens are generated and introduced in
the bucket at the rate of R tokens/s. R typically represents
the mean rate that will be negotiated between the customer
and the provider at their SLA. When there are enough tokens
in the bucket, a user can send at the rate C > R, otherwise
the data rate is R. When the user sends at a rate r < R
then generated tokens will build up in the bucket for future
usage. In this way, a token bucket supports bursts of traffic
up to a regulated maximum, enforcing on a long term basis
the negotiated rate R. In our architecture, the TB regulates the
access to the computational resources, a TB stores data ele-
ments from a stream and forwards them to the computational
phase of a workflow stage at a predefined rate. This technique
represents a flexible mechanism for traffic characterization and
enforcement, and enables isolation of workflow streams. A
more detailed description of the architecture and the traffic
enforcement can be found in [3]

The computational phase, called Processing Unit (PU), is
a computing resource container, whose resources can vary in
granularity from being a single machine, a dynamically modifi-
able cluster to multiple clusters –accessible through a resource
management system. At a PU computation is performed by
utilizing multiple resources in parallel. On the other hand, the
transfer component, the Autonomic Data Streaming Service
(ADSS) [8], handles transmission of data to the following

node in the infrastructure. The ADSS can detect a network
congestion between two nodes and react to it by reducing
the data transmission rate over the network and temporarily
storing data onto disk (thereby avoiding data loss). Finally, it
should be observed that there is an input buffer before each
component.

IV. DYNAMIC RESOURCE PROVISIONING MODEL

We assume that the proposed architecture is attempting to
enforce the end-to-end throughput (the primary QoS criteria
we consider here) for each workflow stream: each application
i is streaming data elements into the system at an average rate
of Ri (as specified in the SLA by the token bucket parameter
Ri). Hence, for each workflow stage, it is necessary to identify
the data storage and processing requirements – derived from
the overall throughput requirement of the workflow. These
requirements are subsequently used to identify the size of
buffers needed per node. We assume that these requirements
are either known by the user enacting the workflow or derived
from prior runs of the workflow (and refer to these as the
Service Level Agreement (SLA) established with each node).
However, what may not be known in advance is whether the
occurrence of a fault in a resource may distort the previous
estimations.

A. Faults, Scientific Workflows, and QoS

Faults may arise due to hardware and network failures, and
software or application errors. We consider the fault handling
activity from an event-condition-action perspective. Consider
fi being a single fault (hardware/software), and {f} a set of
faults, leading to a known event/error e i. The event causes
a single action ai or a set of actions (executed in some
sequence) {a} to be invoked to overcome the effect of the
fault (undertaken using an automated system or by a human
user). This can be expressed as:

(fi|{f}) →d1 ei →d2 {m} →d3 (fi|{a}) →d4

where di represents a time duration, with (d1) representing the
time after which a fault leads to an error message, (d2) the
time to detect the error message using one or more monitoring
tools m, (d3) the time to select, invoke, and accomplish a
recovery (corrective) action, and (d4) the time over which the
action must execute for the system to recover from the fault.
Therefore, considering a task i at a workflow stage j with an
average execution time in stage j without failures of t ij , that
is failing up to k times for completion, the overall execution
time for i is: tfij = k ∗ (t′ij + d1 + d2 + d3 + d4) + tij , with
t′ij < tij , and t′ij represents normal execution time of task i
until a fault happens, and stops normal execution.

A workflow environment can generally consist of multiple
tiers –such as third-party resource management, third-party
middleware-supported data distribution and workflow enactors,
and user front ends (portals). Each of these tiers are subject
to faults, and each may support their own fault tolerance
capabilities. For instance, a resource manager may detect a
local fault and invoke an action without exposing the fault

to the user portal (for instance). Some faults can be masked
to the workflow-application level by different fault tolerant
mechanisms incorporated at the underlying architectural tiers,
namely middleware and resource. However, as this is not
always possible, to improve the fault tolerance of the overall
system, the workflow-level also needs develop its own fault
tolerant mechanisms [9], [10]. These mechanisms [11] mainly
consists of: a fault detection component, which incorporates
fault detection algorithms with different degrees of sophistica-
tion, leading to different cost; a fault identification component,
which according to information gathered from monitoring,
once a fault is detected, can suggest the best recovery action;
and a fault correction component, which supports a variety of
mechanisms for the recovery from a fault.

Either a fault masked by underlying third-party tiers or
masked by our workflow system, a faulty resource may
distort the estimated performance, due to the overhead of
the fault tolerance mechanism. As a consequence, this may
lead to unexpected delays of a task, and in turn to a QoS
degradation for the workflow the task belongs to. Additionally,
this performance degradation may also affect the QoS of other
workflows that have data elements in queue for processing, as
their elapsed time in queue may be increased. On the other
hand, in case a recovery of a resource is not possible or in
case the resource is not available, the number of resources at
the PU of a node also needs to be increased.

