

Ear-IT WP1 Acoustic Test-bed Qualification

D1.3: Methodology and tools for
measurements and benchmarking on the
use of acoustic sensors

Abstract

This document is the EAR-IT deliverable 1.3. It presents the methodology and tools for
measurements and benchmarking on the use of acoustic sensors with a number of
performance indicators. It describes the measure campaigns in Santander's SmartSantander
and Geneva's HobNet test-beds to determine with the proposed methodology and tools the
NETWORK performance indicators while the ENERGY indicators are measured in lab. While 1-
hop transmission can be easily realized with the developed solutions, achieving high audio
quality, the experimentations show that multi-hop audio quality, especially in non-LOS
conditions, heavily depend on the choice of the relay nodes. However, results are promising as
multi-hop audio transmission with packet loss rate below the maximum accepted threshold has
successfully been tested with appropriate position of relay nodes. In addition, energy
consumption has been measured and were found compatible with a smart cities environment
and usage scenario.

 2

Project Number: Project Acronym: Project Title:

318381 EAR-IT
Experimenting Acoustics in Real environments
using Innovative Test-beds

Instrument: Thematic Priority

STREP Future Internet Research and Experiment

Title

Methodology and tools for measurements and benchmarking on the use of acoustic
sensors

Contractual Delivery Date:

Actual Delivery Date:

October 1st 2014 November 1st 2014

Start date of project: Duration:

October, 1st 2012 24 months

Organization name of lead contractor for
this deliverable: Document version:

EGM V1.0

Dissemination level (Project co-funded by the European Commission within the Seventh
Framework Programme)
PU Public X
PP Restricted to other programme participants (including the Commission
RE Restricted to a group defined by the consortium (including the Commission)
CO Confidential, only for members of the consortium (including the Commission)

 3

Authors	 (organizations)	 :	

Congduc Pham, EGM
Philippe Cousin, EGM

Abstract	 :	
	

This document is the EAR-IT deliverable 1.3. It presents the methodology and tools for
measurements and benchmarking on the use of acoustic sensors with a number of performance
indicators. It describes the measure campaigns in Santander's SmartSantander and Geneva's
HobNet test-beds to determine with the proposed methodology and tools the NETWORK
performance indicators while the ENERGY indicators are measured in lab. While 1-hop transmission
can be easily realized with the developed solutions, achieving high audio quality, the
experimentations show that multi-hop audio quality, especially in non-LOS conditions, heavily
depend on the choice of the relay nodes. However, results are promising as multi-hop audio
transmission with packet loss rate below the maximum accepted threshold has successfully been
tested with appropriate position of relay nodes. In addition, energy consumption has been
measured and were found compatible with a smart cities environment and usage scenario.

Keywords	 :	

Acoustic data, benchmark methodology, test-bed, audio streaming

Disclaimer	
THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION
OR SAMPLE. Any liability, including liability for infringement of any proprietary rights, relating
to use of information in this document is disclaimed. No license, express or implied, by
estoppels or otherwise, to any intellectual property rights are granted herein. The members of
the project Probe IT do not accept any liability for actions or omissions of Probe IT members or
third parties and disclaims any obligation to enforce the use of this document. This document
is subject to change without notice.

 4

Revision	 History	
The following table describes the main changes done in the document since it was created.

Revision	 Date	 Description	 Author	 (Organisation)	

0.1	 15th	 September	
2014	

Initial	 drafting	 	 C.	 Pham	 (EGM)	

0.5-0.9 1st October
2014

Development of full report and several
iterations after internal review

C. Pham (EGM)

1.0 29th October
2014

Final version C. Pham (EGM)
P. Cousin (EGM)

 5

Table	 of	 Content	
EAR-IT WP1 ACOUSTIC TEST-BED QUALIFICATION ... 1	

D1.3: METHODOLOGY AND TOOLS FOR MEASUREMENTS AND BENCHMARKING ON THE USE OF ACOUSTIC SENSORS 1	
ABSTRACT .. 1	

1.	 INTRODUCTION ... 6	
2.	 REVIEW OF EAR-IT TEST-BEDS AND DEVELOPED HARDWARE ... 7	

Review of SmartSantander test-bed hardware ... 7	
Review of the HobNet test-bed hardware .. 8	
Review of maximum IoT sending performance .. 8	
Review of maximum IoT relaying performance ... 10	
Review of minimum requirements at sender and relay nodes in a multi-hop environment 11	

3.	 AUDIO STREAMING AND DEVELOPED HARDWARE ... 13	
Motivations & purposes of audio streaming .. 13	
Basic principles & constraints ... 13	
Raw audio with 8kHz sampling on Libelium WaspMote ... 15	
Development of a dedicated audio board .. 17	

4.	 BENCHMARK METHODOLOGY AND TOOLS .. 24	
Methodology ... 24	
Packet analysis tools .. 25	

5.	 NETWORK PERFORMANCE INDICATORS ... 26	
4.1 Tests in Santander .. 26	

1-hop, source to destination ... 27	
2-hop transmission: source, relay and destination .. 35	
Conclusion of benchmark tests in Santander's SmartSantander test-bed .. 40	

4.2 Tests in Geneva (HobNet, HEPIA site) .. 42	
1-hop, source to destination ... 43	
2-hop transmission: source, relay and destination .. 48	
Conclusion of benchmark tests in Geneva's HEPIA building .. 52	

6.	 ENERGY INDICATORS .. 53	
7.	 BENCHMARKING OTHER TEST-BEDS .. 58	

Why doing a benchmark ... 58	
Objectives of the benchmark .. 58	
What you need to do ... 58	
Review of useful documents and EAR-IT deliverables ... 58	
Benchmarking procedure ... 59	
Call for Benchmark .. 59	
Preliminary results from Surrey test-bed ... 59	
Preliminary results from EGM test-bed ... 61	

