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Abstract. We consider the Grassmannian Gr(k, n) of (k+1)-dimensional linear
subspaces of Vn = H0(P1,OP1(n)). We define Xk,r,d as the classifying space of the
k-dimensional linear systems of degree n on P1 whose basis realize a fixed number
of polynomial relations of fixed degree, say a fixed number of syzygies of a certain
degree. The first result of this paper is the computation of the dimension of Xk,r,d.
In the second part we make a link between Xk,r,d and the Poncelet varieties. In
particular, we prove that the existence of linear syzygies implies the existence of
singularities on the Poncelet varieties.

1. Introduction and set up

In this paper we are interested in linear systems Λ on P1 of degree n and projective
dimension k (so, from now we assume that n > k), more particulary in those having
an algebraic limitation, namely the syzygies. A syzygy of degree d for Λ is a (k +1)-

uple of homogeneous forms of degree d, (g0, .., gk), such that
∑k

i=0 gifi = 0. We say
that Λ has r syzygies of degree d if there exist r linearly independent k + 1-uples
(g0,j, .., gk,j), where 0 ≤ j ≤ r.
The locus Xk,r,d lives inside Gr(k, n) in a natural way:

Xk,r,d : =
{
Λ ∈ Gr(k, n) having

at least r syzygies of degree d
}
.

The first result of this paper is the computation of the dimension of Xk,r,d. The
subvarieties Xk,r,d turn out to be determinantal varieties for a suitable map of vector
bundles on the Grassmannian. This extends the main result (corollary 4.4) in [2],
where the computation was only proved in the k = 1 case. In a second part we
give a geometric interpretation of the varieties Xk,r,d in terms of Poncelet varieties.
These varieties were introduced by Trautmann in [5], but, except for the case of
curve, they have not been actually studied. We prove that the existence of linear
syzygies implies the existence of singularities on the Poncelet varieties.

2. The dimension of the varieties Xk,r,d

Let Λ be a linear system on P1 of degree n and dimension k. We choose u, v a
system of coordinates on P1, and denote by Vn the n + 1-dimensional vector space
H0(P1,OP1(n)) of binary homogeneous forms of degree n, otherwise said binary
quantics of degree n. A base for Vn is x0, . . . , xn where xi = uivn−i.
Choose a linear subspace Λ of PVn, and let {f0, . . . , fk} be a basis for Λ. It defines
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a morphism of vector bundles on P1

(1) φΛ : Λ⊗OP1 −−−→ OP1(n)

which is surjective when Λ has no base points. The system Λ gives a map from P1

to Pk

(2) fΛ : P1 Λ−→ Pk.

Its image is a rational curve of degree n when φΛ is surjective, and less than n when
Λ has base points. For general Λ, φΛ is a surjective morphism of vector bundles on
P1, thus there is an exact sequence

(3) 0 −−−→ EΛ −−−→ Λ⊗OP1 −−−→ OP1(n) −−−→ 0,

where the kernel is a vector bundle EΛ on P1 of rank k and degree −n.

The short exact sequence (3) twisted by OP1(d)

0 −−−→ EΛ(d) −−−→ Λ⊗OP1(d) −−−→ OP1(n + d) −−−→ 0

suggests that Λ has exactly r independent syzygies of degree d if and only if
h0(EΛ(d)) = r.
Since any k-bundle of degree −n splits as OP1(−a0) ⊕ · · · ⊕ OP1(−ak) for suitable
positive a0 ≤ · · · ≤ ak such that a0 + · · ·+ak = n, one can stratify the varieties Xk,r,d

by all possible splitting of the integer n in k pieces. This point of view is developed
by Ramella in [3] to sudy the stratification of the Hilbert scheme of rational curves
C embedded in projective space, by the splitting of the restriction of the tangent
bundle to C, and by the splitting of the normal bundle. We will use this point of
view (in thm 2.2) in order to prove that the dimension is the expected one.

Example 2.1. When n = 5 and k = 3 the only possible cases for EΛ are:

EΛ = OP1(−1)⊕OP1(−2)⊕OP1(−2),

which is the general case, and

EΛ = OP1(−1)⊕OP1(−1)⊕OP1(−3).

In the general case h0(EΛ(1)) = 1, in the other h0(EΛ(1)) = 2, thus the general
stratum is X3,1,1 = Gr(3, 5), and the stratum X3,2,1 is strictly contained in Gr(3, 5).

Note that if n < 2k the general splitting has the first term a0 = 1, thus h0(EΛ(1)) ≥
1, which implies that Xn

k,1,1 = Gr(k, n), that is: there always exists a linear syzygy.

