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Abstract— This paper analyzes the performance of a large
population of long lived TCP flows experiencing random packet
losses due to both random transmission errors and congestion
created by the sharing of a common tail drop bottleneck router.
We propose a natural and simple model for the joint throughput
evolution of the set of TCP sessions under such a mix of losses.
For the case of Poisson transmission errors, we show that the
asymptotic model where the population tends to infinity leads
to a well defined and tractable dynamical system. In particular,
we get the mean value of the throughput of each session as a
function of the transmission error rate and the synchronization
rate in the bottleneck router. The large population asymptotic
model has two interesting and non-intuitive properties:

1) there exists a positive threshold (given in closed form)
on the transmission error rate above which there are no
congestion losses at all in steady state;

2) below this threshold, the mean throughput of each flow is
an increasing function of the transmission error rate, so
that the maximum mean value is in fact achieved when the
transmission error rate is equal to this threshold.

The finite population model and models based on other classes
of point processes are also studied. In particular, a sufficient
condition is obtained for the existence of congestion times in the
case of arbitrary transmission error point processes.

Index Terms— TCP, congestion control, flow control, additive
increase–multiplicative decrease algorithm, IP traffic, synchro-
nization, throughput, bit error, packet error, transmission error.

I. INTRODUCTION

Understanding the behavior of TCP in the presence of
random transmission errors has become important with the
current increase of the proportion of wireless and of DSL
access links in the Internet, where bit/packet error rates are
essential features.

The present paper studies the interaction of TCP flows ex-
periencing packet losses due to random transmission errors in
addition to losses created by congestion, under the assumption
that the flows share a common tail drop bottleneck router/link.

Previous studies on TCP over hybrid wired/wireless links
have primarily focused on improving the performance by
hiding or reducing packet losses due to random transmission
errors [1], [2]. Among the main ideas along these lines, we
would quote

• the addition of mechanisms that allow TCP to identify
and to ignore packet losses due to random transmission
errors [3], [4], [5];
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• the reduction of such packet losses obtained either by
FEC (Forward Error Correction), or by breaking the end-
to-end connection into two parts (one from the mobile
to the base station and one from the base station to the
destination) [6], [7].

For all situations where TCP has to cope with some bit/packet
error rate, no formula seems to be available for characterizing
the interplay between these transmission error losses and
losses due to congestion. Our aim in the present paper is to
analyze this interplay and to determine the throughput obtained
by each flow from the knowledge of the RTT, the capacity of
the shared outer/link and random loss rate.

This work builds upon the AIMD (Additive Increase, Multi-
plicative Decrease) model introduced in [8], [9] for describing
the interaction of TCP flows over wired links ([8], [9]). The
main new feature of the present paper is the addition of random
transmission errors. This new model, which will be referred
to as the transmission error-AIMD model, is introduced in §II.

In §III, we analyze the dynamics of this model under the
assumption of a large population of long lived TCP flows ex-
periencing Poisson transmission errors. This large population
asymptotic model is then used in §IV in order to derive the
mean value of the throughput of each session as a function of
the transmission error rate and the synchronization rate in the
bottleneck router. We also show that the obtained throughput
formula is actually a refinement to the classical square root
formula for TCP throughput [10], [11].

In §V, the finite population model and models based on
other classes of point processes are also studied. A sufficient
condition is obtained for the existence of congestion times in
the case of arbitrary transmission error point processes.

Finally, in §VI, we illustrate the two main conclusions of
this paper for the large population asymptotic model in the
case of Poisson transmission errors, and show that these two
conclusions hold for finite population models and other classes
of point processes.

II. THE TRANSMISSION ERROR-AIMD MODEL

In this section, we propose a set of fluid evolution equations
allowing one to represent the key features of the AIMD
mechanism for N homogeneous TCP sessions sharing one
tail drop bottleneck router in the presence of random packet
losses due to transmission errors. We will first consider the
homogeneous case, where all sessions have the same RTT.
We will also give the equations for the heterogeneous case
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(different RTT’s or synchronization rates). These equations
will not be studied in the present paper.

A. Notation

By definition, the n-th congestion time is the n-th epoch
at which a loss or several simultaneous losses occur due to
congestion on this shared router. We will use the following
notation:

• N is the number of TCP sessions, which we assume to
be constant with time;

• C = cN is the capacity of the bottleneck router;
• TN

n is n-th congestion time, namely the n-th epoch at
which there is one of more losses due to congestion on
the router. This quantity is not known in advance and will
have to be determined from the analysis; it may even be
the case that there are less than n congestion epochs (in
which case we take TN

n = ∞ by convention);
• τN

n+1 = TN
n+1 − TN

n whenever TN
n is finite. By conven-

tion, we take τN
n+1 = ∞ whenever TN

n is infinite;
• Xi,N

n is the throughput of session i just after the n-th
congestion time;

• W i,N
n is the window size of session i just after the n-th

congestion time;
• Xi,N

n (t) is the throughput of session i at time TN
n +t, for

t ∈ [0, τN
n+1] (all jump functions will be assumed right

continuous; we have in particular Xi,N
n (0) = Xi,N

n );
• Li,N

n (t) is the total throughput drop of session i from
TN

n to TN
n + t due to the packet transmission losses,

with t ∈ [0, τN
n+1];

• R(i) is the mean RTT of session i (in the homogeneous
situation, R(i) = R);

• α(i) is the linear growth rate of the window size of session
i with time; it makes sense to take α(i) = 1/R(i);

• γ
(i)
n is a { 1

2 , 1}-valued random variable with value 1
2 if

session i experiences a loss at the n-th congestion time,
1 otherwise;

• δ
(i)
n (t) is a non-negative integer valued random variable

with value l if session i experiences l packet transmission
losses from TN

n to TN
n + t, t ≥ 0.