Therefore, the workflow system must incorporate a dynamic
resource provisioning mechanism that in case of fault occur-
rence in a resource, allows the system to re-act, incorporating
more resources, and subsequently after a period of time, in
case of overprovisioning is achieved, releasing them.

B. Dynamic Resource Provisioning Mechanism

The processing time for a data stream element depends on
the nature of each data element (i.e. as a consequence of
processing, data can vary in size), the computation involved
(i.e. some computations may behave differently under different
scenarios), and the behaviour of the computational resources
utilised (i.e. failures occur). Although the resources that a
PU can handle can vary in granularity from being a single
machine, a dynamically modifiable cluster to multiple clusters
–accessible through a resource management system, for the
sake of simplicity of our provisioning model, we assume here
i) homogeneity at the resources contained in a PU, and ii)
no data size variations within the elements of a stream while
processing them. We also assume no prior knowledge of the
fault occurrence at our system.

An estimation of the minimum (initial) number of resources
ˆNumResj required at stage j can be derived from the

agreed SLA and historical past executions without failures.
As discussed earlier in this paper, the agreed SLA establishes
that each application i is going to feed data elements into the
system at an average rate of Ri (specified as the token bucket
parameter Ri). In order to enforce end-to-end QoS, each node
j tries to maintain an output rate of Ri, and to stream data to
the following node. On the other hand, t ij is the time required

for executing task i on stage j. The inverse of t ij is actually the
maximum output rate possible (without considering failures)
for each node. We denote δ̂ij as an estimation of this output
rate node, estimated from historical past executions without
considering failures nor their overheads: δ̂ij = AV G(1/tij)
In consequence, in order to maintain R i as the output rate,
the minimum number of resources required at stage j can be
obtained from:

ˆNumResj =
n∑

i=1

Ri/δ̂ij

In the event of fault occurrence while processing a data
element of i at stage j, the time required for processing will
be greater, then the processing output slower than estimated,
and this may provoke that the effective output rate is slower
than Ri. In order to avoid such a circumstance, a rule-based
control loop has been introduced at each node. In case of a
monitored QoS degradation for stream i at j, the control either
i) allocates an extra number of computational resources, or ii)
assumes the SLA penalisation for i. The action that minimises
the cost will be taken. The first action seeks to enforce QoS
for stream i, and the rest of applications. However, when the
penalisation is assumed for i, there is a QoS degradation for
i, but the delay incurred by the faulty computational resource
may also affect other applications. In such a case, the control
at this step periodically measures the risk of QoS degradation
in other applications. Then, for each application near to
be degraded (below a threshold), the system estimates the
minimum cost from assuming SLA penalisations, or adding
the extra computational resources. The required number of
resources similarly as before:

ˆNumResj =
n∑

i=1

Ri/δij

where δij now represents the inverse of the monitored execu-
tion time (i.e it may include fault occurrence, and its derived
overhead). Again, the control will only allocate extra resources
when the sum of all the SLA penalisations incurred is strictly
higher than the cost of allocating more resources. Additionally,
we also propose to monitor the input data buffer, in order to
release resources. When the input buffer occupancy is below
a threshold, which could be due to a number of applications
streaming data below the agreed Ri, the number of resources
at the PU can be diminished.

Finally, in order to avoid over reactions to any variation
difference in the output rate, the rule-based controller guaran-
tees that, before effectively modifying the number of allocated
resources, there is an effective deviation tendency through a
previously established, and customisable period of time.

V. EVALUATION SCENARIO

In this section, we evaluate the influence of faulty com-
putational resources in the QoS of applications as described
in Section IV-B. To illustrate the key ideas, we consider a
scenario in which two workflows wf1 and wf2 are executed
simultaneously over two shared nodes. They have respectively
negotiated an average arrival rate and throughput of R 1=30
and R2=15 data values/s. Each PU component in a node (as

Fig. 3. Wf1 input rate Fig. 4. Wf2 input rate

Fig. 5. Wf1 throughput without adaptation to processing
rates

Fig. 6. Wf2 throughput affected by processing rates of Wf1

Fig. 7. Wf1 throughput with adaptation of resources to
processing rate variation

Fig. 8. Wf2 throughput with not affection by processing
rate variation of Wf1

illustrated in Fig. 1) initially contains 5 identical resources.
Users assumed that each resource would process 10 token/s (a
token represents a data value). The overall processing capacity
provided at each node by the provider is 50 data values/s,
which is 5 data values/s more than the total sum of the
upper average processing rate of both workflow instances. We
assume that the network bandwidth between nodes is enough
for meeting the QoS requirements. The ADSS can transmit at
the rate of 300 tokens/s in our evaluation scenario.

