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Abstract— Transport protocols have the difficult task of pro-
viding reliability and fair sharing of the bandwidth to end-users.
In this paper, we focus on very dynamic high-speed networks
where the available best-effort bandwidth for regulated traffics
can vary over time. Foreseen problems introduced by such highly
dynamic environments are inefficiency due to convergence time
and high amount of packet losses due to dramatic reductions of
the available bandwidth. Therefore end-to-end solutions show
their limitations for exploiting the current very high-speed
infrastructures. XCP is a promising approach as the evolution
of the sender congestion window size is dictated by the routers.
However, as the XCP sender relies on the returned ACKs to adapt
its congestion window size, XCP performances can be affected
if many losses occur on the reverse path. This paper proposes
to calculate the congestion window size at the receiver side and
to overcome the problem of ACk losses. The result is a more
robust XCP transport protocol, capable of achieving a high level
of performance in very dynamic high-speed networks, thus able
to function in a broader range of network conditions.

I. INTRODUCTION

Transport protocols have usually the difficult task of pro-
viding reliability and fair sharing of the bandwidth to end-
users. TCP (Transmission Control Protocol) originally defined
in RFC 793 has been the transport protocol of the Internet for
more than 2 decades. Since the congestion collapse observed
by V. Jacobson in 1986 and the well-known slow-start and
congestion avoidance algorithms proposed in 1988 [7], the
networking community has proposed many enhancements and
optimizations to the original proposition in order to make
TCP more efficient in a large variety of network conditions
(to better react to congestions) and technologies [2], [6]:
wireless links [11], [5], asymmetric links and very high-speed
and long delay links [4], [8], [9], [12]. Most of these new
protocols are also made available in the newest Linux kernels
facilitating the deployment of these new protocols on new
network infrastructures.

On high bandwidth-delay product networks, the main op-
timizations consist in adding more efficient mechanisms for
acquiring bandwidth faster. For example HSTCP [4] modifies
the standard TCP response function to faster acquire the
available bandwidth (more efficiency) and to quickly recover
from packet losses in the network. The drawback of such
a behavior is that fairness between TCP and HSTCP, and
even between HSTCP flows, is affected since HSTCP is much
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slower to give back bandwidth. FAST TCP [8] is basically
a modification of TCP Vegas which uses the delay variation
(round-trip time variation) to predict congestion conditions
in the network. FAST TCP shows very good performances
but suffers from non-congestion based delay variations such
as rerouting. While TCP, HSTCP and FAST TCP can be
classified as end-to-end solutions, XCP [9] belongs to the
router-assisted approaches that use the assistance of routers to
more accurately signal congestion conditions in the network
and to compute the optimal congestion window size to be
applied at the source. Therefore, XCP shows very stable
behavior but is also able to get bandwidth very fast while
preserving fairness among flows.

In this paper, we focus on very dynamic high-speed net-
works where the available best-effort bandwidth can vary
over time. There are several reasons to this behavior. For
example, it is not unrealistic to foreseen dynamic subscriptions
to guaranteed bandwidth for resource-consuming applications
(grid computing, distributed simulation, virtual reality experi-
ences,...). In this case, the bandwidth available for the best-
effort traffic have large variations over time. An other reason
could be the presence of unregulated traffics such as UDP
packets (used in many multimedia applications) which com-
pete in an unfair manner with regulated flows. Foreseen prob-
lems that are amplified by such highly dynamic environments
are inefficiency due to convergence time (because it is difficult
to quickly and safely acquire the available bandwidth when
it suddenly increases) and high amount of packet losses due
to dramatic reductions of the available bandwidth. Therefore
end-to-end solutions show their limitations for exploiting in an
optimal manner the current very high-speed infrastructures.

XCP is a promising approach as the evolution of the sender
congestion window size is dictated by the routers. However, as
the XCP sender relies on the returned ACK packets to adapt its
congestion window size, XCP can be affected if many losses
occur on the reverse path. In [13], the authors observe that the
lost of ACK packets have little impact on the ability of XCP
to adjust the sender’s congestion window size. However, the
authors did not consider situations where there are bandwidth
fluctuations over time (i.e. dynamic networks). We believe that
in such environments, the problem of lost ACKs on the reverse
path has much more impact on the XCP performances than
what have been found in previous studies. This paper proposes
to calculate the congestion window size at the receiver side and



to overcome the problem of ACk losses. The result is a more
robust XCP transport protocol, capable of achieving a high
level of performance in very dynamic high-speed networks,
thus able to function in a broader range of network conditions.

The paper is organized as follows. Section 2 describes the
XCP protocol and presents some of its main problems on
dynamic networks and especially those related to the high
dependancy of XCP on ACK packets. Section 3 presents the
performances of XCP on dynamic networks. Our contributions
are described in Section 4. Section 5 concludes the paper.