We will also use the following aggregated quantities:

SN
n (t) =

N∑
i=1

Xi,N
n (t), MN

n (t) =
N∑

i=1

Li,N
n (t). (1)

B. Dynamics

We are now in a position to give the equations of the
dynamics of our model. Assuming that TN

n is finite, the
throughput of session i evolves according to the following
law:

Xi,N
n (t) = Xi,N

n +
α(i)

R(i)
t − Li,N

n (t), (2)

for t ∈ [0, τN
n+1). The rationale for this equation is as follows:

• one assumes that TCP Reno is used and that all sources
are in the congestion avoidance phase, so that the window
has a linear increase of α(i) = 1/R(i);

• one assumes that the throughput and the window size are
linked by a Little like law: W i,N

n = Xi,N
n R(i) (which

is a simplifying assumption since this way of linking
throughput to window only applies to stationary means
whereas we use it for linking instantaneous values here).

Then the linear increase of the window leads to a linear
increase of the throughput too, with slope α(i)

R(i) .
We now define τN

n+1 as

inf
{

t > 0 s.t.
N∑

i=1

(
Xi,N

n − Li,N
n (t)

)

+
N∑

i=1

α(i)

R(i)
t = C

}
, (3)

with τN
n+1 = ∞ if the last set is empty. This defines TN

n+1 =
TN

n + τN
n+1. The rationale for this definition stems from the

assumption that the buffer capacity of the router is 0 or
negligible (see the paper [8] for a simple way to relax this
assumption), so that the next congestion takes place at the
next time when the sum of all throughputs reach again the
capacity C of the router.

There are now two cases: either τN
n+1 = ∞ and we have

actually constructed the whole dynamics; or τN
n+1 < ∞ in

which case one defines

Xi,N
n+1 = γ

(i)
n+1

(
Xi,N

n +
α(i)

R(i)
τN
n+1 − Li,N

n (τN
n+1)

)
. (4)

The rationale for this should be clear as by the multiplicative
rule of Reno, the throughput of session i should be divided
by 2 if this session experiences a loss at TN

n+1.
Let us now give the value of the Li,N

n (t) function. If session
i experiences l packet losses, the throughput drop Li,N

n (t)|l
due to transmission losses can be represented as

Li,N
n (t)|l = Xi,N

n

(
1 − 1

2l

)

+
α(i)

R(i)

l+1∑
k=1

τ i,N
k

(
1 − 1

2l−k+1

)
, (5)

where τ i,N
k , k ≤ l is the length of the interval from the k−1-

st transmission loss time to the k-th and τ i,N
l+1 is the length

of the interval from the l-th transmission loss time to t. The
derivation of (5) is given in §VIII-A in the appendix.

For a validation of this kind of fluid dynamics and its
comparison with NS based simulation, the interested reader
should consult [8] and [12] for the particular case without
transmission errors and §VI for the case considered here.

III. MEAN FIELD ASYMPTOTICS OF THE POISSON

TRANSMISSION ERROR, RATE INDEPENDENT

SYNCHRONIZATION CASE

The mathematical derivations of this section focus on the
case with

1) Rate independent synchronization: the random variables
{γ(i)

n , i = 1, . . . , N} are independent of the past of
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the throughput processes before time TN
n and P(γ(i)

n =
1
2 ) = p(i) for all n (with p(i) = p in the homogeneous
case). In the homogeneous case, a simple instance is
that where a subset of cardinality pN is selected at
random among the N sessions for determining which
sessions experience a loss at TN

n . Other random models
are considered in [8]. The parameter p is referred to as
the synchronization rate; this parameter describes the
proportion of flows that simultaneously experience a
loss during a congestion epoch. For queueing theory
estimates of this parameter, see [8].

2) Poisson transmission errors: the point processes of
packet transmission errors are homogeneous Poisson
point processes with intensity λ(i) for session i (with
λ(i) = λ in the homogeneous case). Since TN

n is a stop-
ping time of this family of Poisson point processes and
of the family of random variables {γ(i)

k }k<n, i=1,...,N ,
then thanks to the Strong Markov property for Pois-
son point processes [13], whenever TN

n is finite, the
transmission error point processes after time TN

n are
independent Poisson point processes, independent of the
past of the throughput processes before time TN

n . In
particular, for all t,

• δ
(i)
n (t) has a Poisson distribution with parameter

λ(i)t:

P(δ(i)
n (t) = l) = q

(i)
l =

(λ(i)t)l

l!
e−λ(i)t,

with q
(i)
l = ql in the homogeneous case.

• the random variables {δ(i)
n (t), i = 1, . . . , N} are

independent in i and are independent of the past
of the throughput processes before time TN

n .

The assumption of Poisson transmission losses may be justi-
fied in some practical cases like for instance the impulse noise
in the DSL context. In general, this assumption is not realistic
in the wireless context. Nevertheless, as we will see, some
of the qualitative results obtained from this tractable Poisson
model seem to be quite robust and are still valid for other
more bursty point processes.

Note that when N is finite, under the foregoing Poisson
assumptions, the random variable τN

n+1 defined in (3) is almost
surely (a.s.) finite and even of finite mean. This follows
from the fact that for all a > 0, there is a finite random
and integrable stopping time T for which all N Poisson
point processes simultaneously have not points at all in the
interval [T, T + a]. If one takes a large enough for having∑N

i=1
α(i)

R(i) a > C, then one sees that τN
n+1 ≤ T < ∞, which

concludes the proof.

