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Abstract— We consider an Internet link carrying http-like
traffic, i.e., transfer of finite volume files starting at random
time instants. These file transfers are controlled by an adaptive
window protocol (AWP); an example of such a protocol is TCP.

We provide an analysis for the auto-covariance function of
the AWP controlled traffic into the link’s buffer; this traffic, in
general, is not an on-off process. The analysis establishes that,
for Pareto distributed file sizes with infinite second moment, the
traffic into the link buffer is long range dependent (LRD).

We also develop an analysis for obtaining the stationary dis-
tribution of the link buffer occupancy under an AWP controlled
transfer of files sampled from some distribution. The analysis
provides a necessary and a sufficient condition for the finiteness
of the mean link buffer content; these conditions have explicit
dependence on the AWP used and the file size distribution. This
establishes the sensitivity of the buffer occupancy process to the
file size distribution.

Combining the results from the above analyses, we provide an
example in which the closed loop control of an AWP results in
finite mean link buffer occupancy even though the file sizes are
Pareto distributed (with infinite second moment), and the traffic
into the link buffer is long range dependent.

The significance of this work is threefold: (i) it provides a
framework for analysing various processes related to the link
buffer under AWP controlled transfer of files with a general file
size distribution; (ii) it indicates that the buffer behaviour in the
Internet may not be as poor as predicted from an open loop
analysis of a queue fed with LRD traffic; and (iii) it shows that
the buffer behaviour (and hence the throughput performance for
finite buffers) is sensitive to the distribution of file sizes.

Keywords: long range dependent traffic; models for TCP;
processor sharing queue.

I. INTRODUCTION

The Internet carries predominantly elastic traffic; the trans-
fer of such traffic is controlled by TCP [1]. Most of the
literature on TCP modeling is concerned with the “through-
put” obtained by TCP controlled file transfers over a single
bottleneck link, with or without the assumption of random
drops/losses. This literature can be divided into two streams;
the (chronologically) first stream of work assumes a single
bottleneck link that is used to transfer a fixed number of files
of very large volumes (see [2], [3] and references therein),
whereas the second category deals with performance of TCP
controlled transfer of http-like (finite, random volume) files
where, the number of ongoing transfers is randomly vary-
ing (see [4] and its references). An important consideration

in the case of http-like traffic is the distribution of file transfer
volumes. The file transfer volumes in the Internet has been
observed to come from heavy tailed distributions; see [5], for
example.

Some of the work that falls in the first category attempts to
model the behaviour of the link buffer (see, for example [6],
[7]) but, to our knowledge, there is no such analytical study
available for TCP controlled transfer of http-like traffic. In this
paper we develop a framework for analysing the behaviour
of the link buffer, and related processes, assuming that the
file transfers are controlled using a general adaptive window
protocol (AWP), explicitly taking into account the distribution
of file transfer volumes.

We consider the scenario shown in Figure 1 where an
Internet link connects clients on one side to servers on the
other side. We assume that there is no restriction on the number
of simultaneous ongoing transfers. The clients generate file
transfer requests and the servers send the requested files using
an AWP. The servers and clients are connected to the link
by very high speed access links. Hence the Internet link is
the bottleneck; also shown in the figure is this link’s buffer
containing data packets from ongoing file transfers. We make
the following system and traffic assumptions:

• The end-to-end propagation delay is negligible (in the
sense that the bandwidth delay product is much less than
one packet; for example, this could be a 34 Mbps link
interconnecting two locations 10 km apart in a city).

• The link buffer on the server side is such that there is no
packet loss. (It follows that since the file sizes are finite,
the window growth is governed solely by the increase
phase of the AWP; the window of each transfer remains
finite since the volume of the transfer is finite. We wish
to study the tail behaviour of the stationary contents of
the buffer; such an analysis would provide some insight
into the tail drop loss behaviour with finite buffers.)

• The link buffer on the server side implements a per flow
round-robin scheduling discipline with a service quantum
of one packet. Examples of such scheme are Deficit
Round Robin (DRR, see [8]) and weighted fair queueing
(WFQ).

• Each request is for the transfer of a single file, and the
files have independent and identically distributed sizes.

• The starting instants of file transfers constitute a Poisson
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process (of rate λ). (The instants at which new user
sessions start is now accepted to be well modelled by
a Poisson process (see [9]); our model thus assumes that
each session transfers just one file.)

The first assumption above imply that the link buffer contains
all unacknowledged data from the ongoing file transfers (ses-
sions).

Server

Server Client

Client
AWP feedback from client

Bottleneck Link

access links
High speed
access links

High speed

Packets from active transfers

Link buffer

d(t) process (aggregate traffic out of link)

a(t) process (aggregate traffic into buffer)

Fig. 1. TCP controlled file transfers over a single link connecting servers
and clients; the link propagation delay is assumed to be negligible, and the
link buffer is infinite. In this work we analyse the a(t) process, and the link
buffer occupancy process.

A. Relationship with Existing Literature

It has been shown ([10] and [11]) that for Pareto distributed
file sizes (with tail 1

xα ) the data departure rate process (d(t) in
Figure 1) is long range dependent (LRD) with Hurst parameter
3−α

2 . This result follows from the observation that, owing to
zero propagation delay, the d(t) process corresponds to the
busy idle process of a work conserving queue. Further, d(t) is
not affected by the feedback control used. Clearly, however,
the input process to the link buffer depends on the feedback
control used and hence it is interesting to study the correlation
structure of the data arrival rate process into the link buffer
(denoted by a(t) in Figure 1); this is one part of the work
presented here.

