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Abstract— In this work we develop stability conditions
for congestion control of the present Internet characterized
by TCP-controlled sources and buffer-based active queue
management (AQM) schemes. Prevailing stability results
are geared towards rate-based AQMs and are not appli-
cable to the class of networks considered here. Our new
conditions can be expressed entirely in terms of network
parameters, i.e., routing, which make them useful in the
design of buffer-based AQMs such as RED, REM and PI.

Key Words: Control theory.

I. INTRODUCTION

Recent empirical studies in [1] demonstrate the ef-
ficacy of Active Queue Management (AQM), in con-
junction with Explicit Congestion Notification (ECN), to
significantly improve Internet performance by reducing
response time and by allowing provider-links to operate
near saturation without degradation in user-perceived
performance. Our present work is concerned with a
network-wide stability analysis of such AQM networks,
focusing on those using buffer lengths as a measure of
congestion.

Currently, the most-widely proposed alternative to
drop-tail routers is Random Early Detection (RED) algo-
rithm [2] which computes local drop or mark probabili-
ties based on local average buffer length. As a feedback
mechanism, TCP-controlled sources1 react to these drops
or marks by adapting their window sizes. Thus, to
analyze congestion control of the current Internet (as
depicted in Figure 1), one should consider the feedback
interaction between buffer-based AQMs and TCP source
algorithms. To date, there are no results specific to this
situation, and this serves as motivation for our present
work. Before giving an overview of related results, we
first discuss the existing analysis results for congestion
control.

1Throughout this paper the term TCP-controlled sources refers to
AIMD like sources (e.g. TCP-Reno, TCP-SACK).

Interconnection

TCP Sources 

Buffer-based 

AQM links 

Interconnection

Fig. 1. TCP/AQM Diagram

To begin, we distinguish between rate-based and
buffer-based AQMs. Rate-based AQMs use aggregate
incoming flow rates to communicate congestion with
a goal of controlling these rates to some fraction of
link capacity. In achieving this, buffers become empty,
queuing delays become nonexistent and round trip times
(RTTs) become fixed by propagation delay. The Adaptive
Virtual Queue (AVQ) [3] is the prototypical rate-based
AQM scheme. In contrast, when buffer lengths are used
to communicate congestion, both buffer dynamics and
queuing delays come into play. A number of AQMs
are buffer-based, such as the static law in [4] and
dynamic schemes including RED [2], Random Early
Marking (REM) [5] and proportional-integral (PI) [4].
From a control-theoretic view point, RED amounts to
gain and low-pass filtering, while AVQ, REM and PI
laws incorporate elements of gain, integration and phase
lead.

Stability analysis of congested networks has been
primarily conducted for rate-based AQMs. For example,
a globally-stable, static, rate-based AQM was proposed
in [6] for a delay-free network. This was extended in [7]
to give a local stability condition when all RTTs were
equal, and, in [9], generalized to handle heterogeneous
RTTs. In [10]-[11], these were further generalized to
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allow for averaging AQMs. In [12], a stability condition
was derived for AVQ while in [13], an integral rate-
based AQM was considered. The use of rate-based AQM,
and TCP-like source dynamic, common to the aforemen-
tioned research, leads to an overall network dynamic
comprised of two decentralized dynamical systems, one
each for the TCP-controlled sources and the AQM links,
both dynamics interconnected by routing. As we shall
see in Section 2, this two-dynamic structure is not
rich enough to describe buffer-based congestion-control
systems that involve three decentralized dynamics.

The inadequacy of existing rate-based stability proofs
prompts the need for new arguments to establish stability
in today’s Internet which relies on buffer-based AQMs.
While stability analysis for RED and PI AQMs have
been made in [4] for a single congested link, they are
yet to be generalized to the network case. In this paper,
we present a new, local stability condition for buffer-
based TCP/AQM networks with arbitrary topologies
and heterogeneous delays. These conditions display the
interplay between TCP and AQM gain, and network
delay. They can be recast as design rules for RED and PI
AQMs, couched solely in terms of network parameters
including a so-called gain of routing. The conditions can
be readily extended to allow for rate-based AQMs and
reduce to the expected relations for a single link network
[4]. This defines the contribution of our work.

The remainder of the paper is organized as follows.
In Section 2, we state our stability condition for buffer-
based TCP/AQM networks. In Section 3, we apply these
condition to the design of RED and PI AQM’s. In
Section 4, we discuss the implication of the routing gain
on congestion control and illustrate these effects via ns
simulations. A number of appendices include details of
theoretical arguments supporting our results.