II. THE XCP PROTOCOL

A. General description

XCP [9] (eXplicit Control Protocol) uses router-assistance
to accurately inform the sender of the congestion conditions
found in the network. In XCP, data packets carry a congestion
header, filled in by the source, that contains the sender’s
current congestion window size (H cwnd field), the estimated
RTT and a feedback field H feedback. The H feedback
field is the only one which could be modified at every hop
(XCP router) based on the value of the two previous fields
(see Fig. 1). Basically, the H feedback field which can
take positive or negative values represents the amount by
which the sender’s congestion window size is increased or
decreased. On reception of data packets, the receiver copies
the congestion header (which has been modified accordingly
by the routers) into ACK packets sent back to the source. It
is not important that these ACK packets follow the same path
than data packets since all the computations are done on the
forward data path. On reception of ACK packets, the sender
would update its congestion window size as follows: cwnd =
max(cwnd+H feedback, packetsize), with cwnd expressed
in bytes. The core mechanism resides in XCP routers that use
an efficiency controller (EC) and a fairness controller (FC) to
update the value of the feedback field over the average RTT
which is the control interval. The EC has the responsibility of
maximizing link utilization while minimizing packet drop rate.
The EC basically assigns a feedback value proportional to the
spare bandwidth S, deducted from monitoring the difference
between the input traffic rate and the output link capacity, and
to the persistent queue size Q (to avoid a feedback value of
zero when input traffic is equal to output capacity).

Fig. 1. The XCP protocol

The authors in [9] proposes the following EC equation:
feedback = α.rtt.S − β.Q, with α = 0.4 and β = 0.226.
Then the FC translates this feedback value, which could

be assimilated to an aggregated increase/decrease value, into
feedback for individual flows (to be put in the data packet’s
congestion header) following fairness rules similar to the TCP
AIMD principles, but decoupled from drops because only the
difference between input traffic rate and output link capacity
(S) is used instead in the EC. Note that no per-flow states are
used by XCP routers to perform all these operations: as a data
packet carries in its header the current sender cwnd and the
RTT, it is easy to compute how many data packets are sent per
congestion window in order to assign the available bandwidth
in a proportional manner.

The original XCP proposition did not mention any mech-
anism for handling severe congestion situations as it was
believe that such situations should not occur with the XCP
kind of control. However, some works have shown that severe
congestions do happen and that it is desirable to keep the TCP
mechanism which consists in resetting cwnd to 1 in case of
severe congestion1 [13], [10]. Our simulations did confirm this
assumption and therefore we assume that XCP does react as
TCP does in case of severe congestion. The previous XCP
studies have also shown that XCP has very good convergence
time to full utilization and fairness to other flows. Some
implementations are also available and deployment issues are
being studied.

B. The importance of ACKs in XCP

The problem we are tackling in this work is the high
dependancy of XCP on ACK packets sent on the reverse
path. As opposed to TCP where ACK packets indicate good
reception of data packets, each XCP ACK packet also carries
the feedback value filled in by the XCP routers that controls
the evolution of cwnd at the sender. This feedback represents
an increment or a decrement to be applied to cwnd. The larger
the congestion window, the higher the number of ACKs and,
the smaller the feedback value per ACK is (see [9] for more
details).

With TCP, if some ACK are lost the only consequence is
to delay the release of data buffers at the sender. For XCP,
lost ACKs will cause a mismatch between the real network
conditions in term of bandwidth availability and the conditions
perceived by the source. The direct consequence is either a too
large cwnd while there are bandwidth shortage somewhere in
the network, or a too small cwnd that decreases utilization
while bandwidth is available. While the second case only af-
fects the utilization of the link, the first case has more dramatic
consequences: as the sender cwnd increases well beyond the
optimal point, and does not reflect the network conditions
anymore, severe congestions are created inside the network.
While this phenomenon has little impact on slow networks
it is amplified in dynamic high-speed networks where large
amount of data could be sent per congestion window and
where bandwidth reductions could occur. In this case, if the
returned feedbacks (those that have not been dropped) are not

1However, as the original ns model of XCP was implemented on top of the
TCP model, the XCP simulation model did benefit from this TCP mechanism.



sufficient to reduce cwnd at the sender, then large amount of
data can be dropped causing costly retransmissions but also
very penalizing timeouts.