Figs. 3 and 4 show the data injection rate of the applications
according to the agreed rates, and shaped by the token bucket.
Figs. 5 and 6 show the output rates of wf1 and wf2 with no
addition of resources in case the fault tolerance mechanism
introduces extra processing overheads. In this simulation, we
can observe, as a consequence of the fault tolerance mech-
anism, that the processing rates for wf1 at the first stage is
reduced to 5 tokens/s between time 120s and 240s. Resources
are provided to injected tokens assuming all tokens require the
same processing time. However, in this new scenario, tokens
coming from wf1 requires more processing time. Fig. 5 shows

how throughput of wf1 falls to 20 t/s at 120s, and Fig. 6 shows
how this variation affects the other applications sharing the
resources.

Figs. 7 and 8 show the output rates of wf1 and wf2

with the provisioning of resources mechanism presented in
Section IV-B. The control loop triggers the addition of new
resources when the difference of input and output rates of wf 1

in the first stage is over a given threshold. Without loss of
generality, we assume here that the penalization cost is larger
than the additional resource cost. In this case, the control loop
adds two additional resources to the first stage. At time 240s,
wf1 recovers its initial data processing rate of 10 tokens/s. The
control loop returns resources when the number of resources
show more capacity than the input rate. We can also see that
though the fault tolerance mechanism affects the throughput
of the other workflows, the impact here is smaller and the
average throughput is maintained. The figures also show that
the processing rate after this variation is a little over the input
rate because of the tokens that were built up in the buffer of
the PU.

VI. RELATED WORK

Although workflows, stream and event processing were con-
sidered as three separate threads of research in intensive data
applications, they share a number of important similarities and
challenges such as scalability, fault tolerance and performance
that promotes their consideration synergistically [12]: Data
Stream Management System (DSMS) shifts the paradigm of
DBMS processing directly incoming streams instead of storing
them first. These works focus on performance by restricting the
language in which they can be programmed to graphs of oper-
ators with well-defined semantics. This allows the systems to
automatically rewrite or compile the specified stream pipelines
to a more efficient version. Scalability and query distribution
are considered in Aurora [13], Borealis [14] and Stream
Cloud [15]. Complex event processing (CEP) has seen a
resurgence in the last few years, though the need for events,
rules, and triggers was accomplished more than two decades
ago. Examples of CEP are SPADE/IBM InfoSphere Streams,
Esper and DROOLS Fusion [16]. Scientific Workflows: they
have emerged as a paradigm for representing and managing
complex distributed computations. Recently, how to extend
traditional state-based workflow management techniques and
pipelines with the necessary features to integrate streaming
data services has taken relevance[2], [6].

The main difference of workflow based stream applications
with DMS and SPE is the focus on the composition of hetero-
geneous black box services. Park and Humphrey [17] make use
of a token bucket-based data throttling framework for scientific
workflows that involve large data transfers between tasks.
In [8], we propose a superscalar pipeline to enforce the QoS of
multiple workflow instances in a shared infrastructure. Various
workflow systems are currently used for scientific applications
– such as Triana [18], Kepler [19] and Taverna [20] – with
support a data streaming pipeline.

VII. CONCLUSIONS

There is an emerging interest in processing data streams
in shared Cloud infrastructures. Data elements are streamed
from their source to their sink, and may typically be processed
at distributed nodes in transit. In this paper, we consider the
execution of simultaneous data stream applications on a shared
Cloud, under the presence of faulty computational resources.
Our system captures the QoS (expressed in terms of through-
put) for each application at a SLA. The SLA identifies the cost
that a user must pay to achieve the required QoS, and a penalty
that must be paid to the user in case the QoS cannot be met.
Our aim is: i) to enforce QoS for each application, ii) analyse
revenue models for in-transit streaming applications, under
the presence of faulty computational resources, so that the
operational cost is minimised, and the revenue maximised. To
meet such objectives, we propose an architecture that features
a token bucket process envelop to shape data trhottling, and a
rule-based control loop to enable resource allocation, while
minimising cost. The control loop monitors QoS for each
application and, when there is a QoS degradation (i.e. due
to a fault overhead), chooses the action with the minimum

cost: either assume the SLA penalisation or to allocate more
computational resources.

ACKNOWLEDGMENT

This work was partially supported by projects TIN2010-
17905 (Spanish Ministry of Education and Science),
FEDER/POCTEFA 35/08 PIREGRID and Aquitaine-Aragon
OMNIDATA.