Notation: For vector x ∈ Cn, xk ∈ C denotes its kth
component. X = diag{x} is a diagonal matrix in Cn×n

with the xk’s as diagonal elements. For set S ⊂ C,
Co(S) denotes its convex hull. Addition, multiplication
and division of complex sets is taken in the usual
sense. F(X) is the field of values of X ∈ Cn×n; i.e.,
F(X) = {xHXx, x ∈ Cn×1, xHx = 1}. Also, λ(X),
ρ(X), σmin[X] and σmax[X] denote the eigenvalues,
spectral radius, and, smallest and largest singular values
of X respectively. Finally, disc(r) denotes the closed
disk {s ∈ C : |s| ≤ r}.

II. STABILITY CONDITION FOR BUFFER-BASED

AQM NETWORKS

Consider a network consisting of m congested links
and n heterogeneous source sessions. The interconnec-
tions are described by the matrix R(s) = [Rik(s)] where

Rik(s) =
{

e−s−→τik if source k traverses link i
0 otherwise

and where R(0) is full rank. Here −→τik denotes the
forward delay from source k to link i. The so-called
routing matrix is R(0). Letting ←−τik denote the return
delay from link i to source k, we define the round-trip
time of source k by τk = −→τik +←−τik.

Using the TCP fluid model [8], the congestion window
for the kth source is approximated by the nonlinear
differential equation

ẇk(t) =
1
τk
− w2

k(t)
2τk

m∑
i=1

[R(0)T
]
ki

pi(t−←−τik) (1)

where wk(t) and pi(t) are the congestion window size
of the kth source and the packet marking probability at
the ith link, respectively.2 We model the ith congested
link by

q̇i(t) = −ciIq>0 +
n∑

k=1

[Rik(0)]
ηkwk(t−−→τik)

τk
(2)

where ci is the ith link’s capacity, ηk the number
of sessions in the kth source, and Iq>0 the indicator
function. Linearizing (1)-(2) about equilibrium (ŵ, q̂, p̂)
and taking Laplace transforms results in the source and
link dynamics:

w(s) = −F̃ (s)R(−s)T p(s) (3)

and
q(s) = (sI + Ω)−1R(s)NT̂−1w(s) (4)

where F̃ (s) = diag{f̃k(s)},

f̃k(s) =
e−sτk

s + 2
ŵkτk

1
τkûk

,

û = R(0)p̂ is equilibrium aggregate marking probability,
and where

Ω = R(0)NŴ T̂−2R(0)T C−1,

2The original fluid-flow models in [8] contain the delayed term
wk(t − τk) in the right-hand side of (1). As in [4], we ignore this
delay which appears to have second-order affect, especially when
equilibrium congestion windows are large.
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T̂ = diag{τ}, N = diag{η}, Ŵ = diag{ŵ} and C =
diag{c}. Next, we let ki(s) denote the linearized AQM
dynamics at link i so that

p(s) = K(s)q(s)

where K(s) = diag{k(s)}. We scale K by C to obtain

D(s) = K(s)C (5)

where D(s) = diag{d(s)}. We would like to emphasize
here that each link is allowed to select its AQM param-
eters independent from all other AQMs in the network.

Finally, to invoke the Generalized Nyquist Stability
Criterion [14] we first form the following return ratio
function for system (3) – (5):

L(s) = F̃ (s)R(−s)T C− 1
2 D(s)

·(V G(s)V H)−1C− 1
2R(s)NT̂−1 (6)

where G(s) = diag{g(s)}, gi(s) = s + λi, and λi > 0
is an eigenvalue of C− 1

2 ΩC
1
2 ; see Appendix A for

details.

Remark: Compared with rate-based TCP/AQM net-
works that have two dynamics, F (s) for source dynamics
and D(s) for AQM dynamics, the network (6) has an
additional term, (V G(s)V H)−1, which arises from queu-
ing dynamics. Specifically, source, AQM and queuing
dynamics are coupled through R and V in (6). The
results in [11]-[13] and the arguments underlying the
related proofs can not be modified to be made applicable
to this setup. This characterizes the unique aspects of the
problem considered here.

We now present our main result on local stability of
the network described in (3)–(5). To state this result
we introduce some additional notation. First, we take
F (jω) = diag{f(jω)} where fk(jω) = Mk

Ŵk

f̃k(jω) and

then let σmin[R̃] denote the minimal singular value of

R̃ = C− 1
2R(jω)(NŴM−1T̂−1)

1
2

where M = diag{µ} where µk is the number of
congested links traversed by the kth source.