8.	 CONNECTING THE AUDIO ON OTHER IOT PLATFORMS ... 64	
9.	 SUMMARY AND CONCLUSIONS .. 65	

Summary of main results of the various tests ... 65	
Conclusions .. 66	

10.	 REFERENCES ... 67	
ANNEX.A: REVIEW OF SOFTWARE ENVIRONMENT, TOOLS AND TEST HARDWARE .. 68	
ANNEX.B: BENCHMARKING PROCEDURE FOR OTHER TEST-BEDS ... 83	
ANNEX.C: BENCHMARKING PROCEDURE FOR OTHER TEST-BEDS (SLIDES) ... 90	
ANNEX.D: AUDIO BOARD ON OTHER IOT PLATFORMS .. 99	

	

 6

1. Introduction

This document is the EAR-IT deliverable 1.3. In previous deliverable 1.2 we defined some
selected performance indicators and presented the minimum requirements for use of acoustic
sensors on the various EAR-IT test-beds based on WSN and IoT nodes with IEEE 802.15.4
radio technology. These performance indicators were categorized into:

1. Network performance indicators (NETWORK)
2. Audio quality indicators (AUDIO),
3. Energy indicators (ENERGY).

This document describes a benchmarking approach to provide performance indicators that
would qualify the various EAR-IT test-beds based on WSN and IoT nodes with IEEE 802.15.4
radio technology. We will review the main performance issues when it comes to support
acoustic data: packet loss rate, relay latency and packet jitter to name a few. We will also
consider audio quality and energy aspects as part of our benchmark methodology in order to
provide both performance and usability indicators.

One main motivation behind an accurate test-bed qualification on the 3 proposed indicators is
the possibility of near real-time multi-hop audio streaming from a source to a control center in
case of emergency, using low-resource IoT nodes (typically the legacy sensors deployed in the
Santander's SmartSantander test-bed). Therefore this document will also present an overview
of audio streaming techniques and the various hardware developed for this objective. The
document is organized as follows:

• Chapter 2 will present:

o a review of the EAR-IT test-beds with the associated sensor platform hardware
o a review of the IoT node network performance obtained during the network

qualification phase (see Deliverable 1.1)
o a review of the minimum requirement for use of acoustic data (see Deliverable

1.2)

• Chapter 3 will focus on audio streaming features. We start by presenting audio
streaming techniques then describe the motivation behind the developed audio board.
The main characteristics of the audio board as well as the implemented services
developed for enabling and demonstrating multi-hop audio streaming on low-resource
IoT nodes will be presented.

• Chapter 4 will present the benchmark methodology and tools

• Chapter 5 will present our tests to determine network performance indicators

• Chapter 6 will present our tests to determine energy indicators

• Chapter 7 will describe the proposed benchmark procedure to test other test-beds

• Chapter 8 will conclude this document

 7

2. Review of EAR-IT test-beds and developed
hardware

The EAR-IT test-beds consist in (i) the SmartSantander test-bed and (ii) the HobNet test-bed.
The SmartSantander test-bed is a FIRE test-bed with 3 locations. Being one location, the
Santander city in north of Spain has deployed more than 5000 nodes deployed across the city.
This is the site we will use when referring to the SmartSantander test-bed. HobNet is also a
FIRE test-bed that focuses on Smart Buildings. Although the HobNet test-bed has several sites,
within the EAR-IT project only test-bed located at MANDAT Intl and HEPIA are concerned.
Many information can be found on corresponding project web site (www.smartsantander.eu
and www.hobnet-project.eu) but we will present in the following paragraphs some key
information that briefly present the main characteristics of the deployed nodes.

Review of SmartSantander test-bed hardware

IoT	 nodes	 and	 gateways	

IoT nodes in the Santander test-bed are WaspMote sensor boards and gateways are Meshlium
gateways, both from Libelium. Most of IoT nodes are also repeaters for multi-hops
communication to the gateway. Figure 3 shows on the left part the WaspMote sensor node
serving as IoT node and on the right part the gateway. The WaspMote is built around an Atmel
ATmega1281 micro-controller running at 8MHz. There are 2 UARTs in the WaspMote that serve
various purposes, one being to connect the micro-controller to the radio modules.

Figure 1: Santander’s IoT node and gateway

Radio	 module	

IoT nodes have one XBee 802.15.4 module and one XBee DigiMesh module. Differences
between the 802.15.4 and the DigiMesh version are that Digimesh implements a proprietary
routing protocol along with more advanced coordination/node discovery functions. In this
document, we only consider acoustic data transmission/relaying using the 802.15.4 radio
module as the DigiMesh interface is reserved for management and service traffic. XBee
802.15.4 offers the basic 802.15.4 [802154] PHY and MAC layer service set in non-beacon
mode. Santander's nodes have the "pro" version set at 10mW transmit power with an
advertised transmission range in line-of-sight environment of 750m. Details on the
XBee/XBee-PRO 802.15.4 modules can be found in [XBeeDigi] [DMDigi].

 8

Review of the HobNet test-bed hardware

IoT	 nodes	

Sensor nodes in the HobNet test-bed consist in AdvanticSys TelosB motes, mainly CM5000 and
CM3000, see figure 4, that are themselves based on the TelosB architecture. These motes are
built around a TI MSP430 microcontroller with an embedded Texas Instrument CC2420
802.15.4 compatible radio module. The TelosB description and data-sheet can be found in
[TELOSB]. Documentation on the AdvanticSys motes can be found in [ADVAN]. AdvanticSys
motes run under the TinyOS system [TINYOS]. The last version of TinyOS is 2.1.2 and our
tests use this version.

Figure 2: CM5000 (left) and CM3000 (right)

Radio	 module	

The CC2420 is less versatile than the XBee module but on the other hand more control on low-
level operations can be achieved. The important difference compared to the previous Libelium
WaspMote is that the radio module is connected to the microcontroller through an SPI bus
instead of a serial UART line which normally would allow for much faster data transfer rates.
The CC2420 radio specification and documentation are described in [CC2420].

The TinyOS configuration by default uses a MAC protocol that is compatible with the 802.15.4
MAC (Low Power Listening features are disabled). It also uses ActiveMessage (AM) paradigm to
communicate. As we are using heterogeneous platforms we will rather the TKN154 IEEE
802.15.4 compliant API. We verified the performances of TKN154 against the TinyOS default
MAC and found them greater.