A. Homogeneous Case

From Assumption 1 above and from (4)

E[Xi,N
n+1] = E

[
γ

(i)
n+1

]
E

[
Xi,N

n − Li,N
n (τN

n+1) +
α

R
τN
n+1

]
=

(
1 − p

2

)
E

[
Xi,N

n − Li,N
n (τN

n+1) +
α

R
τN
n+1

]
.

So∑
i

E[Xi,N
n+1] =

(
1 − p

2

)

E

[∑
i

(
Xi,N

n − Li,N
n (τN

n+1) +
α

R
τN
n+1

)]

=
(

1 − 1
2
p

)
C.

Using now the homogeneity assumption, we get that for all
n ≥ 1,

E[Xi,N
n ] =

(
1 − p

2

)
c. (6)

In order to go further, namely to determine the mean value of
the throughput obtained by a flow in continuous time, we now
introduce the large population asymptotic model.

B. Large Population Asymptotics

The next theorem is the main structural result of the paper.
It is in the continuation of results used in [14] and [9] and
is related to the mean field method of statistical physics (for
more on the matter, see the references in [9]).

This theorem is based on conditions using certain subsets
σN of {1, . . . , N}. The cardinal of set s will be denoted by |s|
throughout the paper. We will say that a subset is independent
of the throughput process before time t if the elements of the
subset are selected according to a random (or deterministic)
procedure that is independent of the values of the throughput
process before time t.

Theorem 1 Assume the initial condition Xi,N
0 is such that

• E[Xi,N
0 ] = x0 < c, for all i and

• for all sequences of subsets σN of {1, . . . , N}, with a
cardinal |σN | that tends to ∞, when N goes to ∞, the
following almost sure (a.s.) limit holds:

lim
N→∞

1
|σN |

∑
i∈σN

Xi,N
0 = lim

N→∞
1

|σN |
∑

i∈σN

E[Xi,N
0 ]

= x0.

Then, for all n ≥ 0 such that TN
n is finite, there exists a

possibly infinite real number τn+1 such that the following a.s.
limit holds:

lim
N→∞

τN
n+1 = τn+1. (7)

In addition, for all n ≥ 0 and all t ≤ τn+1,

• E[Xi,N
n (t)] = E[X1,N

n (t)], for all i and
• for all sequences of subsets σN of {1, . . . , N}, with a

cardinal |σN | that tends to ∞ and which is independent
of the past of the throughput process before time TN

n + t,

lim
N→∞

1
|σN |

∑
i∈σN

Xi,N
n (t) = lim

N→∞
1

|σN |
∑

i∈σN

E[Xi,N
n (t)]

≡ Xn(t), a.s. (8)
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and

lim
N→∞

1
|σN |

∑
i∈σN

Li,N
n (t) = lim

N→∞
1

|σN |
∑

i∈σN

E[Li,N
n (t)]

≡ Ln(t), a.s. (9)

with

Xn(t) =

{(
Xn(0) − α

R
2
λ

)
e−

λt
2 + α

R
2
λ , t < τn+1

(1 − p
2 )c, t = τn+1

(10)

Ln(t)=
(

Xn(0) − α

R

2
λ

)
(1 − e−

λt
2 ) +

α

R
t, t ≤ τn+1

(11)

and with X0(0) = x0 and Xn(0) = (1 − p
2 )c for all

n ≥ 1.

The proof is given in Appendix VIII-B. Here are a few
important remarks on this theorem.

1) The special case Xi,N
0 = 0 for all i and n is an instance

of initial conditions that meet the assumptions of the
theorem.

2) Specializing (8) and (9) to the case where σN is the full
set, we get that for all n and t ≤ τn+1,

lim
N→∞

SN
n (t)
N

= lim
N→∞

E

[
SN

n (t)
N

]
= Xn(t)(12)

lim
N→∞

MN
n (t)
N

= lim
N→∞

E

[
MN

n (t)
N

]
= Ln(t).(13)

This means that the random variables SN
n

N , MN
n (t)
N , SN

n (t)
N

and τN
n+1, become deterministic as N goes to ∞, i.e.,

a large number of sources leads to the deterministic
dynamical model described above. This is the essence
of the mean field method.

3) The quantities Xn(t), Ln(t) and τn+1 are constant in n
for all n ≥ 1. So, Xn(t), Ln(t) and τn+1 are denoted
by X(t), L(t) and τ , respectively throughout the rest of
this paper.

Now, we are ready to investigate the finiteness of the inter-
congestion times. Let

λ∗ =
2
c

α

R
. (14)

Corollary 1 The inter-congestion times τ1 and τ are finite if
and only if λ < λ∗. In case λ < λ∗, we have

τ1 =
2
λ

loge

(
1 +

λ
(
1 − x0

c

)
λ∗ − λ

)
(15)

τ =
2
λ

loge

(
1 +

λp

2(λ∗ − λ)

)
. (16)

Proof: It is easy to check, for instance using PASTA
(Poisson Arrivals See Time Averages, see e.g. [15]) that for
all t, L(t) ≤ λct

2 . Thus

X(t) = X(0) +
α

R
t − L(t) ≥ X(0) +

(α

R
− λ

2
c
)
t.

So if λ < λ∗, then for all initial conditions less than c, the
function X(t) reaches level c in a finite time since then α

R −
λ
2 c > 0. The quantity τ in (16) is precisely the solution in t
of the equation X(t) = c (with a similar result for τ1).

If λ ≥ λ∗, then the slope of the function X(t) is always less
than or equal to 0 as easily checked on (10). Hence τ1 = ∞.

The physical interpretation of this result is that in the limiting
system, it is only if random losses occur rarely enough that
congestion plays a role in the regulation. The surprising fact is
that the conditions under which regulation involves congestion
is very simple. We will come back to qualitative implications
of this result on the finite population case in §VI.