Extensive analysis of Internet data has confirmed that In-
ternet traffic is LRD (see [12]). It has been argued that the
LRD behaviour of Internet traffic is related to heavy tailed
file transfer volumes ([5]). Recent studies (see [10], [13], [14])
show that the stationary distribution of a queue fed with LRD
traffic will have a non-exponential tail; for example, it has
been shown that an arrival rate process auto-covariance that
is O( 1

τα−1 ), 1 < α < 2, leads to a stationary distribution of
buffer occupancy that has a tail that is O( 1

xα−1 ). The above
observations are usually combined to conclude that the link
buffer occupancies in the Internet will be heavy tailed. Such
observations are, however, based on an “open loop” analysis
of an LRD traffic source feeding a buffer. Recent numerical
studies ([15], [16], [9]) suggest that an understanding of traffic
and buffer processes in the Internet should take into account
the closed loop nature of Internet congestion control, namely
TCP which is an adaptive window protocol (AWP). In this

paper we carry out such an analysis for the network scenario
of Figure 1 and for a general AWP.

It is easy to see that the behaviour of a buffer for a given
input process can be strikingly different in a feedback loop as
compared to when the same process is applied to the buffer
(i.e., “open loop”). In Figure 2 we provide one such example.
The (a) part of the figure depicts a closed queueing system
where a single customer is fed back to the queue (with a new
service requirement distributed as exponential(µ)) as soon as
it gets served; the system is clearly stable as there is always a
single customer in the system. Note that the customer arrival
instants to the queue form a Poisson process of rate µ. The (b)
part of figure depicts an M/M/1 queue with a Poisson arrival
process of rate µ and the mean service requirement 1

µ ; this
queue is clearly unstable.

Exp(  )µ

1 Customer

(a) (b)

Exp(  )µ
µ

µPoisson (  )

Poisson (  )µ

Fig. 2. Two simple queueing models illustrating that for the same input
process (Poisson with rate µ) the behaviour of a buffer is entirely different
in a closed loop (a) and in an open loop (b). The queue in (b) is unstable (a
null recurrent Markov chain).

B. Overview and Organisation of the Paper

Assuming an AWP and a general file size distribution, we
study the auto-covariance function of the data arrival rate
process into the link buffer (the a(t) process, see Figure 1). We
then analyse the link buffer occupancy process for a general
AWP and file size distribution and provide a necessary and
a sufficient condition for the existence of the mean buffer
occupancy. Combining the results from above two analysis
it is shown that it is possible to have a finite mean link buffer
occupancy even when the file size requirements are heavy
tailed and the a(t) process is LRD1. This does not contradict
the result of [10], [13] as the model analysed there does not
include any feedback control from the queue.

The paper is organised as follows. In Section II we develop
a queueing equivalent model of the scenario of Figure 1,
introduce some notation we use in the paper and give some
queueing results required later in the work. In Section III
we introduce some characterising functions associated with
an AWP. Section IV presents a study of the auto-covariance
function of the a(t) process. In Section V we give the analysis
of the link buffer occupancy process.

II. MODELING APPROACH

The contents of the link buffer comprise the windows of
each of the active flows; since the propagation delay is zero,
the entire window of an active flow is in the link buffer.
These windows are served in a round-robin manner as per

1Our recent work gives the exact tail behaviour of the buffer occupancy
distribution, see [17].
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the assumption of per flow fair scheduling at the link buffer.
The round-robin discipline is simpler to study via the PS
model hence we approximate the service of the windows in the
link buffer by a PS discipline. Based on this approximation,
Figure 3 depicts the queueing equivalent of the scenario shown
in Figure 1; note that the link buffer has been replaced by a PS
server. Owing to zero link propagation delay, each active flow
has positive amount of outstanding data (window) in the link
buffer and since these windows are served in a PS fashion, it
follows that the ongoing file transfers (as a whole) also get
service in a PS manner2.

departures

arrivals

λ

a(t) process

window control feedback 

File Server

Windows in the link buffer

PS Server

d(t) process

Fig. 3. Queueing equivalent of the network scenario of Figure 1.

Note that at any time instant t, an active session would
have successfully transferred some data to its client, some of
its data would be in the link buffer (this would be the current
window size of TCP controlling the transfer of the file), and the
remaining data would be in the server waiting to be transferred.
At any time instant we use the term “age” for the amount of
data of a file successfully transferred to the client, and by
“residual file” or “residual service” we mean the amount of
data of the file yet to be transferred, i.e., the sum of the data
in the link buffer and that remaining in the server. As data
from a file is served (along with other files, in a PS manner)
more data is pulled into the link buffer from the file server, so
as to replenish the windows and to account for any window
growth. Eventually the amount of data of the file in the server
reduces to zero, and the entire residual file is in the link buffer.
Note that as long as the file is not fully transferred, a positive
amount of it is always in the link buffer. Thus in term of the
PS queue model, the server is the link, and each “customer”
in service is split between the file server and the link buffer.

The above general model, which was motivated by observa-
tions about the performance of TCP controlled finite volume
transfers, is what we work with in this paper. We will show
how to apply it to specific cases of TCP type adaptive window
control.

A. Notation and Some Results Related to an M/G/1 PS Queue

We follow the convention that if Z is a random variable then
2Recent literature [18], [4] suggests that, for a zero propagation delay link

and even in absence of a per flow fair scheduling at the link buffer, in the
above situation the TCP mechanism effectively serves the files in a Processor
Sharing (PS) fashion. This suggests that, even if the packets are served in the
order of their arrival to the link buffer, the packets from the active files are
interlaced in such a manner that the data from these files in the link buffer
is served in a round robin manner. We have observed, however, that such an
equal sharing is not valid for general file size distributions and breaks down,
in particular, for heavy tailed file volume distributions unless the link buffer
implements a per flow fair queueing.

