DYNAMIC CRITICALITY MANAGEMENT IN SURVEILLANCE APPLICATIONS WITH WIRELESS SENSOR NETWORKS

RSAC2011 ORAN, ALGERIA JUNE 22ND, 2011

PROF. CONGDUC PHAM HTTP://WWW.UNIV-PAU.FR/~CPHAM UNIVERSITÉ DE PAU, FRANCE

GESTION DYNAMIQUE DE LA CRITICITÉ DANS LES APPLICATIONS DE SURVEILLANCE AVEC DES RÉSEAUX DE CAPTEURS SANS-FILS

JOURNÉES RSAC2011 ORAN, ALGÉRIE MERCREDI 22 JUIN, 2011

PROF. CONGDUC PHAM HTTP://WWW.UNIV-PAU.FR/~CPHAM UNIVERSITÉ DE PAU. FRANCE

PROJET PHC TASSILI

Contrôle coopératif dans les réseaux de capteurs sans fil pour la surveillance

Thèses en co-tutelles

Séjours seniors, juniors

Evénements, journées thématiques: RESSACS'10, RESSACS'11, RSACS'11

WIRELESS SENSOR NETWORK

WIRELESS VIDEO SENSORS (1)

Imote2

Multimedia board

WIRELESS VIDEO SENSORS (2)

SURVEILLANCE SCENARIO (1)

- RANDOMLY DEPLOYED VIDEO SENSORS
- NOT ONLY BARRIER COVERAGE BUT GENERAL INTRUSION DETECTION
- MOST OF THE TIME, NETWORK IN SO-CALLED HIBERNATE MODE
- MOST OF ACTIVE SENSOR NODES IN IDLE MODE WITH LOW CAPTURE SPEED
- SENTRY NODES WITH HIGHER CAPTURE SPEED TO QUICKLY DETECT INTRUSIONS

SENTRY NODE: NODE WITH HIGH SPEED CAPTURE (HIGH COVER SET).

○ IDLE NODE: NODE WITH LOW SPEED CAPTURE.

SURVEILLANCE SCENARIO (2)

- NODES DETECTING INTRUSION MUST ALERT THE REST OF THE NETWORK
- 1-HOP TO K-HOP ALERT
- NETWORK IN SO-CALLED ALERTED MODE
- CAPTURE SPEED MUST BE INCREASED
- RESSOURCES SHOULD BE FOCUSED ON MAKING TRACKING OF INTRUDERS EASIER

ALERTED NODE: NODE WITH HIGH SPEED CAPTURE (ALERT INTRUSION).

SURVEILLANCE SCENARIO (3)

- SENTRY NODE: NODE WITH HIGH SPEED CAPTURE (HIGH COVER SET).
- CRITICAL NODE: NODE WITH HIGH SPEED CAPTURE (NODE THAT DETECTS THE INTUSION).
- IDLE NODE: NODE WITH LOW SPEED CAPTURE.
- NETWORK SHOULD GO BACK TO HIBERNATE MODE
- NODES ON THE INTRUSION PATH MUST KEEP A HIGH CAPTURE SPEED
- SENTRY NODES WITH HIGHER CAPTURE SPEED TO QUICKLY DETECT INTRUSIONS

NODE'S COVER SET

CRITICALITY AND RISK-BASED SCHEDULING

BASIC APPROACH: PM2HW2N/ACM MSWIN 2009 CURRENT APPROACH: IEEE WCNC2010 WITH INTRUSION DETECTION RESULTS: IEEE RIVF2010 WITH RE-INFORCEMENT: IEEE ICDCN2011 JOURNAL PAPER IN JNCA, ELSEVIER

DON'T MISS IMPORTANT EVENTS!

WHOLE UNDERSTANDING OF THE SCENE IS WRONG!!!