III. PERFORMANCE OF XCP ON DYNAMIC NETWORKS

With XCP, cwnd can directly jump to the optimal value
without wasting time in a slow-start phase or in a slow probing
phase with some incremental heuristics (like in HSTCP or
FAST TCP). Therefore, achieving high utilization ratio on
high-speed links is not a problem anymore for XCP. On
dynamic networks where the available bandwidth can vary
over time, XCP is also expected to achieve good performances.
In this section, we show some ns-based [1] simulation results
of XCP on such dynamic networks. The original XCP ns

code is the one provided by D. Katabi. In our simulations
scenario, the bandwidth variations for best effort traffics are
due to ON/OFF UDP sources which compete with the XCP
flows.
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Fig. 2. Network topology

Fig. 2 shows the classical dump-bell network model with
2 XCP routers used for our ns-based simulations. R1 is
connected to the sources and R2 to the receivers (1 XCP flow
and 17 UDP flows). All tail links have the same delay of 1ms.
R1 is connected to R2 by either a 200Mbps or a 1Gbps link
with 50ms of one-way delay which represents the bottleneck
link.

R1 and R2 have 1000 buffers slots (expressed in number
of packets) per incoming link (2300 with the 1Gbps link). On
a long, high-speed networks, the optimal buffer size usually
follows the rule of thumb of bandwidth.rtt product, e.g. for
a 200Mbps link with an RTT of 100ms the buffer in number
of 1Kbytes packets is about 2440. For a 1Gbps link it is about
12200. In this network model the amount of buffer is not
optimal but we believe it better reflects what could be found
in real networks. The queue management strategy is RED for
both routers and uses the same configuration found in [9].

A. XCP with no lost ACKs

Fig. 3 shows the throughput for one XCP connection. As
expected, XCP is able most of the time to follow the best-effort
bandwidth variations. The only problem we could observe is
at time 5s when the bandwidth decreases by half. At this time,
there is a timeout introduced by the numerous losses of data
packets but it is quickly recovered as cwnd is increased almost
instantaneously afterwards.
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Fig. 3. 1 flow, 200Mbps, no lost ACKs
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Fig. 4. 3 flows, 200Mbps, no lost ACKs

With several flows, XCP is able to follow the bandwidth
variations as can be seen in Fig. 4.

B. XCP with lost ACKs on the reverse path
When losses occur on the reverse path for some reasons

(congestions, bandwidth variations. . . ), XCP ACK packets
may be dropped. As explained previously this situation may
lead to an unstable behavior of XCP.
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Fig. 5. 1 flow, 200Mbps, 30% lost ACKs

Fig. 5a and 5b show the sender’s throughput and cwnd

respectively when there is an ACK loss rate of 30%2. As

230% of lost ACK is not an unusual situation since it is possible to have
some kind of black-out situation on the reverse path due to severe congestions.
In this case, 100% of ACK could be lost during the blackout period.



opposed to the case shown in Fig. 3, when the bandwidth is
reduced by half and causes a congestion at time 5s we can see
in Fig. 5a that the timeout could not be recovered quickly. The
explanation is the following: on a timeout the sender cwnd is
set to 1 therefore the receiver could only send back 1 ACK
carrying a large feedback value if there is available bandwidth.
If this ACK is dropped3, the sender would need to wait for the
retransmission timer (RTO) in order to send the packet again
to get another ACK from the receiver.

The sender could also received ACK packets from the re-
ceiver for the in-transit data packets sent before the congestion.
Unfortunately, these feedback values are small (because the
congestion window was previously large) and do not allow
cwnd (previously set to 1) to increase fast enough to grab
for the available bandwidth. At time 30s, there is another
timeout which is quickly recovered this time because the RTO
has a much more optimal value than at the beginning of the
connection.
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Fig. 6. 3 flows, 200Mbps, 30% lost ACKs

With several flows, each sender has a smaller cwnd but
the lost ACKs can produce an important number of dropped
packets when the available bandwidth decreases. This is be-
cause the total number of data packets stored in the routers
is similar to the 1-connection case. In addition, if it happens
that an important amount of dropped packets belongs to the
same flow, then the probability to have a timeout increases
for this flow while the others flows will try to get the newly
available bandwidth. We can verify this assumption in Fig. 6a
and 6b which show the throughput and cwnd for 3 XCP flows.
At time 5s the timeout is quickly solved but at time 30s the
losses of ACKs have more impact on the second and third flow
while the first flow tries to get all the available bandwidth. The
second flow stays inactive for about 4s.

3An important ACK can be dropped even with a much lower loss rate.
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Fig. 7. 10 flows, 1Gbps, 12% lost ACKs

We also simulated XCP on a 1Gbps link with a smaller ACK
loss rate (12%). Fig. 7 shows 10 XCP flows on a dynamic
network with small bandwidth fluctuations when compared
to the link capacity (the maximum bandwidth fluctuation
represents 18% of the link capacity). We can see that although
the bandwidth fluctuations are small, XCP shows a very
unstable behavior with many timeouts and packet drops.