EZ is its expectation, Z(·) denotes its cumulative distribution
function (cdf), Zc(·) its complementary cdf, z(·) its density
(if it exists), z̃(s) the Laplace Stieltjes Transform (LST) of
Z(·), and Z̃(s) the Laplace Transform (LT) of Z(·). We also
let Ze(·) denote the excess distribution of Z(·), and Zs(·)
denotes the spread distribution associated with Z (see [19]).

In the context of a queueing system, with the above men-
tioned convention, we introduce the following notation

V the random variable for the file sizes brought by
sessions,

ρ := λEV ,
a(t) the instantaneous data arrival rate into the queue at

time t,
N(t) number of sessions active at time t,
Y (t) total of the residual file sizes at time t,
B the busy period random variable of an M/G/1 queue,
x(s) := 1− b̃(s), (introduced for notational convenience),
By the busy period random variable with initial ‘work’

y in an M/G/1 queue,
Ky(t) the number of starts of idle periods in an M/G/1

queue until time t given Y (0) = y,

We take the link speed to be unity, hence ρ is also the
normalised offered load on the link.
We know that, (see [19]),

b̃y(s) = e−y(s+λ−λb̃(s)) = e−y(s+λx(s)) (1)

b̃(s) = ṽ(s + λx(s)) (2)

We use the notation f(t) ∼t→t0 g(t) to mean
limt→t0

f(t)
g(t) = 1 and write f(t) �t→t0 g(t) to mean that

there exists a function h(t) such that f(t) ≥ h(t) for all t and
h(t) ∼t→t0 g(t).
In this work we frequently use the following known results for
a stationary M/G/1 PS queue (see [20]). At any time instant
t,

• P{N(t) = n} = (1 − ρ)ρn

• The total file sizes of each of the N(t) ongoing transfers
at time t are mutually independent random variables and
are distributed as Vs(·), vs(x) = xv(x)

EV , (see [19]),
• Conditioned on the total service requirement of a file

transfer being v, its age, (i.e., the data already transferred
to the client by the session by time t) is uniformly
distributed over the interval [0, v].

A recent work ([21]) reports the following result.

• In the M/G/1 PS system modified by having k permanent
jobs with infinite service requirements, for n ≥ k,

lim
t→∞

P{N(t) = n} = (1 − ρ)k+1
(

n − k
k

)
ρn (3)

III. CHARACTERISATION OF A GENERAL AWP

An AWP can be characterised by the amount of data
released by the sender (server) in response to a unit amount
of acknowledged data. In general, this quantity will be a
function of the size of the file being transferred and the
total amount of data successfully received by the client. We
introduce the following notation in the context of a general

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



AWP.

Notation
Rv(u) amount of data released by the sender per unit

of acknowledged data when a file of size v has
attained age u (i.e., u amount of its data has been
acknowledged),

U(v) = sup{u : Rv(u) > 0, 0 ≤ u ≤ v} is the age
of a file (of size v) after which an acknowledgment
does not result in release of data from file server, i.e.,
exactly at this age the file server has sent a total of
v amount of data to the link buffer. At this point, the
receiver would have acknowledged U(v) amount of
data and v −U(v) amount of data from the file will
be in the link buffer,

X(u) = inf{v : U(v) > u, 0 ≤ v < ∞} is the
minimum file size for which the protocol will still
be sending data to the buffer after it has received
acknowledgment of u amount of data

Note that,
∫ U(v)

u=0
Rv(u)du = v (4)

U(X(u)) = u (5)

X(U(v)) = v

Thus, U and X are inverse functions.
In the following we obtain the Rv(u), U(v), and X(u)

functions for the AWPs that we study later in this paper.

A. The Rv(u), U(v) and X(u) Functions for TCP’s Slow Start

If the transfer of a file is controlled using only the slow
start algorithm of TCP then each unit of data acknowledged
results in the arrival of two units of data, thus

Rv(u) = 2I{u≤U(v)}

Using Equation 4 with Rv(u) = 2I{u≤U(v)}, we get

U(v) =
v

2
Using Equation 5 with U(v) = v

2 , we get

X(u) = 2v

B. The Rv(u), U(v) and X(u) Functions for TCP’s Conges-
tion Avoidance

If the transfer of a file is controlled using only the conges-
tion avoidance algorithm of TCP then, when window size is
w, each unit of data acknowledged results in arrival of 1 + 1

w
units of data. Also, when the window size is some integer
n, the amount of data that has been acknowledged (i.e., the
age of file) is n(n−1)

2 . Thus, the window size corresponding
to an age of u is 1+

√
1+8u
2 . To avoid complex expressions,

since we are interested in asymptotic behaviour, we use the
approximation that when the age of file is u the window size
is

√
2u. This gives

Rv(u) =
(

1 +
1√
2u

)
I{u≤U(v)}

Using Equation 4 with Rv(u) =
(
1 + 1√

2u

)
I{u≤U(v)}, we

get

U(v) = v + 1 −
√

1 + 2v

Using Equation 5 with U(v) = v + 1 −
√

1 + 2v, we get

X(u) = u +
√

2u

IV. ASYMPTOTIC BEHAVIOUR OF THE AUTO-COVARIANCE

FUNCTION OF THE a(t) PROCESS

In this section we study the auto-covariance function of the
a(t) process for the stationary system (see Figure 3) when the
transfer of files is controlled by an AWP.
When there are n active sessions, owing to the PS model, a
unit data served by the link implies each of these n sessions
gets a service of 1

n data units hence (recalling that the link
speed is unity) the total data sending rate at instant t will be

a(t) =
N(t)∑

i=1

Rvi
(ui(t))
N(t)

(6)

where ui(t) and vi are, respectively, the total service received
by and the total service requirement of the ith session active
at time t.