WHAT IS CAPTURED

HOW TO MEET SURVEILLANCE APP'S CRITICALITY

CAPTURE SPEED CAN BE A « QUALITY » PARAMETER

- CAPTURE SPEED FOR NODE V SHOULD DEPEND ON THE APP'S CRITICALITY AND ON THE LEVEL OF REDUNDANCY FOR NODE V
- V'S CAPTURE SPEED CAN INCREASE WHEN AS V HAS MORE NODES COVERING ITS OWN FOV - COVER SET

CRITICALITY MODEL (2)

- R⁰ CAN VARY IN [0,1]
- BEHAVIOR FUNCTIONS (BV) DEFINES THE CAPTURE SPEED ACCORDING TO R⁰
- **R**⁰ < 0.5
 - □ CONCAVE SHAPE BV
- **R**^o > 0.5

□ CONVEX SHAPE BV

WE PROPOSE TO USE BEZIER CURVES TO MODEL BV FUNCTIONS

SOME TYPICAL CAPTURE SPEED

□ MAXIMUM CAPTURE SPEED IS 6FPS OR 12FPS

NODES WITH SIZE OF COVER SET GREATER THAN N CAPTURE AT THE MAXIMUM SPEED

N=6	
$P_2(6,6)$	

r^0 $ Co(v) $	1	2		3	4	5		6		
0.0	0.05	0.20	0	.51	1.07	2.10) 6.	00		
0.2	0.30	0.73	1	.34	2.20	3.52	2 6.	00		
0.5	1.00	2.00	3.	.00	4.00	5.00) 6.	00		
0.8	2.48	3.80	4	.66	5.27	5.70) 6.	00		
1.0	3.90	4.93	5	.49	5.80	5.95	6.	00		
r^{0} 1 2 3	4	5	6	7	8	9	10	11	12	

N=12 $P_2(12,3)$

0	.01	.02	.05	0.1	.17	.26	.38	.54	.75	1.1	1.5	3
.2	.07	.15	.25	.37	.51	.67	.86	1.1	1.4	1.7	2.2	3
.4	.17	.35	.55	.75	.97	1.2	1.4	1.7	2.0	2.3	2.6	3
.6	.36	.69	1.0	1.3	1.5	1.8	2.0	2.2	2.4	2.6	2.8	3
.8	.75	1.2	1.6	1.9	2.1	2.3	2.5	2.6	2.7	2.8	2.9	3
1	1.5	1.9	2.2	2.4	2.6	2.7	2.8	2.9	2.9	2.9	2	3
.8 1	$\begin{array}{c} .75\\ 1.5\end{array}$	$\frac{1.2}{1.9}$	$\frac{1.6}{2.2}$	$\frac{1.9}{2.4}$	$\frac{2.1}{2.6}$	$\frac{2.3}{2.7}$	$\frac{2.5}{2.8}$	$\frac{2.6}{2.9}$	$\frac{2.7}{2.9}$	$\frac{2.8}{2.9}$	$\frac{2.9}{2}$	3 3

FINDING V'S COVER SET

BASIC APPROACH: IFIP WD2009 IMPROVED VERSION: IEEE WIMOB 2010 WITH ADAPTIVE SCHEDULING: IEEE ICUMT 2009

AoV=31°

 $\begin{array}{l} \mathsf{P} = \{\mathsf{V} \in \mathsf{N}(\mathsf{V}\): \mathsf{V}\ \mathsf{COVERS}\ \mathsf{THE}\ \mathsf{POINT}\ ``\mathsf{P}''\ \mathsf{OF}\ \mathsf{THE}\ \mathsf{FOV}\}\\ \mathsf{B} = \{\mathsf{V} \in \mathsf{N}(\mathsf{V}\): \mathsf{V}\ \mathsf{COVERS}\ \mathsf{THE}\ \mathsf{POINT}\ ``\mathsf{B}''\ \mathsf{OF}\ \mathsf{THE}\ \mathsf{FOV}\}\\ \mathsf{C} = \{\mathsf{V} \in \mathsf{N}(\mathsf{V}\): \mathsf{V}\ \mathsf{COVERS}\ \mathsf{THE}\ \mathsf{POINT}\ ``\mathsf{C}''\ \mathsf{OF}\ \mathsf{THE}\ \mathsf{FOV}\}\\ \mathsf{G} = \{\mathsf{V} \in \mathsf{N}(\mathsf{V}\): \mathsf{V}\ \mathsf{COVERS}\ \mathsf{THE}\ \mathsf{POINT}\ ``\mathsf{G}''\ \mathsf{OF}\ \mathsf{THE}\ \mathsf{FOV}\} \end{array}$

PG={P∩G} BG={B∩G} CG={C∩G} CO(V)=PG×BG×CG

V₁

V₅

RISK-BASED SCHEDULING

STATIC RISK-BASED SCHEDULING R°=CTE IN [0,1]