IV. ENHANCING THE ROBUSTNESS OF XCP

One problem of XCP comes for the fact that feedbacks are
summed up by the source in order to incrementally compute
the optimal cwnd. The reasons for doing so are (i) lost of
ACKs have little impact and (ii) feedback values can be
changed very quickly by the routers to take into account any
changes in the networks. However, in the previous sections,
we have shown that on dynamic networks XCP could have
unstable behavior due to lost of ACKs. In this section, we are
describing the modifications we did to the XCP sender and
receiver while keeping the complex router’s tasks untouched.
We will call this version XCP-r (”r” for receiver).

The main idea behind XCP-r is to avoid having the incre-
mental feedbacks summed up by the source, while keeping the
incremental feedbacks at the router level for flexibility and
robustness. This paper proposes to calculate the congestion
window size at the receiver and to send this value to the source
in a redundant manner. As each ACK packet now carries the
target cwnd, the only consequence of some ACKs losses is
to delay the update of the sender cwnd since any subsequent
single ACK packet can be used.

In a first version of XCP-r, the receiver simply uses the
H cwnd field of the data packet (which stores the current
sender’s congestion window size) to recompute the target
cwnd from the H feedback field (see Fig. 1). The formula
was cwnd = (H feedback ∗ H cwnd) + H cwnd which
simply relies on the fact that the H feedback field was
computed by the routers so as to distribute the total increase
amount in congestion window into H cwnd increments of
H feedback value. Unfortunately, the simulations we made
show that this formula can over-estimate the congestion win-
dow size because it assumes that the H feedback value
remains constant within a congestion window.

Our proposition in this paper is to reproduce at the receiver
the computations that are performed at the source in the
original proposition. To do so, the receiver maintains a cwnd′

variable per flow that evolves according to the H feedback



value received in data packets as follows: cwnd′ = cwnd′ +
H feedback. As H feedback evolves cwnd′ will evolve
accordingly. A new cwnd′ variable set to 1 is created on
reception of an XCP SYN packet that has the same meanings
than a TCP SYN packets. Therefore, ACK packets sent by the
receiver carry the new congestion window size instead of an
increment or a decrement value.

Note that whenever the source decides to modify cwnd, it
must synchronize with the receiver beforehand. In XCP, such
a modification happens only when there is a congestion that
either set cwnd to 1 or to half of its value. In both cases, the
sender indicates in an additional special congestion flag field
of the XCP header that the receiver should read the value of
H cwnd again. Fig. 8 illustrates the XCP-r receiver’s set of
operations.

Fig. 8. A receiver in XCP-r.

Regarding the XCP-r source, the only modifications are
(i) instead of doing cwnd = cwnd + H feedback simply
do cwnd = H feedback and, (ii) set the congestion flag
whenever the cwnd is reset. The next subsections present the
performances of XCP-r.

A. XCP-r with no lost ACKs

When there is no lost ACKs XCP-r is similar to XCP
without any side effects.

B. XCP-r with lost ACKs on the reverse path

With the same simulation settings, Fig. 9 shows that the
impact of the timeout at time 5s is reduced and that the
period of inactivity is almost negligible which represents an
important improvement over the original XCP protocol. After
the timeout, the computed feedback is very important because
the value needs to be large in order to quickly grab the
available bandwidth. With XCP, if the ACK which carries the
largest increment value is lost, the sender will not be able
to increase its congestion window and the timeout will last
longer (see the case depicted in Fig. 5). XCP-r reduces this
problem because the next ACK will carry the correct value
for the congestion window since cwnd′ remains unchanged at
the receiver side.
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Fig. 9. 1 XCP-r flow, 30% lost ACKs
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Fig. 10. 3 XCP-r flows, 30% lost ACKs
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Fig. 11. 10 XCP-r flows, 1Gbps, 12% lost ACKs

With several XCP flows (Fig. 10a and 10b), we can see
that XCP-r succeeds in maintaining fairness between flows



which directly translates into a more stable evolution of the
congestion window than with XCP. On a 1Gbps link, Fig. 11
shows that XCP-r maintains for the 10 flows a high level of
performance.

V. CONCLUSION

This article focuses on the XCP approach which is a promis-
ing router-assisted approach for high-speed networks. The
problem we addressed in this paper is the high dependance of
XCP with regards to the returned ACK packets for maintaining
a coherent view of the network conditions. We showed that
this dependance has high impact on the XCP performances
in case of ACK losses on the reverse path, making XCP very
unstable if used as it is on dynamic, very high-speed networks.

In this paper we propose to calculate the congestion window
size at the receiver side and to overcome the problem of ACk
loss. We showed that the resulting protocol succeeds in pro-
viding a high level of performance in very dynamic high-speed
networks, thus able to function in a broader range of network
conditions. We believed such router-assisted approaches have
high potentials for being deployed in dynamic, very high-speed
networking infrastructures such as data or computational grids
where efficient transfers of large amount of data is required.
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