### A Congestion Control Framework for Handling Video Surveillance Traffics on WSN

#### M. Maimour

#### C. Pham

CRAN Labs U. Nancy France LIUPPA Labs U. of Pau France

#### D. Hoang

iNEXT Center UTS Australia

IEEE/IFIP EUC 2009 PMNS 2009 Monday, August 31st, 2009





Prof. Congduc Pham http://www.univ-pau.fr/~cpham University of Pau, France

### Wireless autonomous sensor

- In general: low cost, low power (the battery may not be replaceable), small size, prone to failure, possibly disposable
- Role: sensing, data processing, communication





### New sensor applications monitoring: disaster relief, surveillance



Real-time organization and optimization of rescue in large scale disasters Rapid deployment of fire detection systems in highrisk places

### New sensor applications environmental



Environmental monitoring

• air

• water



Cell-phones with embedded CO sensor?

- most ubiquitous device (millions)
- not deployment cost
- high replacement rate
- no energy constraints
- see SocialCom-09/SCMPS-09

# TCAP project (2006-2009)

 « Video Flows Transport for Surveillance Application »

### 

Software architecture for multimedia integration, supervision plateform, transport protocols & congestion control

CRAN (Nancy)

Video coding techniques, multi-path routing, interference-free routing

### Wireless Video Sensors



Cyclops video board on Mica motes



128x128



140x140

#### 115200 bits, 2 bits/pixels



240x240

### Traditionnal surveillance infrastructure









## Towards large-scale pervasive environments



## Challenges

Wireless Scalar Sensor Networks □ Small size of events (°C, pressure,...) Usually no mobility Data fusion, localization, routing, congestion control Wireless Video Sensor Networks □ Video needs much higher data rate Cheap mobility with camera rotation WVSN for Surveillance □ What's new? □ Where are the challenges?

## Surveillance applications (1)

### Lesson 1:don't miss important events





Whole understanding of the scene is wrong!!!

What is captured

# Surveillance applications (2)

# Lesson 2: high-quality not necessarily good



333x358 16M colors, no light



167x180 16 colors, light

#### Keep in mind the goal of the application!

167x180 BW (2 colors), light

# Surveillance applications (3)

Lesson 3: don't put all your eggs in one basket

> Several camera provide multi-view for disambiguation

## Impacts of QoS

#### SURVEILLANCE



# The overall surveillance system: the wishes



# The overall surveillance system: the answers

#### Sensors must be able to

- Define best way to insure coverage
- Schedule themself to increase network lifetime
- Able to reconfigure themselves
- Communicate to collaborate



Communication protocols must

- Provide efficient connectivity, multihop, multi-path routing
- Handle information-intensive traffic



10



### **Congestion Control**



Feedback should be frequent, but not too much otherwise there will be oscillations Can not control the behavior with a time granularity less than the feedback period

## Congestion Control Framework

### Efficient Congestion Detection



|               | $\begin{array}{c} Q > S_m \\ T > \tau \end{array}$ | $T < \tau$ | $Q < S_{min}$ | $S_{min} < Q < S_{max}$ |
|---------------|----------------------------------------------------|------------|---------------|-------------------------|
| $\Phi > \phi$ | CN                                                 | CN         | CN            | CN                      |
| $\Phi < \phi$ | CN                                                 | ok         | ok            | ok                      |

Persistency criterion: T,  $\boldsymbol{\tau}$ 

Multi-path routingFast Load Repartition

### Path diversity



22

## Fast Load Repartition

- Approaches that reduce the reporting rate may impact on detection efficiency
- Keep sending rate, thus video quality, constant: surveillance & critical applications
- Suppose
  - path diversity: path-id
  - Congestion notifications from network: CN(node-id, path-id)
- Load repartition of video traffic on multiple paths

## Load repartition modes

### □Mode 0

no load-balancing

□Mode 1

uses all available paths from the beginning

□Mode 2

starts with 1 path, for each CN(nid,pid) adds a new path, distribute load uniformly

□Mode 3

starts wih 1 path, for each CN(nid,pid) balance uniformly trafic load of path pid on all available paths (including path pid to avoid oscillation)



## Processing CN(5,\*)



# Congestion of node 2, processing CN(2,\*)



total

## Simulation settings

 TOSSIM simulations (TinyOS)
 50 to 250 randomly deployed sensors in a 1000mx1000m field
 Results are averaged over 100 simulations with different topologies
 1 video flow = 60kbit

120x125, 16 grayscale
Links have 250kbps capacity



### Some results (1)



Message dropping rate at sensor queues



- Mode 0: no load-balancing
- Mode 1: uses all available paths from the beginning
- □ Mode 2: starts with 1 path, for each CN(nid,pid) adds a new path
- Mode 3: starts wih 1 path, for each CN(nid,pid) balance uniformly trafic load of path pid on all available paths (including path pid to avoid oscillation)

### Some results (2)



- Mode 0: no load-balancing
- Mode 1: uses all available paths from the beginning
- Mode 2: starts with 1 path, for each CN(nid,pid) adds a new path
- Mode 3: starts wih 1 path, for each CN(nid,pid) balance uniformly trafic load of path pid on all available paths (including path pid to avoid oscillation)

### Conclusions

Using all the paths right away is not that good (Mode 1)

Mode 2 & mode 3 does have some form of source coordination which is a desirable feature

Mode 3 introduces link unfairness but has better load fairness between active nodes

### Future works

Parameter sweeping study of congestion detection
 Study convergence & stability
 Optimize the load repartition computations
 Investigate congestion control &

multiview support for disambiguation