Lemma 4.1: For the stationary system,

Ea(t) = ρ

Proof: By conditioning on N(t) and the file size requirements
(vi) of the N(t) ongoing transfers and their ages (ui), using
Equation 6 and results of Section II-A,

Ea(t) =
∞∑

n=1

(1 − ρ)ρn
∫ ∞

v1=0
...

∫ ∞

vn=0

∫ v1

u1=0
...

∫ vn

un=0[
n∑

i=1

Rvi
(ui)
n

]
dun
vn

...
du1

v1
dVs(vn)...dVs(v1)

=
∞∑

n=1

(1 − ρ)ρn
∫ ∞

v1=0

∫ v1

u1=0
Rv1(u1)du1

dVs(v1)
v1

Using Equation 4,

Ea(t) =
∞∑

n=1

(1 − ρ)ρn
∫ ∞

v1=0
v1

dVs(v1)
v1

= ρ •

We note that this result is as would be expected; for let A(t)
denote the cumulative process for the rate process a(t) (i.e.,
A(t) =

∫ t
u=0 a(u)du). Then for the stable system, the rate

of data leaving the server should be equal to the rate of data
requested by the clients, i.e.,

lim
t→∞

A(t)
t

= λEV = ρ
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The auto-covariance function of the a(t) process for a lag
of τ is given by

ra(τ) := Ea(0)a(τ) − Ea(0)Ea(t)
= Ea(0)a(τ) − ρ2

= Ea(0)a(τ)I{N(0)>0,KY (0)(τ)=0}

+Ea(0)a(τ)I{N(0)>0,KY (0)(τ)>0} − ρ2

=: J1(τ) + J2(τ) − ρ2 (7)

where Ky(·) and Y (t) are as defined in Section II-A. We study
the asymptotic behaviour of ra(τ) by considering J1(τ) and
J2(τ) separately.

Theorem 4.1: For AWP controlled transfer of file sizes of
distribution V (·), if there exists an r such that 0 < r ≤
inf0≤v<∞ inf0≤u<U(v) Rv(u), then

J1(τ) �τ→∞ (1 − ρ)2λr2
∫ ∞

v=X(τ)

∫ U(v)−τ

u=0
dudV (v)

Proof: See Appendix I. •
As is evident from the examples of slow start and congestion

avoidance given in Section III, the Rv(u) function for an
AWP, in general, will be of the form R(u)I{0≤u≤U(v)} so
that inf0≤v<∞ inf0≤u<U(v) Rv(u) = infu≥0 R(u). Here R(u)
can be thought of as the data sending rate function of a file
of infinite volume.

Pareto distributed file sizes have the following distribution,

V c(x) = min(1,
1
xα

)

with the property that EV is finite iff α > 1 and EV 2 is finite
iff α > 2.

Corollary 4.1: For Pareto distributed file sizes transferred
using only the TCP’s slow start phase,

J1(τ) �τ→∞ 4(1 − ρ)2
λ

α − 1
1

2ατα−1

Proof: For slow start phase of TCP, Rv(u) =
2I{u<U(v)}, U(v) = v

2 and X(τ) = 2τ . Use Theorem 4.1
with r = 2. •

Corollary 4.2: For Pareto distributed file sizes transferred
using only the TCP’s Congestion avoidance phase,

J1(τ) �τ→∞ (1 − ρ)2
λ

α − 1
1

τα−1

Proof: For congestion avoidance phase of TCP, Rv(u) = (1+
1√
2u

)I{u<U(v)}, U(v) = v + 1 −
√

1 + 2v and X(u) = u +√
2u . Now,

U(v) = (v + 1 −
√

1 + 2v) =
(
√

1 + 2v − 1)2

2

>
(
√

2v − 1)2

2
=

2v + 1 − 2
√

2v
2

> v −
√

2v

Hence, from Theorem 4.1 with r = 1,

J1(τ) �τ→∞ (1 − ρ)2λ
[∫ ∞
v=τ+

√
2τ (v −

√
2v)dV (v)

−τV c(τ +
√

2τ)
]

= (1 − ρ)2λ

[
EV

(τ +
√

2τ)α−1
−

α
(α−0.5)

(τ +
√

2τ)α−0.5

− τ

(τ +
√

2τ)α

]

∼τ→∞ (1 − ρ)2
λ

α − 1
1

τα−1

The proof follows by noting that f(t) �t→∞ g(t) and
g(t) ∼t→∞ h(t) implies f(t) �τ→∞ h(t). •

Theorem 4.2: For AWP controlled transfer of Pareto dis-
tributed file sizes,

ρ2 − J2(τ) ⇀↽
ρ2

s
− J̃2(s)

∼s→0 ρλ
α2Γ(−α)

(1 − ρ)α−1s2−α

Proof: See Appendix II. •

Corollary 4.3: For AWP controlled transfer of Pareto dis-
tributed file sizes with α > 1,

ρ2 − J2(τ) ∼τ→∞
ρ2

(1 − ρ)α−1

1
τα−1

Proof: Follows using Theorem 4.2 and a Tauberian theorem
from [11] (reproduced, for convenience, in Appendix III). •

Note that the asymptotic behaviour of ρ2−J2(τ) is indepen-
dent of the AWP used to transfer the files. A relation between
the above asymptotic behaviour and the convergence rate in
the Key Renewal Theorem (see [19]) can also be easily seen.