Theorem 1. Consider the linearized network consisting
of n sources and m links described in (3)− (5). Assume
the routing matrix R(0) has full rank. Then, the network
is locally stable if for each ω ≥ 0, there exists a dω ∈ C
such that the set

S(ω) =
Co{σ2

min[R̃], 1}Co{dωfk}
Co{gi}

+
disc(‖F‖2 ‖D − dωI‖2)

Co{gi} (7)

does not intersect (−∞,−1].

Proof of Theorem 1: Since L(s) is stable, it suffices to
invoke the Generalized Nyquist Theorem [14] and show
that the eigenvalues of L(jω) do not intersect (−∞,−1]
for all ω ≥ 0. The proof will show that these eigenvalues
lie in S(ω). Because eigenvalues are invariant under
matrix commutation,

λ(L(jω)) = λ
(
R̃F (jω)R̃HD(jω)(V G(jω)V H)−1

)
.

Since F(V HG(jω)V ) = F(G(jω)) = Co{g} (recall
that R(0) is full rank), then 0 /∈ F(V HG(jω)V ). Hence,
from [15]

λ
(
R̃F R̃HD(V GV H)−1

)
⊂

F(R̃F (s)R̃HD(s))/F(V HG(s)V ).

From Appendix B

F(R̃F R̃HD) ⊆
Co{σ2

min[R̃], 1}Co{dfj}+ disc(‖F‖2‖D − dI‖2).
Since F(V HG(s)V ) = Co{gi}, then λ(L(jω)) ⊂ S(ω)
and the proof is completed. �

Remark: We observe an interplay between the dynamics
of sources, queuing and AQMs in (7). Specifically, if the
gain of sources’ dynamics ‖F‖ becomes larger and/or
the links’ poles λi becomes smaller, then the maximal
gain of the AQMs |di(jω)| must be decreased commen-
surably. The scaler dω may be used to achieve larger, if
possible, AQM gains without sacrificing stability.

We now specialize our stability condition to i) a single
congested link, and ii) a rate-based AQM.

A. Stability condition for network with single congested
link

For one congested link with one TCP source, we have
m = 1, σ2

min[R̃] = 1 and M = 1. For the stability
condition in Theorem 1 we select the free parameter dω

to be the frequency response of the single link AQM;
i.e., dω ≡ d(jω). Then, (7) becomes

S(ω) =
d(jω)f(jω)

g(jω)

=
d(jω) C

2N e−jωτ

(jω + 2N
τ2C )(jω + 1

τ )
.

This is precisely the stability condition obtained in [4].
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B. Stability condition for rate-based TCP/AQM networks

For rate-based TCP/AQM networks, it is easy to show
G(s) = I . The return ratio function (6) then becomes

Lrate(jω) = R̃F (jω)R̃HD(jω). (8)

Corollary 1 (See Appendix C for proof): If 0 /∈
Co

(
d−1

k (jω)
)

and

Srate(ω) =
Co{σ2

min[R̃], 1}Co{fj}
Co

(
d−1

k (jω)
) (9)

does not intersect (−∞,−1] for all ω ≥ 0, then the rate-
based network associated with Lrate is locally stable. �

Remark: Note that (9) is comparable with Lemma 1 in
[11] which relies on the condition ρ(|R|T |R|) < 1 (R
in [11] is R̃ here). This condition can be relaxed to a
condition requiring the diagonal elements of RRH to be
bounded by 1. With this relaxation, applying Lemma 1
in [11] to the system (8) amounts to replacing the set in
(9) with

Co{(Co{±
√

fidk : Rik �= 0})2}. (10)

We observe some similarity between Co{fj}
Co(d−1

k (jω)) and

Co{(Co{±√fidk : Rik �= 0})2}, but a precise com-
parison is yet to be developed.

III. DESIGN RULES FOR RED & PI AQMS

In this section we show that Theorem 1 can be used to
provide design rules for tuning RED and PI AQMs. The
rules will be expressed in terms of network parameters.

A. Design stabilizing RED

A RED AQM computes the packet-marking probabil-
ity as a function of average queue length, and, as in [4],
can be modeled as the low-pass filter

di(s) =
li

s + pi
(11)

where li is the AQM gain and 1/pi is the low-pass
filter time constant. We now show how to select these
parameters for stability.

Proposition 1 (See Appendix D for proof): Consider an
m-link, n-source TCP/RED network described by (3)−
(5) and (11). Let the RED parameters be chosen as: li ∈

(0, �max) and pi ∈ [Pmin, Pmax]. Then, this network is
locally stable if

�max ≤ 2
min{NkŴkT̂

−2
k }σ2

min[R(0)]
Cmax

·min
{

ûk

Mk

}
Pmin. (12)

Alternatively, the gains may satisfy a more stringent
bound expressed solely in terms of network parameters:

�max ≤ 4N3
minσ2

min[R(0)]
mT 4

maxC3
max

. (13)

�

B. Design stabilizing PI

A PI AQM computes marking probability based on
the difference between instantaneous queue length and a
operator-defined set-point. Due to the integral element,
the equilibrium queue length matches the set-point. The
form of the PI AQM is

di(s) =
li(s + zi)

s
. (14)

Stabilizing parameters are described in the next result.