- DYNAMIC RISK-BASED SCHEDULING
 - □ STARTS WITH A LOW VALUE FOR R° (0.1)
 - ON INTRUSION, ALERT NEIGHBORHOOD AND INCREASES R° TO A R_{MAX} VALUE (0.9)
 - STAYS AT R_{MAX} FOR T_A SECONDS BEFORE GOING BACK TO R^o
- DYNAMIC WITH REINFORCEMENT
 - SAME AS DYNAMIC BUT SEVERAL ALERTS ARE NEEDED TO GET TO $R^\circ = R_{MAX}$
 - GOING BACK TO R° IS DONE IN ONE STEP

PERCENTAGE OF COVERAGE, ACTIVE NODES (1)

PERCENTAGE OF COVERAGE, ACTIVE NODES (2)

MEAN STEALTH TIME

T₁-T₀ IS THE INTRUDER'S STEALTH TIME VELOCITY IS SET TO 5M/S

MEAN STEALTH TIME

STEALTH TIME, WINAVG[10]

STEALTH TIME, WINAVG[10]

DYNAMIC SCHEDULING

time (second)

DYNAMIC WITH REINFORCEMENT (2)

□ $R^{\circ}=0.1$ → $I_{R}=0.4/0.5/0.6$ → $R_{MAX}=0.9$ □ 2 ALERT MSG TO HAVE $I_{R}=I_{R}+0.1$

THE ADVANTAGE OF HAVING MORE COVER-SET (1)

Co(v)

	r^0				1	2		3	4	5	(5		
N=6		0.0			0.05	0.20	0.	.51	1.07	2.10	6.	00		
P ₂ (6,6)		0.2			0.30	0.73	1.	.34	2.20	3.52	6.	00		
		0.5			1.00	2.00	3.	.00	4.00	5.00	6.	00		
	0.8				2.48	3.80	4.	.66	5.27	5.70	6.	00		
		1.0			3.90	4.93	5.	49	5.80	5.95	6.	00		
														_
	r^0	1	2	3	4	5	6	7	8	9	10	11	12	
N=12 P ₂ (12,3)	0	.01	.02	.05	0.1	.17	.26	.38	.54	.75	1.1	1.5	3	
	.2	.07	.15	.25	.37	.51	.67	.86	1.1	1.4	1.7	2.2	3	
	.4	.17	.35	.55	.75	.97	1.2	1.4	1.7	2.0	2.3	2.6	3	
	.6	.36	.69	1.0	1.3	1.5	1.8	2.0	2.2	2.4	2.6	2.8	3	
	.8	.75	1.2	1.6	1.9	2.1	2.3	2.5	2.6	2.7	2.8	2.9	3	
	1	1.5	1.9	2.2	2.4	2.6	2.7	2.8	2.9	2.9	2.9	2	3	ĺ

OCCLUSIONS/ DISAMBIGUATION

8M.4M RECTANGLE → GROUPED INTRUSIONS

MULTIPLE VIEWPOINTS ARE DESIRABLE SOME COVER-SETS « SEE » MORE POINTS THAN OTHER

THE ADVANTAGE OF HAVING MORE COVER-SET (2)

STEALTH TIME WITH GROUPED INTRUSIONS

○ IDLE NODE: NODE WITH LOW SPEED CAPTURE.

of cover sets

CONCLUSIONS

SURVEILLANCE APPLICATIONS HAVE A HIGH LEVEL OF CRITICITY WHICH MAKE ACCOUNTABILITY IMPORTANT

- CRITICALITY MODEL WITH ADAPTIVE SCHEDULING OF NODES
- OPTIMIZE THE RESOURCE USAGE BY DYNAMICALLY ADJUSTING THE PROVIDED SERVICE LEVEL

EXTENSION FOR RISK-BASED SCHEDULING IN INTRUSION DETECTION SYSTEMS

HARDWARE & TOOLS

BERKELEY MOTES

MICA2

Imote2

MICAz

Sensing boards

Battery Sockets

SD CARD

RTC

Aux. Battery

mini-USB

USB Power Led

Switch OFF/ON

Leds

Crystal Oscillator

Solar socket

Reset Button

Hall Effect
Tilt
Temperature (+/-)
Liquid Presence
Liquid Level

- Luminosity

Presence (PIR)
 Stretch

GPS Socket

WASPMOTE (1)

WASPMOTE (2)

WASPMOTE & MESHLIUM

OMNET++/CASTALIA