Theorem 4.3: For transfer of Pareto distributed file sizes
under slow start or congestion avoidance phase of TCP,

ra(τ) �τ→∞ ∆(λ, α)
1

τα−1

For some function ∆(λ, α) that depends on whether slow start
or congestion avoidance is used to transfer the files.
Further, there exists a λ∗ > 0 such that ∆(λ, α) > 0 for all
0 < λ < λ∗

Proof: Using Corollaries 4.1, 4.2 and 4.3,

ra(τ) = J1(τ) + J2(τ) − ρ2

�τ→∞

[
δ(1 − ρ)2 − λα2

(α − 1)(1 − ρ)α−1

]
λ

(α − 1)τα−1

= ∆(λ, α)
1

τα−1

where δ = 1 for congestion avoidance and δ = 22−α for
slow start. Note that in both cases δ is independent of λ.
Now, for fixed α > 1 and ρ < 1, the second term in square
brackets above is always positive and decreases to 0 as
λ → 0 while the first term increases to δ (a positive number)
as λ → 0. Since both these terms are continuous functions
of λ, there exists λ∗ > 0 such that ∆(λ,α)

λ > 0 for all λ < λ∗.•

It follows from Theorem 4.3 that, for 1 < α < 2 and λ < λ∗,
the process a(t) is LRD. Further, if it can be shown that ra(τ)
has a hyperbolic decay then the a(t) process will be LRD with
Hurst parameter H ≥ 3−α

2 .
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V. ANALYSIS OF THE STATIONARY LINK BUFFER PROCESS

In this section we present the analysis for obtaining the
distribution of the link buffer content process. An explicit
expression for the Laplace transform of the buffer content
process is obtained in terms of the file size distribution and the
quantities associated with an AWP (see Equations 8 and 10).
The structure of the Laplace transform thus obtained is used
to find a necessary and a sufficient condition for existence of
the mean of buffer content process.
Important Observations

• The amount of data in the link buffer at any time t is the
sum of the windows from all the file transfers ongoing at
t.

• Owing to the no packet loss assumption, and AWP
follows a known window increase schedule. This enables
us to determine the window (which is also the session’s
contribution to the link buffer occupancy) for a given age.

The age of an ongoing transfer can be obtained in the
following way: the distribution of the stationary number of
ongoing transfers, N , is given by P{N = n} = (1 − ρ)ρn.
Conditioned on the number of ongoing transfers, the ages of
the various ongoing transfers are independent; further, the age
of an ongoing transfer is uniformly distributed in the interval
[0, v] where v is the total size of the ongoing transfer (which,
in the stationary system, has distribution Vs(·), see Section II-
A).

A. Analysis of the Buffer Content Process

Consider an AWP that starts transmission with an initial
window of w(0) packets. Let w(n), n ≥ 1, denote the window
size just after

∑n−1
i=0 w(i) amount of data of the file is

acknowledged.
Let the period where the nth window of the sequence

{w(i), i ≥ 0} is getting served be called the (n + 1)th cycle.
Thus w(n−1) is the window at the start of the nth cycle and is
also the amount of data served in nth cycle. The (n+1)th cycle
starts when w(n − 1) amount of data is served after start of
nth cycle. Let W (n) :=

∑n−1
i=0 w(i) denote the amount of data

acknowledged till the start of (n + 1)th cycle (see Figure 4).
Note that W (0) = 0 by definition. The values of w(n) and
W (n) for TCP’s congestion avoidance and slow start phases
are listed in Table I.

Phase of TCP w(n) (pkt) W (n) (pkt)

Congestion Avoidance n + 1 n(n+1)
2

Slow Start 2n 2n − 1

TABLE I

TABLE SHOWING THE VALUES OF w(n) AND W (n) FOR TCP’S

CONGESTION AVOIDANCE AND SLOW START PHASES.

Note that the w(n)′s are not the only possible window sizes;
they are the possible window sizes at the beginnings of cycles.
For example, in slow start, the TCP window can take all integer
values but w(n) is restricted to integral powers of 2.

Let γm(z) denote the net input rate to the link buffer from an
infinitely long session that has received z amount of service in
the (m+1)th window. For slow start phase of TCP, γm(z) = 1
because every dz amount served brings in 2dz and dz amount
leaves the link buffer. Note that the definition of γm(z) does
not depend on file size as it is defined for an infinitely long
file.

Recall the function U(v) defined in Section III. If the age
u of a file of size v is such that u > U(v) then the net data
input rate into link buffer is −1 because no new data is sent
for a unit amount of data served.

Note that if v ∈ [W (m),W (m+1)], then U(v) ∈ (W (m−
1),W (m)].

X

Residual File

 W(4) W(3) W(2) W(1)0  W(5)

 w(0)  w(1)  w(2)  w(3)  w(4)

Fig. 4. The figure shows a file of size X packets (W (5) < X < W (6))
split into the possible window sizes (at end of cycles) under a general AWP.

The idea now is to find the transform of distribution of
windows which constitute the link buffer occupancy. Denote
the LST of the window size distribution by g̃(s). Once we have
obtained g̃s(s) (the LST of spread distribution corresponding
to g̃(s)), the distribution of the queue (link buffer occupancy
random variable, denoted Q) is:

q̃(s) =
∞∑

k=0

ρk(1 − ρ)g̃s(s)k =
1 − ρ

1 − ρg̃s(s)
(8)

Where we have used the fact that the probability of there being
n files active is (1 − ρ)ρn and as exactly one window worth
of data from each file is in the buffer (due to zero propagation
delay assumption), the probability of there being n windows
in the link buffer is also (1 − ρ)ρn.
Thus we can obtain the mean buffer length and the variance of
buffer occupancy once we have obtained g̃s(s). In particular,
the mean buffer occupancy is given by:

EQ =
(

ρ

1 − ρ

)(
− d

ds
g̃s(s)

) ∣∣∣
s=0

(9)

Observe that EQ is finite iff d
ds g̃s(s) |s=0 is finite.