Review of maximum IoT sending performance

Regarding the network indicators we already reported in deliverable 1.1 the time spent in a
generic send() function, noted tsend, and the minimum time between 2 packet generation,
noted tpkt. tpkt will typically take into account various counter updates and data manipulation so
depending on the amount of processing required to get and prepare the data, tpkt can be quite
greater than tsend. With tsend, we can easily derive the maximum sending throughput that can
be achieved if packets could be sent back-to-back, and with tpkt we can have a more realistic
sending throughput. In order to measure these 2 values, we developed a traffic generator with
advanced timing functionalities. Packets are sent back-to-back with a minimum of data
manipulation needed to maintain some statistics (counters) and to fill-in data into packets,
which is the case in a real application. On the WaspMote, we increased the default serial baud
rate between the microcontroller and the radio module from 38400 to 125000. The Libelium
API has also been optimized (for instance, we also remove the overhead of waiting for
transmission status, which is not very relevant for real-time acoustic data) to finally cut down
the sending overheads by almost 3 compared to the original Libelium API! Figure 3(top) shows
tsend and tpkt for the WaspMote. Results for AdvanticSys TelosB are shown in Figure 5(bottom).

 9

Figure 3: tsend and tpkt for for WaspMote (top) and AdvanticSys TelosB (bottom)

 10

Review of maximum IoT relaying performance

We also used the traffic generator to send packets to a receiver where we measured (i) the
time needed by the mote to read the received data into user memory or application level,
noted tread, and (ii) the total time needed to relay a packet. Figure 4 shows the results.

Figure 4: tread and trelay for for WaspMote (top) and AdvanticSys TelosB (bottom)

 11

Review of minimum requirements at sender and relay nodes in a multi-
hop environment

Minimum	 requirements	 at	 the	 sender	 side	

Codec Minimum sending rate

Raw

4KHz

8KHz

100 bytes every 25ms

100 bytes every 12.5ms

Speex 8000bps

A1
A2
A3
A4

24 bytes every 20ms
48 bytes every 40ms
72 bytes every 60ms
96 bytes every 80ms

Codec2

2400bps
A1
.
.
An (1≤n≤11)

3200bps
A1
.
.
An (1≤n≤9)

9 bytes every 20ms
.
.

9*n bytes every n*20ms

11 bytes every 20ms

11*n bytes every n*20ms

Table I: summary of the minimum requirements at the sender side

Buffer	 size	 &	 packet	 drop	 relationship	 at	 relay	 nodes	

Time before packet drop due to a full receive buffer

Table II: time before packet drop due to a full receive buffer

Q 4KHz/W 8KHz/W 4KHz/T 8KHz/T
1000 0.33 0.14 2.33 0.23
1500 0.49 0.21 3.50 0.34
2000 0.65 0.28 4.67 0.45
2500 0.81 0.35 5.83 0.56
3000 0.98 0.42 7.00 0.68
3500 1.14 0.49 8.17 0.79
4000 1.30 0.57 9.33 0.90
4500 1.46 0.64 10.50 1.02
5000 1.63 0.71 11.67 1.13

WaspMote:audio,:WaspMote:&:TelosB:relay:nodes
Q A1 A2 A3 A4

1000 1.27 1.81 2.56 3.40
1500 1.91 2.72 3.84 5.10
2000 2.54 3.63 5.11 6.79
2500 3.18 4.53 6.39 8.49
3000 3.82 5.44 7.67 10.19
3500 4.45 6.35 8.95 11.89
4000 5.09 7.25 10.23 13.59
4500 5.72 8.16 11.51 15.29
5000 6.36 9.07 12.79 16.99

TelosB4audio4board,4WaspMote4relay4node

 12

Maximum	 supported	 packet	 loss	 rate	

Codec
Maximum packet loss rate
for speech understanding

Raw 4KHz & 8KHz

50%

Speex 8000bps

35%

Codec2

2400bps

3200bps

20%

30%

Table III : summary of the maximum packet loss rate for speech understanding

 13

3. Audio streaming and developed hardware
Motivations & purposes of audio streaming

The EAR-IT project is one of these projects which focuses on large-scale "real-life"
experimentations of intelligent acoustics for supporting high societal value applications and
delivering new innovative range of services and applications mainly targeting to smart-
buildings and smart-cities.

Since the beginning, we faced challenges as Internet of things devices are known for their
limited processing capability and also their limited autonomy. Furthermore it was obvious that
wireless network will not allow large transmission and will have limitation in bandwidth (which
was confirmed by D1.1 and D1.2). However EAR-IT decided still to cope with some challenges
and do some experiment to still explore the possibility to ask regular simple device to provide
audio streaming with state of art coding techniques and thanks to our acoustic expert. In
exploring some possibility we will also explore possibility to enable audio to any FIRE/test
facility and give the condition to use audio (This is the del 1.2).

To conduct our research and experiment we had to consider the technical capability of audio
streaming but then also to look at the foreseen potential application. One of the audio
scenarios that we considered in EAR-IT is the audio streaming possibility where audio samples
can be captured on an on-demand basis by an IoT node and streamed in a near real-time
fashion to a control command centre under the supervision of a human operator. Motivations
are to better understand an emergency situation with audio information from people on the
emergency scene.

Basic principles & constraints

Acoustic data are usually obtained through a sampling process of an analog signal from a
microphone. Narrow-band sampling processes use a sampling rate lower than 8KHz while
wide-band sampling usually samples at a frequency of at least 16KHz. An A/D converter
usually performs the sampling process providing the digital samples on a number of bits, e.g. a
digital sample on 10 bits gives values between 0 and 1023 for instance. Sampling at 8KHz
means that the A/D converter must provide 1 sample every 125us.