Proposition 2 (See Appendix E for proof): Consider an
m-link, n-source TCP/PI network described by (3) −
(5) and (14). Let the PI parameters be chosen as: li ∈
(�min, �max) and zi ∈ (Zmin, ω0) where

ω0 = 0.1 min
{

2
Ŵkτk

,
1
τk

, λmin

}
.

Then, this network is locally stable if

1− Zmin�min

Zmax�max
≤ σ2

min[R̃(0)]
2

min{Mk

ûk
}

max{Mk

ûk
} (15)

and

�max ≤ min{NkŴkT̂
−2
k }σ2

min[R(0)]
√

2Cmax

(
max{Mk

2ûk
}+ σ2

min[R̃(0)]
2 min{Mk

2ûk
}
) .

(16)
Alternatively, the gains may satisfy a more stringent
bound expressed in terms of network parameters:

�max ≤ 4
√

2N3
minσ2

min[R(0)]
3mT 4

maxC3
max

. (17)

�

Remarks: (i) In (13) and (17), we express AQM design
rules as the function of network parameters, such as,
link numbers and capacities, round-trip times, number
of sessions and routing structure. This is appealing

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



because network administers do not need to estimate the
equilibrium point to design stable AQMs.
(ii) It is seen in the above Propositions that the minimal
singular value of routing matrixR affects network stabil-
ity. This is an interesting observation because it implies
that the routing structure itself actually affects network
gain. We already recognize that small time delays and
small link capacities increase the AQM gain margin.
Now we show that larger routing gain increase these
margins. To our knowledge, this is the first time con-
nection has been made between routing and congestion
control. We discuss this topic further in the next section.
We now illustrate the PI AQM design rules for a three-
source, two-link network.

Example (three-source, two-link network): Consider the
network in Figure 2 where the routing matrix, link
capacities, transmission delays, reference queue lengths
and TCP loads are described by

R(0) =
[

1 0 1
0 1 1

]
; C =

[
3750
4250

]
pkts/s;

Tp =


 0.05

0.06
0.07


 sec; qref =

[
150
180

]
pkts/s;

N =


 30

40
50


 flows.

Assuming a PI AQM, the equilibrium marking prob-

Source 3 

Source 2 

Source 1 

Link 2 Link 1 

Fig. 2. The 3-source-2-link network in the example.

abilities, window sizes, round-trip time and aggregate
marking probabilities are computed to be

p̂ =
[

0.0469
0.0427

]
; Ŵ =


 6.5274

6.8470
4.7245


 pkts;

T̂ =


 0.09

0.1024
0.1524


 sec; û =


 0.0469

0.0427
0.0896


 .

Thus,

F (s) = diag

{
36.3e−0.09s

s + 3.4
,

33.4e−0.1s

s + 2.85
,

31e−0.15s

s + 2.8

}
;

G(s) = diag {s + 6.28, s + 11.4 } .

Using Proposition 2, we can compute ω0 = 0.28, �max ≤
0.11 and ZminZmax

Zmax�max
≥ 0.72. Selecting Zmax = 0.2 and

�max = 0.1, the PI AQMs are chosen to be

D(s) = diag

{
0.1(s + 0.2)

s
,

0.09(s + 0.18)
s

}
.

With d(jω) = 0.1(jω+0.2)
jω , the set S(ω) is illustrated

in Figure 3, showing that the network is locally stable.
The two solid lines inside the boundary are the non-zero
eigenvalues of L(jω).

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Re

Im

λ
i
(L(jω)) 

Fig. 3. λi(L(jω)) and their boundaries S(ω) for ω ∈ [0.1, 10].

IV. IMPACT OF ROUTING ON CONGESTION CONTROL

In this section we explore the impact that routing has
on congestion control through illustrative simulations,
analysis of σmin[R(0)]’s range and discussion on the
physical explanation of this phenomenon. For ease of
exposition we will sometimes refer to σmin[R(0)] as the
“minimal gain” of the routing matrix (or route) R(0).