Note that the stationary link buffer occupancy is actually a
random sum of i.i.d. random variables distributed according
to g̃s(s). Thus, using Proposition 2.9 of [22], it follows that if
g̃s(s) corresponds to a sub-exponential distribution ([22]) then
so does q̃(s). In particular, if g̃s(s) is regularly varying with
parameter β than so is q̃(s).

It can be easily shown, using the results for PS queue given
in Section II-A, that

g̃s(s) =
∞∑

n=0

∫ W (n+1)

v=W (n)

[ ∫ v

U(v)
e−s(v−u) du

v

+
∫ U(v)

W (n−1)
e
−s(w(n−1)+

∫ u−W (n−1)

0
γn−1(z)dz) du

v
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+
n−2∑

m=0

∫ W (m+1)

u=W (m)
e
−s(w(m)+

∫ u−W (m)

0
γm(z)dz) du

v

]
dVs(v)

(10)

Where n is used to condition on v (the file size requirement)
being in the nth cycle, and m is used to condition on u (the
age of the file) being in the mth cycle. The integrand (with
respect to v) above contains three terms to take care of the
possibility where the age of file of is in the last window (i.e.,
u > U(v)) and hence whole of remaining file v − u is in the
link buffer.

The expected link buffer occupancy is, from Equations 9
and 10 and using dVs(v) = vdV (v)

EV ,

EQ =
λ

(1 − ρ)

∞∑

n=0

∫ W (n+1)

v=W (n)

[ ∫ v

U(v)
(v − u)du

+
∫ U(v)

u=W (n−1)
(w(n−1)+

∫ u−W (n−1)

0
γn−1(z)dz)du

+
n−2∑

m=0

∫ W (m+1)

u=W (m)
(w(m)+

∫ u−W (m)

0
γm(z)dz)du

]
dV (v)

(11)

Theorem 5.1: Under a general AWP with γm(z) ≥
0, ∀m, z,

λ

(1 − ρ)

∞∑

n=0

w2(n − 1)V c(W (n)) ≤ EQ

≤ 2λ
(1 − ρ)

∞∑

n=0

w2(n)V c(W (n − 1))

Proof: See Appendix IV. •

Corollary 5.1: For congestion avoidance controlled transfer
of Pareto distributed file sizes, EQ is finite iff α > 1.5.
Proof: Follows from Theorem 5.1 with V c(v) = 1

vα , w(n) =
n + 1, W (n) = n(n+1)

2 . •

Corollary 5.2: For slow start controlled transfer of Pareto
distributed file sizes, EQ is finite iff α > 2.
Proof: Follows from Theorem 5.1 with V c(v) = 1

vα , w(n) =
2n, W (n) = 2n − 1. •

Above results clearly indicate that feedback control can
result in lightening of the tail of link buffer occupancy when
compared to an uncontrolled transfer of file. It can also be
observed that an aggressive feedback control such as the slow-
start phase of TCP may not result in lightening of buffer
occupancy distribution; in this case the mean buffer occupancy
is finite iff the second moment of the file size distribution is
finite3.

3In our recent research [17] we have obtained the exact tail behaviour of the
buffer occupancy distribution. It is shown that for transfer of Pareto distributed
files, (i) Qc(·) is regularly varying with parameter α − 1 for TCP slow start
controlled transfer, and (ii) Qc(·) is regularly varying with parameter 2(α−1)
if the transfer are controlled using TCP congestion avoidance. The results of
Corollaries 5.1 and 5.2 are thus reconfirmed.

Corollary 5.1 is interesting in view of the result of Sec-
tion IV where it was shown that, for small arrival rates λ, the
traffic into the link buffer (a(t) process) is LRD for Pareto
distributed file sizes with 1 < α < 2. Thus, we now have an
example where the traffic into a queue is LRD but the mean
queue length is finite; this is because the traffic into the queue
is regulated using a closed loop control.

VI. CONCLUSION AND ONGOING WORK

We have developed a framework for the analysis of pro-
cesses related to the bottleneck link buffer under an adaptive
window protocol (AWP) controlled transfer of randomly ar-
riving finite volume files. The most important example of an
AWP is TCP. It was shown that

1) When TCP’s congestion avoidance or slow start algo-
rithms are used to transfer Pareto distributed files, the
traffic into the link buffer is LRD for small file transfer
request arrival rates,

2) Under the congestion avoidance phase of TCP, the
mean link buffer occupancy is finite when the Pareto
distribution has shape parameter α > 1.5.

Thus we have given an example where, in the presence of
LRD input to the link buffer, the buffer occupancy has finite
mean. This suggests that the impact of long range dependence
of Internet traffic may not be as severe as is usually predicted
by means of an open loop analysis. This result also emphasises
the importance of considering the interactions between the
various processes as a result of closed loop congestion control.

Recent results from our ongoing research show that when
the window is reduced in response to random marking, it
results in further lightening of the tail behavior of buffer
occupancy distribution while the input process still remains
LRD. The work reported in this paper is for a zero propagation
delay link; it will also be interesting to study how the results
presented in this paper change as the propagation delay
increases.

APPENDIX I
PROOF OF THEOREM 4.1

Let Vi(t) and Yi(t), 1 ≤ i ≤ N(t), denote, respectively,
the total and residual service requirements of the ith session
active at time t. Now,

J1(τ) = Ea(0)a(τ)I{N(0)>0,KY (0)(τ)=0}

≥ Ea(0)a(τ)I{N(0)=1,U(V1(0))−(V1(0)−Y1(0))>τ}

which holds because when N(0) = 1, V1(0)−Y1(0) is the age
of the file active at time 0, and U(V1(0))−(V1(0)−Y1(0)) > τ
implies that the source will still be sending data for this file
until time τ . Define the last term to be J3(τ).