Most of audio processes used in communication networks are narrow-band audio with a
sampling rate equal or lower than 8KHz. Also, samples are usually coded on 8 or 16 bits,
meaning that the digital value provided by the A/D converter is usually mapped (quantization
stage) on 8 or 16 bits. Therefore, in the so-called raw format, the continuous flow of audio
data represents an 64kbit/s data flow if samples are 8-bit wide: 8*8000=64000 bits. The
various steps towards digitized audio are depicted in the next figure below: from sampling to
quantization to obtain digitized audio.

 14

Figure 5: digitized audio

In the EAR-IT project, the hardware limitations of IoT nodes impose the use of narrow-band
audio with sampling rates smaller or equal to 8KHz. Also, the limitations on the sending rate at
the application level and on the radio bandwidth generally discard audio bit rates greater than
64kbps as pointed out in the EAR-IT deliverable 1.1 on the network qualification.
The raw audio can be compressed in various manners and many compression algorithms have
been proposed and used widely in communication networks and applications: traditional wired
telephony systems, Voice over IP, GSM, … Compression can provide a much smaller bit rate to
adapt the required throughput to the available bandwidth of the transmission system. This is
particularly important for near real-time audio in streaming applications. The term “audio
codec” will then be used as a generic term to designate one audio compression scheme. There
are hundreds of different audio codecs used in the telephony, music and video industry to
name them all. Although not an authoritarian source, a quite exhaustive list of audio codecs
and audio containers are presented on http://en.wikipedia.org/wiki/List_of_codecs and
http://en.wikipedia.org/wiki/Comparison_of_container_formats.

Once audio has been digitized into 8-bit samples, compressed and grouped into a number of
samples for transmission, near real-time audio streaming usually needs small packet jitter in
order to avoid gaps in the audio playout. As bounded jitter is difficult to achieve because
timing guarantees are difficult to ensure in communication protocols at low cost, a best-effort
approach is commonly used with an intermediate playout buffer. Figure 6 below illustrates the
basic principles of a playout buffer with the objective of shaping and regulating the packet
output rate.

 15

Figure 6: playout buffer to handle packet jitter

Raw audio with 8kHz sampling on Libelium WaspMote

Most of IoT nodes are based on low speed microcontroller (Atmel 1281 at 8MHz for the
Libelium WaspMote and TI MSP430 at 16Mhz for the AdvanticSys) making simultaneous raw
audio sampling and transmission nearly impossible when using only the mote microcontroller.

To leverage these performance issues, one common approach is to dedicate one of the 2 tasks
to another microcontroller:

1. Use another microcontroller to perform all the transmission operations (memory
copies and buffering, frame formatting, among others);

2. Use another microcontroller to perform the sampling operations (generates
interruptions, reads analog input, performs A/D conversion and possibly encodes the
raw audio data).

Our first hardware development is based on the first solution. A Libelium WaspMote is
equipped with an amplified microphone and the host microcontroller has the task of
periodically sampling the noise level. The XBee radio module which has an embedded internal
microcontroller is configured to handle all the sending operations when running in so-called
transparent mode (API mode 0 of XBee module). Figure 7 shows the Libelium WaspMote
hardware.

 16

Figure 7: raw audio capture with Libelium WaspMote

Description	

1. Use a pre-amplified MIC and connect it a analog input of the Libelium WaspMote. We
use the following MIC: http://www.cooking-hacks.com/shop/sensors/sound/breakout-
board-for-electret-microphone (see figure3, left) and connect it to the WaspMote (AUD
to Analog2, VCC to Digital 2 to get 3.3V and GND to GND, see figure 3, right).

2. Configure an XBee radio module in transparent mode (API mode 0). Broadcast or
unicast communications can be used but this has to be configured prior to sending any
data because we let the XBee microcontroller do all the sending tasks. Here is a text
taken from the XBee manual from Digi:

« When operating in this mode, the modules act as a serial line replacement - all UART
data received through the DI pin is queued up for RF transmission »

« Data is buffered in the DI buffer until one of the following causes the data to be
packetized and transmitted:

a. No serial characters are received for the amount of time determined by the RO
(Packetization Timeout) parameter. If RO = 0, packetization begins when a
character is received.

b. The maximum number of characters that will fit in an RF packet (100) is
received.

c. The Command Mode Sequence (GT + CC + GT) is received. Any character
buffered in the DI buffer before the sequence is transmitted. »

In our case, data will be sent by the XBee radio module internal microcontroller either
on case (a) or (b).

3. Sample the analog input (Analog2) at 4KHz or 8KHz, i.e. read analog value once every
250us or 125us. A/D converter gives a 10-bit sample so it has to be converted into an
8-bit sample.

4. As the XBee radio module is connected to the host microcontroller, i.e. the Atmel 1281,
with a serial UART line, we can just write in a dedicated register the 8-bit sampled
value.

 17

5. Receive on a PC or a gateway (Libelium Meshlium for instance) using an XBee radio
module in AP0 mode that will send data to the PC serial interface.

6. Continuously read PC or gateway serial port and send data to standard output (usually
stdout on a Unix machine). Use redirection to inject stdout into an audio player such
as play (part of sox package on a Linux machine).

The resulting audio bit stream throughput is 64kbps. At the audio source side, the hardware is
capable to sending at that rate because the XBee embedded microcontroller handles all the
framing tasks.

Limitations	

Audio streaming is challenging on a multi-hop manner on low-resource IEEE 802.15.4 IoT
nodes because of relaying overheads. Figure 8 below depicts an audio streaming scenario
where a continuous flow of audio packets need to be sent wirelessly from the source IoT node
to the nearest gateway connected to the Internet.

Figure 8: multi-hop audio challenges

Even though a WaspMote can use its XBee module in transparent mode to increase its sending
capability, it is not efficient for receiving and relaying incoming packets. In addition, with the
XBee radio module configured in transparent mode, it is very difficult to perform multi-hop
transmission because the destination address of the next hop needs to be configured on the
XBee module prior to packet transmission.

Therefore the solution described above with the Libelium WaspMote can practically be realized
only to have 1-hop transmission from the audio source to a gateway, which dramatically
reduces the acoustic sensing possibilities.