IV. ANALYTICAL PROPERTIES OF THE POISSON

TRANSMISSION ERROR, RATE INDEPENDENT

SYNCHRONIZATION CASE

A. Mean Value of the Throughput of the Asymptotic Model

From the cycle formula (see [15], Chapter 1), the stationary,
continuous time, mean value of the throughput of a session,
which we will denote by x in what follows, can be calculated
by the formula :

x =

∫ τ

0
X(t) dt

τ
. (17)

From (10), when λ > 0, simple calculations based on the
expression for X(t) give

x =
α

R

2
λ

+
1
τ

2
λ

(
X(0) − α

R

2
λ

)(
1 − e−

1
2 λτ

)
.

From (6), (14), Corollary 1 and the above equation,

x =




c(1 − p
4 ) if λ = 0

cλ∗
λ − cp

2log
e

(
1+ λp

2(λ∗−λ)

) if λ < λ∗

cλ∗
λ if λ ≥ λ∗.

(18)

Now, we investigate the properties of the function x.

Theorem 2 x is an increasing function of λ for λ ∈ [0, λ∗]
and a decreasing function of λ for λ ≥ λ∗, thus x achieves
its maximal value c at λ = λ∗.

The proof is given in Appendix VIII-C.
The above theorem means that some transmission losses

need to be added in order to get the best average throughput
of TCP/droptail. An intuitive explanation is that moderate
transmission losses play the same role as RED and may
improve performance by stretching congestion periods apart
and hence decreasing synchronization.

For λ ≥ λ∗, from (18) we can derive the following
relationship: x ≥ c

(
1 − βp

)
for λ ∈ [λ∗, λβ ], where β

is a constant with β ∈ [0, 1
p ) and λβ = λ∗ 1

(1−βp) . Since
x ≥ c

(
1 − 1

4p
)

for λ ∈ [0, λ∗], this relationship leads to

• x ≥ c
(
1 − 1

4p
)

for λ ∈ [0, λ 1
4
];

•
λ 1

4
λβ

= 4
3 (1 − βp).
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From Theorem 2, we can expect that for other classes of
random transmission errors, the mean value of the throughput
can be larger than that in the absence of random losses if
the throughput of each session can be between c(1 − 1

4p)
and c during most of the congestion interval. More detailed
discussion for this case is given in §V.

B. Refinement of the Square Root Throughput Formula

Let us show how the throughput formula obtained by this
approach is actually a refinement to the classical throughput
formulas for TCP throughput [10], [11]. To this end, α is
replaced by 1

R .
If there are no congestion epochs, i.e. if λ ≥ λ∗, we have

x =
2

R2λ
=

√
2

R
√

ploss
, (19)

where ploss = R2λ2

2 .
If λ < λ∗, the mean number of packets sent by a session

over a cycle is xt. So the packet loss probability ploss is given
by

ploss =
p + λτ

x τ
=

(λτ + p)R2λ2

2λτ − cpR2λ
. (20)

Therefore,

x =
2
√

f(c, p,R, λ)
R
√

ploss
− cp

λτ
, (21)

where

f(c, p,R, λ) =

√
λτ + p

2λτ − cpR2λ
.

We conclude from (19) and (21) that our framework leads
to formulas compatible with the classical estimates for TCP
throughput ([10], [11]).

V. THE FINITE POPULATION MODEL AND MODELS BASED

ON OTHER CLASSES OF POINT PROCESSES

In this section, we come back to the general framework of
§II. In particular, here, N is finite and the probability that a
given flow experiences a loss at a congestion epoch depends
on the actual value of the throughput of this flow at this
congestion epoch.

We assume that the point processes Li, i = 1, . . . , N , where
Li denotes the point process of the transmission error losses of
session i, are jointly stationary (see [15]), with finite intensity
λ and all with the same law (homogeneity assumption). We
denote by EL the Palm probability of Li (this probability does
not depend on i by homogeneity).

In what follows, we assume that the dynamics of §II admits
a stationary regime and more precisely that the point process
C of congestion epochs is jointly stationary with the point
processes Li, i = 1, . . . , N . We denote by EC the Palm
probability of C whenever this point process has a positive
and finite intensity.

We denote

• by X(t) the stationary throughput of one of the flows at
time t,

• by γ(y) the random variable with value 1 if a flow of
throughput y just before some congestion epoch experi-
ences no loss and with value 1/2 otherwise,

• and by τ the intercongestion time T1 − T0.
The rate conservation principle (RCP) which applies to all
discontinuous stationary processes (see [15], Chapter 1) states
that the continuous algebraic growth rate of the process should
compensate the algebraic growth of the process at jump times.

A. Conservation Law for the Case with Congestions

Assume that the point process C has a finite intensity
µ = EC [τ ]−1. When applying the RCP to the discontinuous
stationary process X(t), this gives the following general
conservation law:

λ
EL[X(0−)]

2
+

1
EC [τ ]

(c − EC [X(0−)γ(X(0−))]) =
α

R
(22)

or equivalently

EL[X(0−)] =
2α

λR
− 2(c − EC [X(0−)γ(X(0−))])

λEC [τ ]
.

B. Conservation Law for the Case without Congestions

By the same arguments as above, in the case when there
are no congestion points at all, then

EL[X(0−)] =
2α

λR
. (23)

C. Poisson Case

In the particular case when the loss point processes are
Poisson, we know that there are infinitely many congestion
epochs when N is finite. In this case, the PASTA property
implies that EL[X(0−)] = x, so that we then have

x =
2α

λR
− 2(c − EC [X(0−)γ(X(0−))])

λEC [τ ]
.

If in addition synchronization is rate independent, then

x =
2α

λR
− cp

λEC [τ ]
.