Theorem 2.2. codim(Xk,r,d, Gr(k, n)) = (dk + k − n + r)r. Moreover the varieties
Xk,r,d are Cohen-Macaulay with singular locus Xk+1,r,d.

Proof. Consider the universal vector bundle U = UGr(k,n) on the Grassmannian

U = {(f, Λ) ∈ Vn ×Gr(k, n) | f ∈ Λ},
and the canonical map of vector bundles

U ↪→ Vn ⊗OGr(k,n)
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On the product variety Gr(k, n)× P1 let p and q be the two projections

Gr(k, n)
p←−−− Gr(k, n)× P1 q−−−→ P1.

The map p composed with the evaluation map gives on Gr(k, n)× P1

p∗U −−−→ Vn ⊗OGr(k,n)×P1 −−−→ q∗OP1(n).

For all d we also have a morphism

p∗U ⊗ q∗OP1(d) −−−→ q∗OP1(n + d).

If we take now the direct image p∗ on the Grassmannian,we obtain

U ⊗ Vd −−−→ Vn+d

which is just the relative version of our map φΛ in (1) twisted by H0(OP1(d))

Λ⊗H0(OP1(d))→ H0(OP1(n + d)).

Therefore

Xk,r,d = {Λ ∈ Gr(k, n) | rk(ΦΛ) ≤ (k + 1)(d + 1)− r}.
Applying Thom-Porteous formula we compute the expected codimension for Xk,r,d

as r(n + r − (d + 1)k).
It is a classical fact that when the codimension is exactly the expected one than the
Chow class is det(cn−k(d+1)+r+j−i(C(d+1)(n+d+1) ⊗ U∗)).
We compute now the codimension of the tangent space in a generic point Λ. Consider
its associated bundle EΛ, by genericity we have

EΛ = Or
P1(−d)⊕Ok−r−B

P1 (−A)⊕OB
P1(−A− 1)

where A and B are uniquely defined by

(n− dr) = A(k − r) + B, 0 ≤ B < k − r

and, by hypothesis on the syzygy, A > d. The codimension of the tangent space in
the point Λ is then h1(EΛ ⊗ E∨

Λ). Since

EΛ ⊗ E∨
Λ = Or(k−r−B)

P1 (d− A)⊕OrB
P1 (d− A− 1)⊕R,

where R is a suitable bundle with h1(R) = 0, we have h1(EΛ⊗E∨
Λ) = r(n+ r− (d+

1)k) which is the expected codimension. �

3. Geometric description as Poncelet varieties

At the end of his paper [5], Trautmann has introduced a generalization of Poncelet
curves, namely the Poncelet varieties, in higher dimension. Those are in bijective
correspondence with the points of the Grassmannian. The aim of this part is to
describe the points of Xk,r,d as Poncelet varieties. In particular we will show that
Poncelet varieties corresponding to Xk,1,1 are singular (see theorem 3.7). Following
[6], we define the Poncelet varieties as determinant of sections of Schwarzenberger
bundles, therefore we start by recalling the definition of Schwarzenberger bundle
and we describe the zero locus of their section ( see proposition 3.1).



4 June 30, 2008

3.1. Schwarzenberger bundles. We denote by (xi = uivk+1−i), (yj = ujvn−k−1−j),
and (zl = ulvn−l) the basis of Vk+1, Vn−k−1 and Vn respectively. The multiplication
of homogeneous polynomials in two variables

Vk+1 ⊗ Vn−k−1
φ×−→ Vn,

(uivk+1−i, un−k−1−jvj) 7−→ un−j+ivn−i+j

induces the following bundle on PVn:

(4) 0 −−−→ Vn−k−1 ⊗OPVk+1
(−1)

A−−−→ Vn ⊗OPVk+1

B−−−→ En −−−→ 0

where

AT =


x0 x1 · · · xk+1

x0 x1 · · · xk+1

x0 x1 · · · xk+1

. . . . . . . . .
x0 x1 · · · xk+1


and B = (z0, . . . , zn). These bundles are called Schwarzenberger bundles because for
n = 2 they were first introduced by Schwarzenberger in [4].
Into the product PVk+1×PVn the projective bundle PEn is defined by the equations

BAT = (
i=k+1∑

i=0

xizi+j = 0)j=0,··· ,n−k−1

Let s ∈ H0(En) = Vn be a non zero section. We describe now the zero locus Z(s)
geometrically.
We call C∨

k+1 ∈ P(V ∗
k+1) the rational normal curve of the k-osculating planes to Ck+1.

Proposition 3.1. Let s ∈ H0(En) be a non zero section and Dn(s) be the corre-
sponding effective divisor of degree n on C∨

k+1. We denote by Z(s) the zero-scheme
of s. Then,

a ∈ Z(s)⇔ a∨ ∩ C∨
k+1 ⊂ Dn(s).