Development of a dedicated audio board

To overcome all the limitations associated to raw audio, we developed a dedicated audio board
to handle the sampling and compression steps. By reducing the audio bit stream throughput,
multi-hop audio can be realized by keeping the relaying throughput in the performance range
of intermediated nodes (see figure 4).

 18

Regarding the audio compression process, in the EAR-IT project it is important to use open-
source codecs to insure the largest dissemination, compatibility and interoperability. Another
important criteria is the availability of libraries and tools that can be easily installed, used and
integrated on any Linux-box on the market. The minimum requirements therefore greatly
depend on the audio codec that will be used.

The audio board, initially developed for the AdvanticSys TelosB can be connected to other
mote platforms provided that a serial port (UART) can be used to feed in the encoded audio
data. ANNEX.C will describe how the audio board has been successfully connected to a
Libelium WaspMote and to an Arduino MEGA 2560. Connecting the audio board to an
embedded Linux board such as Rasperry PI or BeagleBone can be done in a straightforward
manner with a serial-to-USB adapter and using standard Linux tools/scripts/commands to read
the serial port.

Description	

1. Develop a daughter audio board with its own microcontroller that will be connected to
the AdvanticSys expansion connector. The audio board will handle the sampling
operations and encode in real-time the raw audio data into Speex codec
(www.speex.org). 8KHz sampling and 8-bit sample will be used to produce an
optimized 8kbps encoded Speex stream (speex encoding library is provided by
Microchip).

2. The audio board is designed and developed through collaboration with INRIA CAIRN
research team. Figure 9 shows a schematic of the audio board design.

 Figure 9: developed audio board schematic

The audio board has a built-in omnidirectional MEMs microphone (ADMP404 from
Analog Devices) but an external microphone can also be connected. The microphone
signal output is amplified, digitized and filtered with the WM8940 audio codec. The
audio board is built around a 16-bit Microchip dsPIC33EP512 microcontroller clocked at
47.5 MHz that offers enough processing power to encode the audio data in real-time.
From the system perspective, the audio board sends the audio encoded data stream to
the host microcontroller through an UART component. The host mote will periodically
read the encoded data to periodically get fixed size encoded data packets that will be
transmitted wirelessly through the communication stack.

3. Connect the audio board to the AdvanticSys through the 51-pin expansion connector:

 19

from the system perspective, the audio board sends the audio encoded data stream
through an UART connection to the host micro-controller.

 Figure 10: developed audio board and AdvanticSys TelosB with the audio board

Figure 11: developed audio board connectivity schema on an AdvanticSys TelosB

4. 8KHz speex works with 20ms audio frames: every 20ms, 160 8-bit samples of raw
audio data are sent to the speex encoder to produce a 20-byte audio packet. 2 framing
bytes are added and 2 additional bytes are used to store a sequence number and the
frame size. The total audio packet is then 24 bytes as depicted by figure 12.

 20

Figure 12: audio frame format, encoded audio data are in speex format

5. Read encoded date from the host mote to periodically get fixed size encoded data
packets that will be transmitted wirelessly through the communication stack (provided
by TinyOS environment).

6. Receive on a PC or a gateway (Libelium Meshlium for instance) using another
AdvanticSys mote as a base station mote.

7. Continuously read PC or gateway serial port and send data to standard output (usually
stdout on a Unix machine). Use redirection to inject stdout into a Speex decoder that
will also send on stdout the raw decoded audio data.

8. Use redirection to inject stdout into an audio player such as play (part of sox package
on a Linux machine).

Control	 software	 on	 audio	 sensor	 mote	

The audio board is independent from the host microcontroller. The host mote will periodically
read the encoded data (made available on a serial port) to periodically get fixed size encoded
data packets that will be transmitted wirelessly through the communication stack.

We implemented some additional features to demonstrate the on-demand multi-hop audio
streaming scenario. The control software can receive a number of ASCII commands prefixed
by "/@" and ended by "#":

1. "C" command to start or stop the audio capture and transmission process

"/@C1#" starts the capture and "/@C0#" stops the capture

2. "D" command to set the destination address (next hop in case of multi-hop). 16-bit
or 64-bit IEEE 802.15.4 address can be specified.

"/@D0100#" or "/@D0013A2004086D82E#"

3. "A" command to aggregate a number of audio frames into a radio packet. Possible
values are 1, 2, 3, 4 or 6. The 6 value has a special meaning as it will be explained
later on in the Multi-hop section. The purpose of audio frame aggregation is to
increase the time window for relaying nodes to relay the audio packet.

 21

Speex 8000bps

A1
A2
A3
A4
A6

24 bytes every 20ms
48 bytes every 40ms
72 bytes every 60ms
96 bytes every 80ms
96 bytes every 120ms

Multi-‐hop	 audio	 	

Figure 13 illustrates the multi-hop audio streaming scenario. The audio source (0x0090, 16-bit
address) is configured to send audio data to relay node 0x0020 which is also configured to
relay audio data to sink node 0x0100. Aggregation level can be set at any time, even during
an active capture using the A command.

Figure 13: Multi-hop audio streaming scenario with the developped audio board

When using AdvanticSys TelosB relay nodes, the relaying performance of an optimized version
is sufficient to handle a 24-byte packet every 20ms as shown in figure 14 below. Previous
version of relay nodes required A2 aggregation as relaying a 24-byte packet needed in average
about 19ms. However, this relaying time can be greater than 20ms in many cases, causing
packet drops at the relay nodes.

 22

Figure 14: TelosB relaying performances, no need for aggregation

On the Santander's SmartSantander test-bed, the relay nodes are Lebelium WaspMote which
has higher relaying overheads. In this case, even A4 aggregation mode can not provide a
sufficient time window for the relay node as depicted by figure 15 below.

Figure 15: WaspMote relaying performances, need specific aggregation mode

 23

In order to provide multi-hop audio streaming on slow IoT nodes, it is necessary to discard a
number of audio frames at the source. This is the purpose of the special A6 aggregation mode:
6 audio frames are captures to provide a 120ms time window but only 4 audio frames are
transmitted. This behavior is illustrated in figure 16.