A. Illustrative ns simulations

To confirm and illustrate the impact that the minimal
gain of R(0) has on congestion control, we consider a
network with six sources, each comprised of an aggre-
gate of N = 100 flows (ftp sessions), and 3 congested
links. We consider two possible interconnections of
these sources and links as shown in Figures 4 and 5.
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The routing matrices describing these two topologies,
R(0)big and R(0)small respectively, have quite different
gains. Indeed, the topology in Figure 4 has routing matrix

1 1’
2’2

3
4

3’
4’

6 5 5’

6’I

II

III

Fig. 4. Network topology associated with R(0)big and
σ2

min[R(0)big] = 2.

with minimal gain σ2
min[R(0)big] = 2 where

R(0)big =


 1 1 0 0 0 0

0 0 1 1 0 0
0 0 0 0 1 1


 ;

while the interconnection in Figure 5 is described by

R(0)small =


 0 1 0 1 1 1

0 1 1 1 1 1
1 0 1 1 1 1




with gain σ2
min[R(0)small] = 0.37. We now apply the

1 1’

2’
2

3

4-6

3’

4’-6’

I

II

III

Fig. 5. Network topology associated with R(0)small and
σ2

min[R(0)small] = 0.37.

same AQM rule to each and observe its performance
in regulating the three queue lengths. From (17), one
would expect that the topology with the smaller R(0)
to have smaller stability margins and display oscillatory
behavior. To verify this, we conduct ns simulations
with link capacities c1 = 3000, c2 = 4000 and c3 =
5000 pkts/sec and propagation delays τp1, τp2, τp3 taken
uniformly in the range (50, 200)ms. The PI AQMs are
described by

ki(s) =
1
ci

(
2.3× 10−4 +

3.1× 10−7

s

)
for i = 1, 2, 3. These were discretized at a sampling
frequency of 160Hz for implementation in ns. The
resulting responses for the three queue lengths I - III

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

400

450

500

time (secs)

queue 1 (packets)

R
big

R
small

Fig. 6. Queue length response at buffer I.

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

400

450

500

time (secs)

queue 2 (packets)

R
big

R
small

Fig. 7. Queue length response at buffer II.

are shown in Figures 6 – 8. The queue length responses
for the case of R(0)small exhibit larger amplitude os-
cillations. This confirms (17) which predicts that gain
margins are proportional to the minimal gain of R(0),
and, that the network is “closer” to instability as ex-
pressed by the oscillations. Clearly, if we can anticipate
that a topology would be described by a routing matrix
with small minimal gain, as in σmin[R(0)small], then one
can compensate with appropriate AQM tuning. However,
in the absence of such knowledge, we face the task of
tuning AQM’s to deal with a host of topologies described

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

400

450

500

time (secs)

queue 3 (packets)

R
big

R
small

Fig. 8. Queue length response at buffer III.

by routing matrices with a (possibly) large range of
gains. This possibility begs an obvious question related
to the range of gains of routes.

B. What is the range of routing gains?

The range of routing gains may be significant as
illustrated in Figure 9 where we plot an estimate of the
ratio max σmin[R(0)]/ min σmin[R(0)], where the min
and max are taken over the binary matrices. This plot
was generated experimentally by enumerating all pos-
sible full-rank binary matrices (of dimension # links ×
# sources). This plot says that for 3 congested links
traversed by 5 sources, the range of minimal route gains
is approximately 2.6. It appears from this experiment that
range of routing gains is proportional to the number of
sources and links. To examine this more closely consider
the set of routing matrices

A = {R(0) ∈ Rm×n : R(0) binary and full rank}.
With int[n/m] denoting the integer part of n/m, the
following result provides a lower bound to the range of
gains.

Proposition 3: Given m ≤ n,

maxA σmin[R(0)]
minA σmin[R(0)]

≥ √m
√

int[n/m]. (18)

Proof: First, we will prove that minA σmin[R(0)] ≤
1/
√

m. To this end, consider the specific routing matrix

R̃(0) = [X 0m×n−m]

2 3 4 5 6 7 8
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4
ratio of possible routing gains

number of sources

2 links
3 links

Fig. 9. Ratio of possible routing gains vs. # of sources and # of
congested links.

where X ∈ Rm×m is an identity matrix with 1′s on its
superdiagonal; e.g., for m = 3,

X =


 1 1 0

0 1 1
0 0 1


 .

Given x ∈ Rn, partition x = [yT zT ]T with y ∈ Rm.
Then,

min
A

σmin[R(0)] ≤ σmin[R̃(0)]

�
= max

S⊂Rn

dimS=Rm

min
x∈S

‖x‖2=1

‖Ãx‖2

= min
y∈Rm

‖y‖2=1

‖Xy‖2.

Now, with

ỹ =
1√
m

[ 1 −1 1 −1 . . . ±1]T ∈ Rm

we have ‖ỹ‖2 = 1 and

Xỹ =
1√
m

[ 0 0 . . . 0 ±1 ]T .