This equation holds for all finite N . However, for finite N ,
both x and EC [τ ] are unknown. Notice that for N = ∞, this
is compatible with the second expression in (18).

D. A Sufficient Condition for the Existence of Congestion
Epochs

We now return to the general framework of the beginning
of this section.

Lemma 1 If λ < 2α
cR and if the underlying point processes are

ergodic, there is a.s. an infinite number of congestion epochs.

Proof: The proof is by contradiction. If there are no
congestion points at all, then (23) holds. Since largest possible
value for the LHS on this equation is c, we then have λ ≥ 2α

cR .
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VI. SIMULATIONS

In this section, we illustrate the results of the last sections
via direct simulations of the finite population evolution equa-
tions of §II. We also validate the qualitative behavior of the
mean throughput via NS simulation.

In all simulations, we set c = 100 and α = 1
R = 10, so that

the threshold value defined in (14) is λ∗ = 2
c

1
R2 = 2 for all

examples.

A. Poisson Transmission Error Case

In this example, we use simulation to check Corollary 1 and
Theorem 2 and discuss the sensitivity of the throughput when
varying the number of sources N and the synchronization rate
p.
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Fig. 2. Mean throughput vs Transmission loss rate: Poisson case.

Figure 1 illustrates that the mean inter-congestion time
is an increasing function of the transmission loss rate λ

and drastically increases with λ above the threshold, which
translates the fact that there are very few congestion epochs
above the threshold.

Figure 2 studies the link utilization, which is proportional
to the mean throughput in view of homogeneity. This figure
shows that the link utilization is an increasing function of
λ below the threshold λ∗ = 2 and a decreasing function of
λ above the threshold. The maximum value of utilization is
reached near λ = λ∗ indeed. As the number of flows increases,
the link utilization curve gets closer and closer to that of
the mean throughput as predicted in the asymptotic dynamic
model in Theorem 2. This figure also illustrates that the gain in
utilization when moving from λ = 0 to λ = λ∗ is proportional
to the synchronization rate p. The gain is cp

4 as shown in
Theorem 2.

B. Other Point Process Transmission Error Case

In this example, we illustrate what might be the analogues of
Corollary 1 and Theorem 2 for other class of point processes
as discussed in §V. For other class of point processes than
Poisson, it seems more difficult to get explicit equations like
those in Corollary 1 and Theorem 2. We simulated the case
where the error transmission process is a renewal process
with Pareto distribution (with parameter equal to 2.5). When
comparing this case with the Poisson case, the parameter
of the Poisson distribution is chosen in such a way that
inter-loss times have the same mean values (equivalently, the
transmission error point processes have the same intensity).

Figure 3 shows that the congestion time is again an in-
creasing function of the transmission-error rate below some
threshold, so that this fact is not a simple artefact of Poisson
point processes. Above this threshold, there are very few
congestion epochs.

Figure 4 also seems to indicate that the value of the
threshold is different from that of the Poisson case. The
threshold of the Pareto case is larger than that of the Poisson
case. The fact that when there are no congestions, the average
throughput increases when moving from Poisson to Pareto
can be explained by the fact that the Pareto law is likely to
create more bursty losses. For a fixed mean inter-loss time,
a more bursty distribution implies clusters of losses on one
side, and very large inter-loss times on the other side. In our
model, clusters of losses do not affect too much throughput
(several halvings still lead to a positive value) whereas TCP
takes advantage of very large inter-loss times thanks to the
fact that we did not assume an upper bound on the window
size.

C. Throughput vs Transmission Loss Rate: NS Simulation

As a final example, we consider NS simulation for the
effect of the combination of transmission errors and congestion
losses on persistent TCP flows sharing a common droptail link.
This simulation has the following main differences from the
previous ones. First, the synchronization rate cannot be kept
constant while varying the transmission loss rate (see Figure 5
for our observation showing the relationship between the total
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Fig. 4. Mean throughput vs Transmission loss rate: Pareto case.

packet loss rate and the transmission packet loss rate in NS
simulation). Second, there is a buffer (B = 100) in the droptail
router which may affect the performance. So, the results in
this subsection can in no way be considered a direct analogue
of those of the previous two numerical examples. However,
one can clearly observe the same qualitative behavior, with
an increase of throughput up to the critical value, and then
a phase without congestions where throughput decreases with
the transmission loss rate as shown in Figure 6. Figure 5 also
shows that the total packet loss rate slightly decreases up to
the threshold and drastically increases after that. In fact, we
can get the maximal throughput when the transmission loss
rate is equal to the congestion rate, where the congestion rate
is the total loss rate when there is no transmission error.

VII. CONCLUSIONS

In this paper, we proposed a model, called the transmission-
error AIMD model, for understanding the dynamical behavior
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Fig. 6. Mean throughput vs Transmission loss rate.

of long lived TCP flows and analyzing their performance in
the presence of random packet losses due to both transmission
errors and congestion. Based on the transmission-error AIMD
model, we derived a dynamical system for the large population
of TCP sessions in the case of Poisson transmission errors
and rate-independent synchronization. From the asymptotic
dynamical system, we analyzed the mean throughput of each
session and refined the classical throughput formula. We also
studied the finite population model and models based on other
classes of point processes. Finally, we illustrated our studies
via some simulation examples.

This work can be extended to further cases such as heteroge-
neous TCP flows with different classes of random transmission
errors and multiple tail-drop/AQM routers (see our previous
papers [9], [12] for heterogeneous TCP flows over multiple
wired links and [16], [17] for AQM routers.)
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VIII. APPENDIX

A. Proof of Equation (5)

If the i-th session experiences l transmission losses in the
interval [TN

n , TN
n + t], t < τN

n+1, then its throughput is given
by

• 1
2

(
Xi,N

n + α(i)

R(i) τ
i,N
1

)
at the first random loss;

• 1
2

(
1
2

(
Xi,N

n + α(i)

R(i) τ
i,N
1

)
+ α(i)

R(i) τ
i,N
2

)
at the second ran-

dom loss;

•
...