Note that {U(V1(0)) − (V1(0) − Y1(0)) > τ} ⊂ {V1(0) >
X(τ)}, hence

J3(τ) =
Ea(0)a(τ)I{N(0)=1,V1(0)>X(τ),Y1(0)>V1(0)−U(V1(0))+τ} (12)
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Plugging the distributions of N(0), V1(0) and Y1(0) using
results given in Section II-A, we get from Equation 12,

J3(τ) = (1 − ρ)ρ
∫ ∞

v=X(τ)

∫ v

y=v−U(v)+τ
a(0)

E(a(τ)|N(0)=1,V1(0)=v,Y (0)=y)
dy

v
dVs(v)

At τ there could be other sessions active; these arrive in the
interval (0, τ ]. Let us continue to use the index 1 at time τ for
the session that was active at time 0. Since Y1(τ) > 0, (and
noting that V1(τ) = V1(0))

a(τ) ≥
RV1(τ)(V1(τ)−Y1(τ))

N(τ)
=

RV1(0)(V1(τ)−Y1(τ))
N ′(τ) + 1

where N ′(τ) is the number of sessions active at τ other than
the tagged session which was active at time 0. The inequality
is obtained since there could be a positive rate from the other
sessions at τ .

By hypothesis, we have

0 < r ≤ inf
0≤v<∞

inf
0≤u<U(v)

Rv(u)

Now, since Y1(τ) > V1(τ) −U(V1(τ)), by definition of r we
have RV1(0)(V1(τ)−Y1(τ)) ≥ r, hence,

a(τ) ≥ r

N ′(τ) + 1

so, for y > τ ,

E(a(τ)|N(0) = 1, V1(0) = v, Y (0) = y)

≥ rE

[
1

N ′(τ) + 1

∣∣∣N(0) = 1, V1(0) = v, Y (0) = y

]

also, since V1(0) − Y1(0) < U(V1(0)),

a(0) = RV1(0)(V1(0) − Y1(0)) ≥ r

Hence, using above inequalities and that dVs(v) = vdV (v)
EV ,

J3(τ) ≥ (1 − ρ)λr2
∫ ∞

v=X(τ)

∫ v

y=v−U(v)+τ

E

[
1

N ′(τ) + 1
|N(0)=1,V1(0)=v,Y (0)=y

]
dydV (v)

Note that the conditions N(0) = 1, V1(0) = v and Y (0) =
y > τ together imply that the file that was present at time 0
is also present at time τ , and hence owing to the PS model
N ′(τ) is independent of v and y. Hence,

J3(τ) ≥ (1 − ρ)λr2E

[
1

N ′(τ) + 1
|N(0)=1,Y (0)>τ

]

∫ ∞

v=X(τ)

∫ v

y=v−U(v)+τ
dydV (v)

We know that (see Equation 3 in Section II-A with k = 1),

P{N ′(τ) = n|N(0)=1,Y (0)>τ} ∼τ→∞ (1 − ρ)2(n + 1)ρn

Hence,

E

[
1

N ′(τ) + 1
|N(0)=1,Y (0)>τ

]
∼τ→∞ (1 − ρ)

The proof follows with a change of variable (using y = v−u).
•

APPENDIX II
PROOF OF THEOREM 4.2

We condition as follows:

1) Condition on N(0), the number of ongoing transfers at
time 0,

2) given N(0), condition on the total file size Vi(0) of ith

ongoing transfer at time 0, 1 ≤ i ≤ N(0),
3) given N(0) and Vj(0), 1 ≤ j ≤ N(0), condition on

Yi(0), the residual size of the ith, 1 ≤ i ≤ N(0) file
having total size Vi(0),

4) and, given Y (0) =
∑N(0)
i=1 Yi(0), the total residual file

volumes at time 0, condition on θ, 0 < θ < τ , the start
of the first idle period after time 0

This yields, J2(τ) =

=
∞∑

n=1

(1 − ρ)ρn
∫ ∞

v(n)=0

∫ v(n)

y(n)=0
a(0)

∫ τ

θ=0

E(a(τ)|N(θ) = 0, N(θ−) > 0)b∑n

i=1
yi

(θ)dθ

dy(n)
v(n)

dVs(v(n))

where v(n) is a row vector of dimension n with components
v1, ..., vn and y(n) is a row vector of dimension n with com-
ponents y1, ..., yn. Also, abusing notation, dy(n)v(n) := dyn

vn
...dy1v1

and dVs(v(n)) := dVs(vn)...dVs(v1), and by(·) is the density
of By .
Due to the Poisson arrival assumption

E(a(τ)|N(θ) = 0, N(θ−) > 0) = E(a(τ)|N(θ) = 0)

is a function only of τ − θ.
Let Φ(τ) := E(a(τ)|N(0) = 0) and denote by Φ̃(s) the

Laplace Transform of Φ(·). So,

E(a(τ)|N(θ) = 0, N(θ−) > 0) = Φ(τ − θ)

Thus,

J2(τ) =
∞∑

n=1

(1 − ρ)ρn
∫ ∞

v(n)=0

∫ v(n)

y(n)=0
a(0)

∫ τ

θ=0
Φ(τ − θ)b∑n

i=1
yi

(θ)dθ
dy(n)
v(n)

dVs(v(n)) (13)

Taking the Laplace Transform (LT) of Equation 13 and
noting that

• dVs(v) = vdV (v)
EV

• a(0) =
∑n

j=1
Rvj

(vj−yj)

n
• the integral with respect to θ is a convolution of two terms

which have LT given by Φ̃(s) and b̃∑n

i=1
yi

(s), and,

• b̃∑n

i=1
yi

(s) =
∏n
i=1 e

−yi(s+λx(s)),

we get the following expression for the LT of J2(τ).