It is easy to see that ‖Xy‖2 ≥ ‖Xỹ‖2 for all ‖y‖2 = 1.
Thus,

min
A

σmin[R(0)] ≤ min
y∈Rm

‖y‖2=1

‖Xy‖2 = ‖Xỹ‖2 = 1/
√

m.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



To finish the proof we will now show that
maxA σmin[R(0)] ≥ √

int[n/m]. We again consider a
specific form of routing matrix, this time given by

R̂(0) = [ Im Im . . . Im B ]

where B is the any m × k matrix with k < m. For
example, for m = 2, n = 5

R̂(0) =
[

1 0 1 0 0
0 1 0 1 1

]
.

where we have taken B = [0 1]T . Since

R̂(0)R̂(0)T = Im + Im + . . . + Im + BBT ,

then

λmin[R̂(0)R̂(0)T ] = 1 + 1 + . . . + 1 + λmin[BBT ]

= 1 + 1 + . . . + 1

= int [n/m].

Thus,

max
A

σmin[R(0)] ≥ σmin[R̂(0)] =
√

int [n/m].

�

From the gain margin bound (17), we see that network
robustness scales inversely with the routing matrix gain
range (18). The proposition’s results would then indicate
that robustness is decreased with increasing number of
congested routers m and sources n. The example in
the previous subsection dealt with a six-source, three-
link network having gain range of

√
2/0.37 ≈ 2.3 and

showed how the quality of buffer regulation was affected
by routes of differing gains.3 Such effects may be even
more pronounced with increased complexity of network
topologies.

C. Physical Explanation of the gain of routing

The reason why σmin[R(0)] directly affects conges-
tion control comes from the fact that TCP source rates
are influenced by round-trip times, and, these round-trip
times are affected by queueing delays. Hence, variations
in (non-zero) buffer lengths affect the flows that fill
these buffers. So, there is feedback path from buffer
lengths to buffer inputs. Now, the queueing delays are
communicated to the TCP-sources through the Internet,
and through the routing matrix. Thus, a model of this

3Compare this gain range of 2.3 against the theoretical lower
bound on gain range:

√
m int[n/m] =

√
3·2 = 2.45, and the

experimentally-derived range value of ≈ 3.1 shown in Figure 9
corresponding to the six-source, three-link point on the graph.

interaction is a feedback loop with buffers in the forward
path, and routing matrix in the feedback path. As the
gain of the routing matrix diminishes, this feedback loop
behaves more closely to an open loop; i.e., simply open-
loop buffers. An integrator is a linear approximation to
an open-loop buffer. In essence, when a real pole in a
feedback system is being shifted toward the origin (i.e.,
toward becoming an integrator), the stability margin is
being reduced. It is the presence of this diminished rout-
ing matrix gain that tends to destabilize the congestion
control feedback system.

V. CONCLUSIONS

In this paper we have derived new stability conditions
that are applicable to today’s Internet described by TCP-
controlled sources and buffer-based AQMs. The main
result, found in Theorem 1, gives a stability condition
that describes the interplay between the gains of the TCP
sources and queuing delays with the AQM gains. This
condition is directly applicable to networks with rate-
based AQMs and reduces to typical stability results for
network with a single congested link. Our stability con-
dition can be used to specify parameters for stabilizing
RED and PI AQMs as explicitly stated in Propositions 1
and 2. Gain inequalities (13) and (17) are particularly
appealing as they state design rules explicitly in terms
of network parameters rather than equilibrium values.
These inequalities serve another purpose by providing
gain margin estimates for buffer-based AQM networks.
In this context, (13) and (17) reveal that a so-called gain
of routing can play a role in stability robustness - a
phenomenon absent in rate-based AQMs. In Section 4
we examined this impact and showed that the range of
routing gains is proportional to the number of sources
and links. This raises a number of interesting questions:

- In practice how many congested links do sources
encounter?

- The lower bound on gain range considered all
possible routing matrices. Is this a reasonable as-
sumption, or do present routing algorithms result
in specific pattern of routing matrices R(0)? If so,
what is the gain range for this class.

- How does shortest-path routing impact congestion
control?

- How do decentralized routing decisions impact
global congestion control concerns?

- How does one analyze stability of networks with
mixed RED and PI AQMs?

Future research is aimed at addressing some of these
questions.
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APPENDIX A
LOOP TRANSFER FUNCTION L(s)

Combining (3) - (5) gives

L(s) = F̃R(−s)T DC−1(sI + Ω)−1R(s)NT̂−1.