• 1
2l X

i,N
n + α(i)

R(i)

l∑
k=1

1
2l−k+1

τ i,N
k at the l-th random loss,

• 1
2l X

i,N
n + α(i)

R(i)

l+1∑
k=1

1
2l−k+1

τ i,N
k at time t,

where the variables τ i,N
k s are defined as in (5). Thus, if the

n + 1-th congestion epoch takes place later than TN
n + t, then

Xi,N
n (t)|l = Xi,N

n

1
2l

+
α(i)

R(i)
t

− α(i)

R(i)

l+1∑
k=1

τ i,N
k

(
1 − 1

2l−k+1

)
,

so that

Li,N
n (t)|l = Xi,N

n

(
1 − 1

2l

)

+
α(i)

R(i)

l+1∑
k=1

τ i,N
k

(
1 − 1

2l−k+1

)
,

which completes the proof of (5).

B. Proof of Theorem 1

The proof is by induction. We take TN
0 = 0. The induction

assumption is that

• E[Xi,N
n ] = E[X1,N

n ] for all i and
• for all sequences of subsets σN of {1, . . . , N}, such that

|σN | tends to ∞ and such that this set is independent of
the past of the throughput process before time TN

n ,

lim
N→∞

1
|σN |

∑
i∈σN

Xi,N
n = lim

N→∞
1

|σN |
∑

i∈σN

E[Xi,N
n ]

=

{
x0 a.s. if n = 0(
1 − 1

2p
)
c a.s. if n ≥ 1.

This assumption holds for n = 0 by the assumption of
Theorem 1. We first prove via a sequence of lemmas that if
this induction assumption holds true for n, then it holds true
for n + 1. For the sake of clear exposition, we will actually
only prove that the desired property holds for n + 1 for the
whole set {1, . . . , N}. The extension to any subset with the

appropriate properties is obtained by a mere rephrasing of the
proofs below.

In a first step, we consider the system with transmission
errors only.

Let sN
l (t) denote the set of sessions that experience l

transmission losses on the time interval [TN
n , TN

n + t], t > 0.
The empirical mean of the throughput drop on this interval,
namely MN

n (t)
N , can be represented as

MN
n (t)
N

=
1
N

(∑
l≥0

∑
i∈sN

l (t)

Li,N
n (t)|l

)

=
∑
l≥0

|sN
l (t)|
N

∑
i∈sN

l (t) Li,N
n (t)|l

|sN
l (t)| , (24)

where 0/0 is 0 by convention.
For all N ≥ 1, the collection of real numbers

µN
l =

|sN
l (t)|
N

, l ∈ N,

is a probability measure on N (the non-negative integers).
From the fundamental theorem of statistics, the probability
measures µN converges weakly to the Poisson probability
measure q of parameter λt on N.

For all N ≥ 1, let gN : N → R be the function:

gN
l =

∑
i∈sN

l (t) Li,N
n (t)|l

|sN
l (t)| . (25)

We prove in Lemma 3 below that under the induction
assumption, for all fixed l ≥ 1, there exists a bounded function
g : N → R

+ such that for all l, lim
N→∞

gN
l = gl a.s. Let A denote

the upper bound on g.

Lemma 2 The following interchange of limit and sum is licit:

lim
N→∞

∑
l

µN
l gN

l =
∑

l

lim
N→∞

µN
l gN

l

=
∑

l

qlgl a.s. (26)

Proof: For all J and N ,∣∣∣∣∣
∑

l

µN
l gN

l −
∑

l

qlgl

∣∣∣∣∣ ≤ h(N, J),

with

h(N, J) =

∣∣∣∣∣
∑
l<J

µN
l gN

l −
∑
l<J

qlgl

∣∣∣∣∣
+ A

∑
l≥J

ql +
∑
l≥J

µN
l gN

l .

Pick any ε > 0; there exists J such that
∑
l≥J

ql ≤ ε.

Since for all fixed l, µN
l gN

l tends to qlgl, then there exists
a random integer K1 such that for all N ≥ K1,∣∣∣∣∣

∑
l<J

µN
l gN

l −
∑
l<J

qlgl

∣∣∣∣∣ ≤ ε.
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In addition

∑
l≥J

µN
l gN

l =

∑
l≥J |sN

l (t)|
N

∑
l≥J

∑
i∈sN

l (t) Li,N
n∑

l≥J |sN
l (t)|

=


∑

l≥J

µN
l


 ∑

l≥J

∑
i∈sN

l (t) Li,N
n∑

l≥J |sN
l (t)| .

Notice that since Xi,N
n (t) ≥ 0 for all t, it follows from (2)

that ∑
i∈sN

l (t)

Li,N
n (t)|l ≤

∑
i∈sN

l (t)

(
Xi,N

n +
α

R
t
)

.

Let

GN
n =

∑
l≥J

∑
i∈sN

l (t)

(
Xi,N

n + α
R t

)
∑

l≥J |sN
l (t)| .

From the induction assumption and from the fact that
lim

N→∞
| ∪l≥J sN

l (t)| → ∞,

lim
N→∞

GN
n =

{
x0 + α

R t if n = 0(
1 − 1

2p
)
c + α

R t if n ≥ 1.

Hence there exists a K2 such that for all N ≥ K2,

lim
N→∞

GN
n ≤ α

R
t + max

(
x0,

(
1 − 1

2
p

)
c

)
.