More generally we have

IZ(s) ⊂ mr+1
a ⇔ (a∨)r+1 ∩ C∨

k+1 ⊂ Dn(s).

Proof. The section s corresponds to an hyperplane Hs ⊂ P(Vn) or to an effective
divisor of degree n on the rational curve Cn, but also on C∨

k+1. The section s

(En)∗
s−−−→ OPVk+1

−−−→ OZ(s) −−−→ 0

induces a rational map P(Vk+1) −→ P((En)∗) which is not defined over the zero-
scheme Z(s).
We call π the canonical projection π : P(En) −→ P(Vk+1).
Over a point a ∈ P(Vk+1) the fiber is

π−1(a) =

{
(
i=k+1∑

i=0

aizi+j = 0)j=0,...,n−k−1

}
= P(En(a)) = Pk.
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The rational map P(Vk+1) −→ P((En)∗) sends a point a ∈ P(Vk+1) onto Hs ∩π−1(a)
which is, in general, a Pk−1, i.e a point in P((En)∗(a)) = Pk∨. This map is not
defined when π−1(a) ⊂ Hs. The hyperplane Hs cuts the rational curve Cn along
an effective divisor Dn(s) of length n. When Dn(s) is smooth, there are

(
n

k+1

)
subschemes Dk+1 ⊂ Dn(s) of length k + 1; they generate the k-planes k + 1 secant
to Cn which are contained in Hs. Since PV1 ' Cn ' C∨

k+1 it is clear that Dn(s)
corresponds to degree n divisor on C∨

k+1. We still denote it by Dn(s).
Then the zero-scheme Z(s) is the set of points a ∈ P(Vk+1) such that the divisor
a∨∩C∨

k+1 of degree n belongs to Dn(s). When Dn(s) is smooth, we get n osculating
hyperplanes of Ck+1 in P(Vk+1). Every subset of k + 1-osculating hyperplanes gives
a point in P(Vk+1). These points are the zero-scheme of the section s. We have
proved the first part of the proposition.
Assume IZ(s) ⊂ mr+1

a . Let Hs the hyperplane corresponding to the section s and
Dk+1 the divisor on C∨

k+1 corresponding to a. Then | (r +1)Dn |∨⊂ Hs. This proves
(a∨)r+1 ∩ C∨

k+1 ⊂ Dn(s).
On the other hand, the inclusion | (r + 1)Dk+1 |∨⊂ Hs proves that the exceptional
divisor | Dk+1 |∨ of P(IZ(s)) appears with multiplicity (r + 1), it means that IZ(s) ⊂
mr+1

a . �

3.2. Poncelet varieties. The group SL(2, C) acts on Gr(k, n) and we have an

equivariant morphism Gr(k, n) ↪→ P(
∧k+1 Vn). The SL(2)−modules

∧k+1 Vn and
Sk+1Vn−k are isomorphic (see [1], p. 160). Moreover by Hermite reciprocity formula
(see [1], p. 82 and p.160), we have Sk+1Vn−k

∼= Sn−kVk+1. So the Plucker embedding
becomes

(5) T : Gr(k, n) ↪→ P(Sn−kVk+1).

It associates to Λ = 〈f0, . . . , fk〉 the hypersurface of degree n − k in PVk+1 with
equation f0 ∧ · · · ∧ fk = 0. Indeed, since from (4)

H0(En) ∼= H0(OP1(n)),

we consider fi as section of En. We summarize these facts in the following commu-
tative diagram:
(6)

Λ⊗OPk+1 Λ⊗OPk+1y y
0 −−−→ Vn−k−1 ⊗OPk+1(−1) −−−→ Vn ⊗OPk+1 −−−→ En −−−→ 0

=

y y y
0 −−−→ Vn−k−1 ⊗OPk+1(−1) −−−→ Vn/Λ⊗OPk+1 −−−→ L −−−→ 0.

where the support of the sheaf L is given by f0 ∧ · · · ∧ fk = 0.

Definition 3.2. The varieties defined as determinant of k+1 sections of Schwarzen-
berger bundles on Pk+1 are called Poncelet varieties of dimension k.
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We point out that a section of En corresponds to n points on the rational normal
curve Ck+1, and it vanishes along

(
n

k+1

)
points in Pk+1 which are the intersection

points of (k + 1)-osculating hyperplanes of Ck+1 in k + 1 points chosen among the
previous n points. Hence these varieties are characterized by the nice following geo-
metric fact: they contain the vertices of k +1 dimensional linear space of osculating
polytopes. The case of curves is well-known since Darboux, but in higher dimension
quite nothing exists in literature.