Since C− 1
2 ΩC

1
2 is positive definite, then C− 1

2 ΩC
1
2 =

V diag{λi}V H where λi are the eigenvalues of
C− 1

2 ΩC
1
2 and V is unitary. Consequently,

C−1(sI + Ω)−1 = C− 1
2 (sI + C− 1

2 ΩC
1
2 )−1C− 1

2

= C− 1
2 (V GV H)−1C− 1

2

where G(s) = sI + diag{λi}.

APPENDIX B
DETAILS FOR PROOF OF THEOREM 1

Claim 1:

λmin ≥ min{NkŴkT̂
−2
k }σ2

min[R(0)]
Cmax

.

Proof of Claim 1: We have

λmin = min{λ(C− 1
2 ΩC

1
2 )}

=
1

ρ(C(R(0)NŴ T̂−2R(0)T )−1)

≥ 1
Cmax min{λ(R(0)NŴ T̂−2R(0)T )} .

Since,

min{λ(R(0)NŴ T̂−2R(0)T )} ≥
min{NkŴkT̂

−2
k }σ2

min[R(0)]

we get

λmin ≥ min{NkŴkT̂
−2
k }min{λ(R(0)R(0)T )}

Cmax
.

Claim 2: ‖R̃R̃H‖2 ≤ 1

Proof of Claim 2:

σ2
max[R] = ρ(R̃R̃H)

= ρ(C−1RNŴT̂−1M−1RH)

≤ ‖C−1RNŴT̂−1‖∞ ‖M−1RH‖∞ ≤ 1.

Claim 3: For d ∈ C,

F
(
R̃F R̃HD

)
⊆

Co{σ2
min[R̃], σ2

max[R]}Co{dfi}
+disc(σ2

max[R] ‖F‖2 ‖D − dI‖2).

Proof:

F
(
R̃F R̃HD

)
= F

(
R̃F R̃H(dI + D − dI)

)
⊆ F

(
R̃FdR̃H

)
+F

(
R̃F R̃H(D − dI)

)
Also,

F
(
R̃FdR̃H

)
= {xHR̃FdR̃Hx : xHx = 1}
⊂ {

∑
|yi|2 : y = R̃Hx, xHx = 1}

·Co{dfi}
⊂ Co{σ2

min[R̃], σ2
max[R̃]}Co{dfi}.

Since

|F
(
R̃F R̃H(D − dI)

)
| ≤ ‖R̃F R̃H(D − dI)‖2
≤ σ2

max[R̃]‖F‖2‖D − dI‖2,
then

F
(
R̃F R̃H(D − dI)

)
⊆ disc(σ2

max[R̃] ‖F‖2 ‖D−dI‖2).
APPENDIX C

PROOF OF COROLLARY 1

The eigenvalues of L(s) satisfy:

λ(L(s)) ⊆ F
(
R̃F (jω)R̃H(D(jω)−1)−1

)
⊆ F

(
R̃F (jω)R̃HI

)
/F(D(jω)−1).

Since 0 /∈ Co (1/dk(jω)), then 0 /∈ F(D(jω)−1). For
b ∈ C

F(R̃F R̃HI) ⊆
Co{σ2

min[R̃], 1}Co{bfj}+ disc(‖F‖2 ‖I − bI‖2)
so that

F(R̃F R̃HI) ⊆ Co{σ2
min[R̃], 1}Co{fj}

and

λ(L(s)) ⊆ Co{σ2
min[R̃], 1}Co{fj}/Co {1/dk(jω)} .
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APPENDIX D
PROOF OF PROPOSITION 1

To apply Theorem 1, we select dω ≡ 0. We will show

min{|gi(jω)|} > max{|fk(jω)|}max{|di(jω)|} (19)

which in turn will imply that disc(‖F‖2 ‖D‖2)
Co{gi} ⊂ Re(s) >

−1. With the lower bound given on λmin in Appendix B,
(12) implies that

�max ≤ 2λmin min{ ûk

Mk
}Pmin. (20)

Because li < �max and pi ≥ Pmin, then,

max{|di(0)|} <
�max

Pmin
.

Therefore, applying (20), we get

max{|di(0)|} < 2λmin min{ ûk

Mk
} =

λmin

max{Mk

2ûk
} ,

which means

max{|fk(0)|}max{|di(0)|} < min{|gi(0)|}. (21)

Because min{|gi(jω)|} is an increasing function,
max{|fk(jω)|} and max{|di(jω)|} are decreasing.
Thus, (21) implies (19). Next, we prove (13). Because

min{NkŴk

T̂ 2
k

} ≥ NminŴmin

T̂ 2
max

>
Nmin

T̂ 2
max

(22)

and
min{ ûk

Mk
} ≥ ûmin

Mk
≥ ûmin

m
.

and Appendix F , the RHS of (12) is greater than

4N3
min min{λ(R(0)R(0)T )}

mT 4
maxC

3
max

Pmin.