Furthermore, since µN converges weakly to q, there exists
a random integer K3 such that for all N ≥ K3,∣∣∣∣∣∣

∑
l≥J

ql −
∑
l≥J

µN
l

∣∣∣∣∣∣ ≤ ε, so that
∑
l≥J

µN
l ≤ 2ε.

So for all N ≥ max(K1,K2,K3), h(N, J) ≤ ε
[
1 +A

+2 α
R t + 2max

(
x0,

(
1 − 1

2p
)
c
)]

. Since ε is arbitrary, (26) is
proved.

Lemma 3 Under the foregoing assumptions, if n = 0

lim
N→∞

gN
l = x0

(
1 − 1

2l

)

+
α

R

l+1∑
k=1

t

l + 1

(
1 − 1

2l−k+1

)
, a.s.

whereas for n ≥ 1

lim
N→∞

gN
l =

(
1 − 1

2
p

)
c

(
1 − 1

2l

)

+
α

R

l+1∑
k=1

t

l + 1

(
1 − 1

2l−k+1

)
, a.s.

Proof: Since for all l, the set sN
l (t) is independent of the

past of the throughput process before TN
n and in particular of

the random vector Xi,N
n , from the induction assumption, we

have

lim
N→∞

∑
i∈sN

l (t) Xi,N
n

|sN
l (t)| =

{
x0 if n = 0(
1 − 1

2p
)
c if n ≥ 1.

(27)

Let us now show that in addition,

lim
N→∞

∑
i∈sN

l (t) τ i,N
k

|sN
l (t)| =

t

l + 1
(28)

for all t in a positive range, and all k ∈ [1, l + 1].
Since the point processes of transmission losses after TN

n

are independent Poisson point processes with intensity λ, the
strong law of large number implies that

lim
N→∞

∑
i∈sN

l (t) τ i,N
k

|sl(t)| = E[τ i,N
k |i ∈ sl]

for any k ∈ [1, l + 1]. We now show that

E[τ i,N
1 |i ∈ sl] = E[τ i,N

2 |i ∈ sl] = · · ·
= E[τ i,N

l+1 |i ∈ sl] =
t

l + 1
.

It is well known that given the number of points l of a
Poisson point process in the interval [0, t], these l points are
independent and uniformly distributed between 0 and t. From
this fact, we can easily get that E[τ i,N

1 |i ∈ sl] = t
l+1 . Let us

now show that in fact, E[τ i,N
k |i ∈ sl] for k ∈ [2, l + 1].

Let v be a real number between 0 and t, and Uj =
j∑

k=1

τ i,N
k .

Then, given t and l, the distribution function of the random
variable Uj is given by

P (Uj ≤ v) =
l∑

k=j

l!
(l − k)!k!

(
v

t

)k(
t − v

t

)l−k

.

Thus, the density function for Uj is given by

f(u) =
l!

(l − j)!j!
j

t

(
u

t

)j−1(
t − u

t

)l−j

.

From the density function, we can get E[τ i,N
j+1|i ∈ sl] =

E[Uj+1 − Uj ] for all j ∈ [1, l − 1] as follows.

E[Uj+1 − Uj ] =
∫ t

0

E[Uj+1 − Uj |Uj = u]

f(Uj = u)du

=
∫ t

0

t − u

l − j + 1
l!

(l − j)!j!
j

t

(
u

t

)j−1

(
t − u

t

)l−j

du

=
∫ t

0

t

l + 1
(l + 1)!

(l + 1 − j)!j!
j

t

(
u

t

)j−1

(
t − u

t

)l+1−j

du

=
t

l + 1
for all j ∈ [1, l − 1].

Since E[τ i,N
k |i ∈ sl] = t

l+1 for all k ∈ [1, l], E[τ i,N
l+1 |i ∈ sl] =

t
l+1 .
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The proof of the lemma is now immediately concluded from
the following fact (deduced from (5))

gN
l =

∑
i∈sN

l (t) Xi,N
n |l

|sN
l (t)|

(
1 − 1

2l

)

+
α

R

l+1∑
k=1

∑
i∈sN

l (t) τ i,N
k

|sN
l (t)|

(
1 − 1

2l−k+1

)

and from (27, 28).
A direct consequence of Lemma 2 is that if n ≥ 1,

lim
N→∞

MN
n (t)
N

=
∑

l

ql

[(
1 − p

2

)
c

(
1 − 1

2l

)

+
α

R

l+1∑
k=1

t

l + 1

(
1 − 1

2l−k+1

)]
, a.s.

with a similar conclusion for n = 0 when replacing
(
1 − 1

2p
)
c

by x0. By the same arguments, if n ≥ 1,

lim
N→∞

SN
n (t)
N

=
∑

l

ql

[(
1 − p

2

)
c

(
1
2l

)
+

α

R
t

−α

R

l+1∑
k=1

t

l + 1

(
1 − 1

2l−k+1

)]
, a.s.

with a similar conclusion for n = 0 when replacing
(
1 − 1

2p
)
c

by x0.

When denoting by Xn(t) the deterministic limit of SN
n (t)
N

and by Ln(t) the deterministic limit of MN
n (t)
N , we can sum-

marize the last results as (10) and (11), respectively.
Let us now come back to the true system where congestion

may take place. Since τN
n+1 = inf{t s.t SN

n (t) = cN}, and
since the system without congestions and the true system
coincide until τN

n+1, the fact that the function SN
n (t)
N considered

above tends to the deterministic and continuous function
X(t), as N tends to infinity, implies that τN

n+1 tends to a
deterministic limit that will be denoted by τn+1. In the rest
of this proof, we assume that τn+1 is finite.