Figure 16: A6 aggregation mode for slow relay nodes

 24

4. Benchmark methodology and tools
Methodology

In previous deliverable 1.2 we defined some selected performance indicators and presented
the minimum requirements for use of acoustic sensors on the various EAR-IT test-beds based
on WSN and IoT nodes with IEEE 802.15.4 radio technology. These performance indicators
were categorized into:

1. Network performance indicators (NETWORK)
2. Audio quality indicators (AUDIO),
3. Energy indicators (ENERGY).

The audio quality indicators have already been presented and discussed in previous deliverable
1.2. In this document we will measure experimentally the network performance indicators and
the energy indicators on the two EAR-IT test-beds, i.e. Santander’s SmartSantander and
Geneva’s HobNet. Figure 17 illustrates from the source to the destination the various multi-hop
constraints and limitations that will impact the audio transmission.

Figure 17: multi-hop constraints and limitations

For network indicators, we will measure:

1. Packet jitter at the source
2. Packet loss rates at 1-hop
3. Packet loss rates at 2-hop
4. Packet relaying time at relay nodes
5. Packet relaying jitter at relay nodes

For energy indicators, we will measure:

1. Energy consumption at the audio source
2. Energy consumption at the relay nodes

 25

Packet analysis tools

The main tool that we will use is the wireshark packet analysis tool. We developed a
promiscuous packet sniffer with an AdvanticSys TelosB mote that can be connected to
wireshark in order to display captured frames and get timestamped data on packets that are
captured. wireshark will allow us to use frame reception time to visualize packets for statistic
collection such as transmission latencies and frame jitter. Using the IEEE 802.15.4 frame
sequence number we can also obtain packet loss patterns and derive the packet loss rate.
Figure 18 below shows an illustration of the packet sniffer and the wireshark tool.

Figure 18: packet analysis tool

 26

5. Network performance indicators

In all the tests described here, the transmission power is set to the maximum radio module
power (on the CC2420 of the AdvanticSys TelosB, TinyOS sets the transmission power by
default to 0dBm) or to the maximum allowed transmission power (in the case of XBee Pro
module for instance on the Libelium WaspMote the European regulation sets the maximum
transmission power to 10dBm). In addition, we chose to disable MAC level retransmission in
order to highlight packet losses.

4.1 Tests in Santander

All the tests described in this section have been performed in the Santander city during the
test campaigns on Feb, 11th and Feb 12th, 2014. 3 locations have been selected. They are
identified in figure 19. Gateways (Meshlium) are identified with a red rectangle.

Figure 19 : test locations in Santander (Santander map from Google Maps)

Location 1 is an open-space location on the marina. It has been selected for line-of-sight
transmissions. Location 2 is a very dense, central location. It has been selected for tests of non
line-of-sight transmission because there are many buildings. Location 3 is a small urban place
surrounded by apartment buildings. It has been selected to tests the impact of interference
traffic in a typical urban location. In total, we performed 11 tests:

• Location 1: test #1 … test #5
• Location 2: test #6 … test #10
• Location 3: test #11

The tests are also divided into 1-hop and 2-hop transmission:

• 1-hop: test #1, #2, #3, #6, #7, #8, #11
• 2-hop: test #4, #5, #9, #10

 27

1-hop, source to destination

Packet	 inter-‐arrival	 time	 and	 packet	 jitter,	 line-‐of-‐sight	 transmission	

Test #1 is at Santander’s location 1 and we measured the packet inter-arrival time from an
8KHz raw audio WaspMote (see figure 7) is placed at location 392 to its associated gateway
(Meshlium). The test is depicted in figure 20. This testswill also allow us to measure the packet
loss rate in order to predict the audio quality based on the study presented in the previous
section. There are no 802.15.4 interference traffic on the radio channel that we selected
(channel 18).

The audio WaspMote is programmed with a 30s cyclic ON-OFF behavior. Each period is 15s
long. During ON period, the mote captures and sends raw audio data: a 100-byte packet every
12.5ms (100*125us=12.5ms). Thus, 15s of audio generates 1200 packets, one every 12.5ms.

Figure 20 : test #1 at location 1

Figure 21 : packet inter-arrival time, test #1

 28

Figure 21 shows the packet inter-arrival time of 2 ON periods of the audio WaspMote. The line
at the middle of the graph is the OFF period. The mean inter-arrival time is 0.0139s with a
standard deviation of 0.0001176. We can see that packet jitter at 1-hop is very low. In
addition, we observed only 1 lost packet out of a total of 2400.

Test #2 consists in a longer transmission distance where the receiver is placed at location 29,
see figure 22.

Figure 22 : test #2 at location 1

Figure 23 shows the packet inter-arrival time of 2 ON periods of the audio WaspMote. Here, we
observed only 4 lost packets out of a total of 2400.

Figure 23 : packet inter-arrival time, test #2

 29

Test #3 now uses the developed audio board plugged into an AdvanticSys TelosB Mote. Figure
24 shows the TelosB with audio board placed on location 392 and sending audio data to the
Meshlium at 1-hop.

Figure 24 : test #3 at location 1

We use a specific aggregation mode, so-called A6, in this test because relay nodes based on
Libelium WaspMote have limited relaying performances as shown previously in figure 4(top).
Even if test #3 is a 1-hop test, we wanted to have the same configuration than the multi-hop
test that will be described later in this document.

A6 aggregation mode captures 6 audio frames but only send 4 of them in a single 96-byte
radio packet. This behavior was depicted in figure 16. Capturing 6 audio frames provides a
time window of 6*20ms=120ms. This is required for Libelium WaspMote relay nodes as it will
be explained in more details in the multi-hop test section. The important information here is
that the audio source sends a packet every 120ms and that the total payload of the packet is
96 bytes.

 30

The AdvanticSys TelosB with the audio board is programmed to start/stop capture and
transmission on an on-demand basis. Figure 25 shows the packet inter-arrival time during a
30s (approximately) audio capture . Here, we observed 27 lost packets out of a total of 234
(giving a packet loss rate of about 11.53%). Note that the transmission power of the CC2420
radio module of the TelosB is lower than the one of XBee module (0dBm against 10dBm).