Thus if (13) holds, (12) holds.

APPENDIX E
PROOF OF PROPOSITION 2

First we select

d(jω) =
�max(jω + Zmax)

jω
.

Thus, for each li < �max,

|di(jω)
d(jω)

− 1| =

(
�max − li

�max

) ∣∣∣∣∣∣∣∣
jω + Zmax

(
li

zi
zmax

−�max

li−�max

)
jω + Zmax

∣∣∣∣∣∣∣∣
. (23)

Because li < �max and zi < Zmax,(
li

zi

zmax
− �max

li − �max

)
> 1.

Then, for all ω ≥ 0,∣∣∣∣∣∣∣∣
jω + Zmax

(
li

zi
zmax

−�max

li−�max

)
jω + Zmax

∣∣∣∣∣∣∣∣
<

(
li

zi

zmax
− �max

li − �max

)
.

(24)
Substituting (24) into (23) yields∣∣∣∣di(jω)

d(jω)
− 1

∣∣∣∣ <
�max − li

zi

Zmax

�max
.

Therefore, for all li ∈ (�min �max) and ∀zi ∈
(Zmin Zmax),∣∣∣∣di(jω)

d(jω)
− 1

∣∣∣∣ < 1− Zmin�min

Zmax�max
.

Case 1 (ω < ω0): If ω < ω0, the set Co{fk} is around
the positive real axis. So, the smallest angle of elements
in set

Co{σ2
min[R̃], 1}Co{fk}+ disc(‖F‖2‖1

d
D − I‖)

is approximately larger than −π/6 by (15). Also, the
angle of d(jω) is always larger than −π/2. So, ω < ω0,
the smallest angle of elements in set

S(f, d) ≡
Co{σ2

min[R̃], 1}Co{fk}+ disc(‖F‖2‖1
d
D − I‖)

is larger than −2π/3. However, the largest angle of
elements in set

(−∞ − 1]Co{gi} ≡ S(g)

will be less than −π + 0.1 when ω < ω0. So, (7) in
Theorem 1 is satisfied for ω ∈ (0 ω0).
Case 2 (ω ≥ ω0): If ω ≥ ω0, then,

|d(jω)| ≤ |d(jω0)| = �max

√
1 +

(
Zmax

ω0

)2

≤
√

2�max,

|fk(jω)| ≤ |fk(jω0)| =
1√

ω2
0 +

(
2

Ŵkτk

)2

Mk

Ŵkτkûk

<
Mk

2ûk
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and

|gi(jω)| > |gi(jω0)| =
√

ω2
0 + λ2

i > λi.

So, the largest amplitude of elements in set S(f, d) is
no more than

|S(f, d)| ≤
√

2�max max{Mk

2ûk
}

(
2− Zmin�min

Zmax�max

)

≤
√

2�max(max{Mk

2ûk
}+

σ2
min[R̃] min{Mk

2ûk
}

2
).

Thus, by Appendix B, (16) implies that

�max ≤ λmin√
2

(
max{Mk

2ûk
}+ σ2

min[R̃]
2 min{Mk

2ûk
}
) ,

which means that the maximal amplitude of elements in
set S(f, d) is less than the smallest amplitude of elements
in set S(g) when ω ≥ ω0. Thus, set S(f, d) does not
intersect set S(g), so (7) in Theorem 1 is satisfied for
ω ≥ ω0. Next, we prove (17). Because

max{Mk

2ûk
} ≤ m

2ûmin

and
σ2

min[R̃]
2

min{Mk

2ûk
} ≤ 1

2
max{Mk

2ûk
}.

Thus

max{Mk

2ûk
}+

σ2
min[R̃]

2
min{Mk

2ûk
} ≤ 3m

4ûmin
.

So, the RHS of (16) is greater than

4ûmin

3m

min{NkŴkT̂
−2
k }min{λ(R(0)R(0)T )}√

2Cmax

From (22) and Appendix F , it is easy to show that above
function is greater than

4
√

2N3
min min{λ(R(0)R(0)T )}

3mT 4
maxC

3
max

.

Now, (17) implies that (16) holds.

APPENDIX F
LOWER BOUND ON ûmin

Since the rate for each source is bounded by link
capacities, then,

NiŴi

T̂i

≤ Cmax

which implies that

Ŵmax ≤ CmaxT̂max

Nmin
.

Because

Ŵmax =
√

2
ûmin

,

yields

ûmin ≥ 2N2
min

T̂ 2
maxC

2
max
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