Proposition 3.3. Let Λ be a linear system in Gr(k, n) with d base points. Then
T (Λ) is the union of d osculating hyperplanes to Ck+1 ⊂ PVk+1 and a degree (n −
k − d) Poncelet variety of dimension k.

Remark 3.4. In particular when Λ is a pencil, a base point corresponds to a linear
syzygy. The morphism T sends X1,1,d on the locus of Poncelet curves which are
union of a Poncelet curve of degree d− 1 with n− d tangent lines to C2.

Proof. In the case of curves it is proved by Trautmann (see proposition 1.11 of [5]).
In general assume that Λ has d < n base points and let f = 0 be one equation for
this base locus. Then we have a factorization:

Ok+1
P1

Λ
f−−−→ OP1(n− d)

f
↪→ OP1(n).

The first arrow gives the following vector bundle map:

0 −−−→ Ok+1
P(Vk+1)

Λ
f−−−→ En−d −−−→ K −−−→ 0,

where K is supported on a Poncelet variety of degree n− k − d. The second arrow
gives

0 −−−→ En−d −−−→ En −−−→ ⊕d
i=1OHi

−−−→ 0

where Hi is the osculating hyperplane to Ck+1 which corresponds to a base point on
C∨

k+1. Now the result follows from the following commutative diagram:

OPk+1 OPk+1

Λ
f

y Λ

y
0 −−−→ En−d −−−→ En −−−→ ⊕d

i=1OHi
−−−→ 0y y =

y
0 −−−→ K −−−→ L −−−→ ⊕d

i=1OHi
−−−→ 0,

where L is a sheaf supported by the Poncelet variety corresponding to Λ. �

The following examples are done as suggested by the commutative diagram in ((6)).

Example 3.5. In Gr(2, 4), X2,1,2 = Gr(2, 4) and codimX2,1,1 = 1.
a) The net Λ = 〈u4, u2v2, v4〉 ∈ X2,1,2 \ X2,1,1 corresponds to the smooth Poncelet
quadric

det

(
x1 x3

x0 x2

)
= x1x2 − x0x3 = 0.
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b) The net Λ = 〈u4, u3v, v4〉 ∈ X2,1,1 has associated Poncelet cone

det

(
x2 x3

x1 x2

)
= x2

2 − x1x3 = 0.

Example 3.6. The net Λ = 〈u3v, uv3, v4〉 has a base point, its associated Poncelet
quadric is

det

(
x0 x2

0 x1

)
= x1x0 = 0.

This quadric consists in two planes, one of which osculating the rational normal
curve C3.

Theorem 3.7. The Poncelet variety associated to any element of Xk,1,1 is singular.
Moreover the Poncelet variety associated to a general element of Xk,1,1 contains

(
n−1

k

)
lines and is singular in the

(
n−1
k+1

)
vertices of this configuration.

Proof. Let Λ have a syzygy of degree one : we can say that Λ = 〈uf, vf, f2, . . . , fk〉,
where f ∈ Vn−1. The curve Γ in Pk+1 defined by the determinant of the two sections
uf, vf of En is obtained as follows.
The pencil 〈uf, vf〉 defines n− 1 fixed points and a moving point p on the rational
normal curve C∨

k+1. Therefore, the curve Γ in Pk+1 consists in
(

n−1
k

)
lines. They are

the lines of k-planes in P(k+1)∨ passing through p and each subset of k points chosen
among the fixed ones.
Each (k + 1)-uple of points on C∨

k+1, chosen among the (n − 1) fixed one, gives a

point on Γ ⊂ P(k+1). It is the intersection point of (k + 1) lines corresponding to
each choice of k points among the (k + 1). Since the (k + 1) points are distinct on
the rational normal curve C∨

k+1, the Pk−1 generated by each choice of k points do
not have a common point, dually, the configuration of lines is not contained in an
hyperplane. Then, since the hypersurface defined by Λ contains the curve Γ, it has
singularities in the

(
n−1
k+1

)
vertices of the configuration of lines Γ. �

Example 3.8. The net Λ = 〈u5 + v5, u5 − u4v + u3v2 − u2v3 + uv4, u5 − v5〉 has a
syzygy of degree 1. It corresponds to the Poncelet cubic surface

det

 x1 + x2 x2 + x3 x3

x0 + x1 x1 + x2 x3 + x2

x0 x1 + x0 x1 + x2

 = 0.

This surface has four singular points, which is the maximum number of ordinary
double points. Thus it is a Cayley cubic.

It could be interesting to explore the link between the sygyzies of higher degrees
and the singularities of the associated Poncelet varieties.
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