REFERENCES

[1] Y. Simmhan, B. Cao, M. Giakkoupis, and V. K. Prasanna, “Adaptive
rate stream processing for smart grid applications on clouds,” in 2nd
Intl workshop on Scientific cloud computing, ScienceCloud ’11. New
York, NY, USA: ACM, 2011, pp. 33–38.

[2] D. Zinn, Q. Hart, T. McPhillips, B. Ludaescher, Y. Simmhan,
M. Giakkoupis, and V. K. Prasanna, “Towards reliable, performant
workflows for streaming-applications on cloud platforms,” in 11st Intl
Symposium on Cluster, Cloud and Grid Computing (CCGrid 2011),
May 2011, Newport Beach, USA, 2011.

[3] R. Tolosana, J. A. Bañare, C. Pham, and O. Rana, “Enforcing QoS in
scientific workflow systems enacted over cloud infrastructures,” JCSS,
2012.

[4] R. Tolosana-Calasanz, J. A. Bañares, C. Pham, and O. F. Rana,
“End-to-end QoS on shared clouds for highly dynamic, large-scale
sensing data streams,” in 1st Intl Workshop on Data-intensive Process
Management in Large-Scale Sensor Systems (DPMSS12): From Sensor
Networks to Sensor Clouds, 2012.

[5] C. Partridge, Gigabit Networking. Addison-Wesley, 1994.
[6] B. Biörnstad, A workflow approach to stream processing, 2008. [Online].

Available: http://books.google.es/books?id= NLRSAAACAAJ
[7] C. Pautasso and G. Alonso, “Parallel computing patterns for Grid

workflows,” in HPDC06 Workshop on Workflows in Support of Large-
Scale Science (WORKS06) June 19-23, Paris, France, 2006.

[8] R. Tolosana-Calasanz, J. A. Bañares, and O. F. Rana, “Autonomic
streaming pipeline for scientific workflows,” Concurr. Comput. : Pract.
Exper., vol. 23, no. 16, pp. 1868–1892, 2011.

[9] R. Tolosana-Calasanz, J. A. Bañares, O. F. Rana, P. Álvarez, J. Ezpeleta,
and A. Hoheisel, “Adaptive exception handling for scientific workflows,”
Concurr. Comput. : Pract. Exper., vol. 22, no. 5, pp. 617–642, 2010.

[10] R. Tolosana-Calasanz, J. A. Bañares, P. Álvarez, J. Ezpeleta, and
O. F. Rana, “An Uncoordinated Asynchronous Checkpointing Model
for Hierarchical Scientific Workflows,” JCSS, 76(6), pp. 403–415, 2010.

[11] R. Tolosana-Calasanz, M. Lackovic, O. F. Rana, J. A. Bañares, and
D. Talia, “Characterizing quality of resilience in scientific workflows,”
in 6th workshop on Workflows in support of large-scale science,
WORKS ’11. NY, USA: ACM, 2011, pp. 117–126.

[12] S. Chakravarthy and Q. Jiang, Stream Data Processing: A Quality
of Service Perspective Modeling, Scheduling, Load Shedding, and
Complex Event Processing, 1st ed. Springer, 2009.

[13] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Çetintemel, Y. Xing, and S. B. Zdonik, “Scalable distributed
stream processing,” in CIDR, 2003.

[14] D. J. Abadi et al., “The Design of the Borealis Stream Processing
Engine,” in 2nd Biennial Conference on Innovative Data Systems
Research (CIDR 2005), Asilomar, CA, January 2005.

[15] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, and P. Valduriez,
“Streamcloud: A large scale data streaming system,” in IEEE ICDCS,
june 2010, pp. 126 –137.

[16] O. Etzion and P. Niblett, Event Processing in Action. Manning, 2010.
[17] S.-M. Park and M. Humphrey, “Data throttling for data-intensive

workflows,” in 22nd IEEE IPDPS, Miami, Florida USA, April 14-18,
2008. IEEE, 2008, pp. 1–11.

[18] I. Taylor, M. Shields, I. Wang, and A. Harrison, Workflows for eScience.
Springer, 2007, ch. The Triana Workflow Environment: Architecture
and Applications, pp. 320–339.

[19] T. M. McPhillips and S. Bowers, “An approach for pipelining nested
collections in scientific workflows,” SIGMOD Record, vol. 34, no. 3,
pp. 12–17, 2005.

[20] T. Oinn et al., “Taverna: lessons in creating a workflow environment
for the life sciences: Research articles,” Concurr. Comput. : Pract.
Exper., vol. 18, no. 10, pp. 1067–1100, 2006.