By simple continuity arguments, it is easy to check that for
all t < τn+1, the limiting behaviors of the system without
congestions and of the true systems coincide, which proves
(8) and (9) for t < τn+1 and for σN = {1, . . . , N}.

As mentioned above, it is easy to extend this result to the
case with subsets σN such that |σN | tends to ∞ and such that
this set is independent of the past of the throughput process
before time TN

n + t.

Lemma 4 Under the foregoing assumptions, when denoting
by f(t−) the left hand limit of the function f at point t, the
following a.s. limit holds:

lim
N→∞

1
N

SN
n (τN

n+1−) = lim
N→∞

1
N

E[SN
n (τN

n+1−)]

= X(τn+1−). (29)

Proof: The proof is based on continuity arguments. Pick
ε > 0. Taking t in an appropriate left neighborhood of τn+1,
we have ∣∣X(t) − X(τn+1−)

∣∣ < ε (30)

by continuity. In addition, this neighborhood can be chosen
such that

lim
N→∞

∣∣∣∣ 1
N

SN
n (τN

n+1−) − 1
N

SN
n (t)

∣∣∣∣ < ε. (31)

The last property is obtained by considering the subset σN of
flows that experience no losses in the interval [t, τN

n+1). This
set has a cardinality that tends to infinity and it is independent
of the past of the throughput process before TN

n + t. When
τN
n+1 − t < η,∣∣∣∣ 1

N
SN

n (τN
n+1−) − 1

N
SN

n (t)
∣∣∣∣

≤ η
α

R
+

N − |σN |
N

1
N − |σN |

∑
i/∈σN

X(i,N)
n (t).

When N is large enough, N−|σN |
N is close to the probability

that a Poisson point process has one or more points in an
interval of length η which can be made arbitrarily small.
In addition, from what was proved above, when N is large
enough, 1

N−|σN |
∑

i/∈σN X
(i,N)
n (t) tends to a finite constant.

Hence (31) is proved. Combining (30), (31) and the fact that∣∣∣∣ 1
N

SN
n (t) − X(t)

∣∣∣∣ < ε (32)

for N large enough allows us to conclude the proof for that
the first limit of the lemma is equal to X(τn+1). The proof
of the convergence of the expectations is similar.

Lemma 5 Under the foregoing assumptions, the following
a.s. limit holds:

lim
N→∞

1
N

SN
n (τN

n+1) = lim
N→∞

1
N

E[SN
n (τN

n+1)]

= S(τn+1). (33)

Proof: The proof is immediate from the last lemma when
introducing the subset σN of flows that experience a loss at
time TN

n+1. We use here the fact that the synchronization is
rate independent

The extension of the last lemma to the case of more general
subsets of the set {1, . . . , N} completes the proof of the
induction.

C. Proof of Theorem 2

First, we show that the average throughput x is a continuous
function of λ ≥ 0. It is easy to see that

lim
λ→λ∗

1

loge

(
1 + λp

2(λ∗−λ)

) = 0,
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so x is continuous at λ = λ∗. Next, we show that

lim
λ→0

(
c
λ∗

λ
− cp

2loge

(
1 + λp

2(λ∗−λ)

)) = c
(
1 − p

4
)
.

Let a = λp
2(λ∗−λ) . Then,

c
λ∗

λ
− cp

2loge

(
1 + λp

2(λ∗−λ)

) = c +
cp

2
(1
a
− 1

loge(1 + a)
)
.

Let b = loge(1 + a). Then,

1 + a = eb = 1 + b +
b2

2!
+

b3

3!
+ · · ·

and thus

1
b
− 1

a
=

1
a

( b

2!
+

b2

3!
+ · · · )

=
1(

b + b2

2! + b3

3! + · · · )
( b

2!
+

b2

3!
+ · · · ).

Since b → 0 as λ → 0, we have lim
λ→0

(
1
b
− 1

a

)
=

1
2

. This

completes the proof of

lim
λ→0

(
c
λ∗

λ
− cp

2loge

(
1 + λp

2(λ∗−λ)

)) = c
(
1 − p

4
)
.

Now, we prove that x in (18) is a strictly increasing function
of λ for λ ∈ (0, λ∗). If we calculate ∂x

∂λ ,

∂x

∂λ
=

2
R2λ2

(
1

loge(1 + a)

)2 1
(1 + a)[

a2 − (1 + a) (loge(1 + a))2
]

> 0

for all a > 0 (i.e., λ ∈ (0, λ∗)). The last relationship can be
proved as follows. Let f(a) = a2 − (1 + a)

(
loge(1 + a)

)2
.

Then, we have

df(a)
da

= 2a − (
loge(1 + a)

)2 − 2loge(1 + a)

and

d2f(a)
(da)2

= 2a − (
loge(1 + a)

)22loge(1 + a)

=
2

(1 + a)
(
a − loge(1 + a)

)
. Since d2f(a)

(da)2 > 0 for all a > 0 and df(a)
da = 0 when a = 0,

df(a)
a > 0 for all a > 0. Similarly, since df(a)

da > 0 for all
a > 0 and f(a) = 0 when a = 0, f(a) > 0 for all a > 0.
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[15] F. Baccelli and P. Brémaud, Elements of Queueing Theory.
[16] K. B. Kim and S. H. Low, “Design of receding horizon AQM in

stabilizing TCP with multiple links and heterogeneous delays,” in Proc.
of 4th Asian Control Conference, vol. WA-1, (Singapore), 2002.

[17] K. B. Kim and S. H. Low, “Analysis and design of AQM based on
state-space models for stabilizing TCP,” in Proc. of American Control
Conference, vol. WA08-4, (Denver, Cololado), 2003.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004


	INFOCOM 2004
	Return to Previous View