Figure 25 : packet inter-arrival time, A6 level, test #3

If we take the mean from packet 1 to packet 24 (before the first packet loss) then we have a
mean inter-arrival time of about 0.1247s with a standard deviation of 0.000879. The packet
jitter is then, once again, very small.

In test #6, we used Santander’s location 2 and we placed the audio WaspMote 8KHz at
location 352. The receiver is placed at the Meshlium depicted in figure 26. Although there is no
occulting buildings, it is not an open space as there are many people and parked cars in the
street.

Figure 26 : test #6 at location 2

 31

Figure 27 shows the packet inter-arrival time of 2 ON periods of the audio WaspMote. The line
at the middle of the graph is the OFF period. We observed 423 lost packets in the first ON
period (35.35%), with several packet loss bursts, and 204 lost packets in the second ON
period (17%). Each period have a total of 1200 packets.

Figure 27 : packet inter-arrival time, test #6

Figure 28 shows for the first ON period, where the number of packet losses is higher, the inter-
arrival time after one or more packet losses, in descending order. Without packet losses, the
inter-arrival time is around 0.0139s as in test #1.

Figure 28 : packet inter-arrival time after losses, test #6. First ON period, descending order.

 32

Packet	 loss	 rate	 in	 dense,	 urban,	 non	 line-‐of-‐sight	 transmission	

Test #7 consists in a non line–of-sight transmission with the audio WaspMote. Figure 29
shows the test location where the source audio WaspMote is placed at location 353, around the
corner when compared to the previous test.

Figure 29 : test #7 at location 2

Figure 30 shows the packet inter-arrival time of the ON periods of the audio WaspMote. The
line at the middle of the graph is the OFF period. We observed a total of 1494 lost packets out
of a total of 2400 packets. The packet loss rate here is therefore 62.25%. We can clearly see
here the impact of the non line-of-sight transmission on the packet loss rate in a dense urban
area.

Figure 30 : packet inter-arrival time, test #7

 33

Test #8 now consists in a non line–of-sight transmission with the developed audio board and
the TelosB. Similar to the previous case, the source audio mote is placed at location 353.
Again, the aggregation level is A6 (giving a 96-byte radio packet).

Figure 31 shows the packet inter-arrival time during a 25s (approximately) audio capture. As
can be seen, the packet loss rate is very high (inter-arrival time is very high). We observed
185 lost packets out of a total of 201 (only 16 packets are received), thus giving a packet loss
rate of about 92.03%. This is mainly explained by the much weaker transmission power of the
CC2420 radio module of the TelosB compared to the one of the XBee module (0dBm against
10dBm).

Figure 31 : packet inter-arrival time, A6 level, test #8

Figure 32 shows the wall-clock time on the x-axis at which packets have been received.
Normally, the receiver should receive a 96-byte packet every 120ms as shown in figure 25
describing test #3. Here we can clearly see the high number of packet losses.

Figure 32 : packet wall-clock arrival time, A6 level, test #8

 34

Test #11 uses location 3 on radio channel 12 with both background traffic from other sensors
and many WiFi networks as depicted in figure 33. We again use A6 aggregation level here to
be in the same condition than relaying scenario.

Figure 33 : test #11 at location 3

Figure 34 shows the packet inter-arrival time during a 40s (approximately) audio capture.
Here, we observed 2 lost packets out of a total of 324 (giving a packet loss rate of about
0.61%).

Figure 34 : packet inter-arrival time, A6 level, test #11

If we take the mean then we have a mean inter-arrival time of about 0.1258s with a standard
deviation of 0.01. The packet jitter is then, once again, very small. Although we can not be
categoric, this test shows that SmartSantander background service traffic and WiFi
interferences do not have much impact on the audio traffic.

 35

2-hop transmission: source, relay and destination

Test #4 and test #5 were performed at Santander’s location 1. The Telosb audio board is
placed at location 11 and transmits to the Meshlium through a WaspMote relay node placed at
location 392. Figure 35 below illustrates the test scenario. Test #4 uses A1 aggregation level
while test #5 uses A6.

Figure 35 : test #4 and #5 at location 1

For test #4 the packet capture trace of the TelosB audio board shows a total number of
packets of 3216 for about 64s of audio capture and transmission. 176 packets were not
received, so 3040 were correctly captured by the packet promiscuous sniffer. The packet loss
rate is about 5.78%. With no packet losses, the mean inter-arrival time is about 0.02078s with
a standard deviation of 0.001 showing that the packet jitter at the source is once again very
small.

Figure 36 : packet inter-arrival time from the audio source, A1 level, test #4

 36

Now, if we look at what is relayed by the WaspMote relay node in test #4, we observed 817
successfully transmitted packets out of the 3040 packets successfully sent by the audio source
and captured by the promiscuous sniffer. This means that only 26.87% of packets has been
successfully transmitted (73.13% of packet dropped or lost) by the relay node and received by
the Meshlium. With the IEEE 802.15.4 sequence number, we were able to determine that the
relay node successfully received at least 883 packets but 66 packets were lost during
transmission to the Meshlium. The difference between 3040 and 883 (2157 packets) are
packets that were most probably dropped at the relay node due to buffer overflow because of
the A1 aggregation level at the audio source: the mean packet inter-arrival time from the relay
node (see figure 37) in case of no packet drop is about 0.0609s (see relaying latencies as
shown previously in figure 6(top) for a 25-byte packet) while the audio source sends 1 packet
every 0.020s.

The 2-hop packet loss rate can be determined by taking 3216 as the initial number of audio
packets and 817 as the number of received packet at the Meshlium: 74.6%.