J̃2(s) = sΦ̃(s)
s

∑∞
n=1(1 − ρ)λn

∫ ∞
v(n)=0

∫ v(n)
y(n)=0∑n

j=1
Rvj

(vj−yj)

n

∏n
i=1 e

−yi(s+λx(s))dy(n)dV (v(n))
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It can be seen after some calculations that,

J̃2(s) = (1 − ρ)
sΦ̃(s)
s

λ

[∫ ∞

v=0
e−v(s+λx(s))

∫ v

u=0
eu(s+λx(s))Rv(u)dudV (v)

]
s + λx(s)

s

We know that lims→0 sΦ̃(s) = ρ. Let sΦ̃(s) = ρ+κ(s) where
κ(s) → 0 as s → 0. Also, lims→0

∫ v
u=0 e

u(s+λx(s))Rv(u)du =
v so,

∫ v
u=0 e

u(s+λx(s))Rv(u)du = v + ∇(s) where
lims→0 ∇(s) = 0. Thus,

∫ ∞

v=0
e−v(s+λx(s))

∫ v

u=0
eu(s+λx(s))Rv(u)dudV (v)

∼s→0

∫ ∞

v=0
e−v(s+λx(s))vdV (v) = − d

dz
ṽ(z)|z=s+λx(s)

Hence, for Pareto distribution, using algebra similar to that
in [11], we get
∫ ∞

v=0
e−v(s+λx(s))

∫ v

u=0
eu(s+λx(s))Rv(u)dudV (v)

∼s→0
α

α − 1
− α2Γ(−α)(s + λx(s))α−1

Hence,

J̃2(s) ∼s→0 (1 − ρ)sΦ̃(s)λ
s + λx(s)

s[
α
α−1 − α2Γ(−α)(s + λx(s))α−1

]

s

The proof follows by noting that for s → 0, x(s) = sEB +
o(s) = sEV

1−ρ + o(s), and also as sΦ̃(s) ∼s→0 ρ, and that
EV = α

α−1 . •

APPENDIX III
A TAUBERIAN THEOREM

We reproduce an extension of a Tauberian Theorem of
Widder [23] from [11] used in proof of Theorem 4.3.

Theorem 3.1: If

1) f̃(s) =
∫ ∞
0 e−stf(t)dt, 0 < s < ∞

2) f(t) ≥ 0 for t ≥ t0,
3) f̃(s) ∼s→0+

A
sβ

, for some β > 0

then ∫ t

0
f(u)du ∼t→∞

Atβ

Γ(β + 1)

APPENDIX IV
PROOF OF THEOREM 5.1

If γm(z) ≥ 0 ∀m, z then the sequence {w(n), n ≥ 0} is
nondecreasing and so, (w(m)+

∫ u−W (m)
0 γm(z)dz) ≤ w(m+

1) for u ≤ W (m + 1). Thus we can upper bound the third
term in the integrand (with respect to v) in the right hand side

of Equation 11,

n−2∑

m=0

∫ W (m+1)

u=W (m)
(w(m) +

∫ u−W (m)

0
γm(z)dz)du

≤
n−2∑

m=0

∫ W (m+1)

u=W (m)
w(m + 1)du =

n−2∑

m=0

w(m)w(m + 1)

≤
n−2∑

m=0

w2(m + 1)

Using the same argument, the second term in Equation 11 is
∫ U(v)

u=W (n−1)
(w(n−1)+

∫ u−W (n−1)

0
γn−1(z)dz)du

≤
∫ W (n)

u=W (n−1)
(w(n−1)+

∫ u−W (n−1)

0
γn−1(z)dz)du ≤ w2(n)

Thus, using the above inequalities,
∫ W (n+1)

v=W (n)

[ ∫ U(v)

u=W (n−1)
(w(n−1)+

∫ u−W (n−1)

0
γn−1(z)dz)du

+
n−2∑

m=0

∫ W (m+1)

u=W (m)
(w(m)+

∫ u−W (m)

0
γm(z)dz)du

]
dV (v)

≤
∫ W (n+1)

v=W (n)

n−1∑

m=0

w2(m + 1)dV (v) = w2(n)V c(W (n))

where the last expression is obtained using some algebra.
The first term in right hand side of Equation 11 can be bounded
from above as v − u ≤ w(n) for v ∈ (W (n),W (n + 1)) and
U(v) < u < v. Hence the first term is,

∫ W (n+1)

v=W (n)

∫ v

U(v)
(v − u) dudV (v)

≤
∫ ∞

v=W (n−1)
w2(n)dV (v) = w2(n)V c(W (n − 1))

Combining the upper bounds for the three terms of Equa-
tion 11 and noting that V c(W (n)) ≤ V c(W (n − 1)), we get

EQ ≤ 2λ
(1 − ρ)

∞∑

n=0

w2(n)V c(W (n − 1)) (14)

Now we can lower bound the three terms in right hand side
of Equation 11. The first and second terms are clearly ≥ 0.
Also, if γm(z) ≥ 0, then (w(m) +

∫ u−W (m)
0 γm(z)dz) ≥

w(m). These observations along with some algebra gives the
following lower bound

EQ ≥ λ

(1 − ρ)

∞∑

n=0

w2(n − 1)V c(W (n)) (15)

The result now follows from Equations 14 and 15. •
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