Figure 37 : packet inter-arrival time from the relay node, A1 level, test #4

For test #5, the audio source aggregation level is A6, therefore more suitable for WaspMote
relaying overhead of about 105ms (96-byte packet). The packet inter-arrival time from the
audio source is very similar to what was presented in test #3 with figure 25, therefore we are
not reproducing this graph. The important information is that 312 packets were sent for about
38s of audio capture (theoretically we have 312*6*0.02 because of A6 aggregation mode). We
observed 43 lost packets so 269 packets are actually received by the relay node (packet loss
rate of about 13.78%). Figure 38 shows the packet inter-arrival time from the relay node for
test #5.

The relay node received 269 packets from the audio source. We observed 31 lost packets while
the relay node is relaying to the Meshlium. Therefore we have a packet loss rate of about
11.52%.

Once again, to obtain the 2-hop packet loss rate, we can take 312 as the initial number of
audio packets and 238 as the number of received packet at the Meshlium: 23.7%. Compared
to the previous case of A1 aggregation level, we can see that proper usage of aggregation
level to meet the relaying capability significantly improved the audio transmission.

 37

We also observed some truncated packets because of the lower reliability of the XBee serial
communication with the WaspMote microcontroller. We expect to improve this issue in the
future to decrease further the 2-hop packet loss rate.

Under no packet losses, the mean inter-arrival time is 0.109s with a standard deviation of
0.0216.

Figure 38 : packet inter-arrival time from the relay node, A6 level, test #5

In test #9, we have the same configuration than test #8 but added a relay node at location
351 as depicted in figure 39 below. Audio source aggregation level is A6.

Figure 39 : test #9 at location 2

 38

Figure 40 show the inter-arrival time of all audio packets both from the audio source and from
the relay node. However, similar to test #8, packets from the audio board suffer from many
losses and only 9 packets were received. They are indicated with red bars in figure 40.

Figure 40 : packet inter-arrival time from both the audio source and the relay node, A6 level, test #9

There have been 352 packets received by the relay node and 137 have been successfully
relayed and received at the Meshlium. 188 packets were not received thus the packet loss rate
is about 53.40%. This test shows that transmission in a dense environment with many
buildings, moving people and cars is very challenging.

In test #10, we placed the promiscuous sniffer between the relay node and the Meshlium, at
the ‘x’ location indicated in figure 41 in order to capture packet from both the audio source and
the relay node.

Figure 41 : test #10 at location 2, with the packet analyser in the middle

 39

Figure 42 shows the inter-arrival time from the audio source. We can see that there are very
few packet losses (4 packets were lost out of a total of 405 packets representing about 50s of
audio capture at aggregation level A6).

Figure 42 : packet inter-arrival time from the audio source, A6 level, test #10

Figure 43 shows the inter-arrival time from the relay node. The relay node received 400
packets but only 398 were successfully captured by the promiscuous sniffer (2 packets were
lost and they are shown in red bars, the 3 other packets with higher inter-arrival time are due
to relaying delays). Again, we can see that there are very few packet losses.

Figure 43 : packet inter-arrival time from the relay node, A6 level, test #10

The results of test #10 actually confirm that the high proportion of packet losses of test #9,
where the promiscuous sniffer was placed at the Meshlium, is mainly due to the relay node-
Meshlium link (from location 351 to Meshlium). Relay node placement or selection then have a
very strong impact on relaying reliability as most nodes are placed against building walls.

Test #10 also provides measures of the packet relaying time at the WaspMote relay node. The
next table reproduces the first lines of the wireshark capture where we can see in the “delta
time” column the difference between the time at which the packet from the audio source is

 40

captured and the time at packet from the relay node has been captured. This time can be
considered as the relay time. The audio source has address 0x0090 and the relay node has
address 0x1ddf.

We can see that this relay time is about 105ms is these few lines. Figure 44 plots the relay
time of all relayed packets (398 packets) and the mean value is 0.10854 with a standard
deviation of 0.00255. This is quite consistent with what was previously measured for
WaspMote motes and shown in figure 4(top).

Figure 44 : relay time of the relay node, A6 level so 96-byte packet, test #10

Conclusion of benchmark tests in Santander's SmartSantander test-bed

We summarize the main results of the benchmark tests performed in Santander in the table
below:

Santander, SmartSantander test-bed
test scenario Pkt jitter at source pkt jitter at relay pkt loss rate
1-hop LOS open space very small (1) NA 0% - 12% (2)
1-hop LOS urban very small (1) NA 35% (2)
1-hop NLOS urban very small (1) NA 60% - 92% (2)
2-hop open space very small (1) very small (4)(5) 5% - 23% (3)
2-hop urban very small (1) very small (5)(5) 53% (3)

1. The packet jitter at the source, for both the WaspMote audio mote and the AdvanticSys

TelosB audio board, is very small and can be easily compensated at the destination with
a very simple playout buffer.

index time src dest type SN delta1time
4 885,225984 0x0090 0x1ddf Data, 25 0,664384 FF55C9141DD8C9500039CE702040AFAC7A62B310ED2DDA1B...
5 885,331936 0x1ddf 0x0100 Data, 32 0,105952 FF55C9141DD8C9500039CE702040AFAC7A62B310ED2DDA1B...
6 885,362464 0x0090 0x1ddf Data, 26 0,030528 FF55CF143EA7AB5B5F12B580C00957F05C1020E81DD5046C...
7 885,467968 0x1ddf 0x0100 Data, 33 0,105504 FF55CF143EA7AB5B5F12B580C00957F05C1020E81DD5046C...
8 885,48864 0x0090 0x1ddf Data, 27 0,020672 FF55D5141DC1C4767E82A1C8E116968030A08B7F9FD48DC1...
9 885,595072 0x1ddf 0x0100 Data, 34 0,106432 FF55D5141DC1C4767E82A1C8E116968030A08B7F9FD48DC1...
10 885,615552 0x0090 0x1ddf Data, 28 0,02048 FF55DB141DD8C47C40ADBE59D040A1A3D8A09BD646303DD7...
11 885,721312 0x1ddf 0x0100 Data, 35 0,10576 FF55DB141DD8C47C40ADBE59D040A1A3D8A09BD646303DD7...
12 885,740352 0x0090 0x1ddf Data, 29 0,01904 FF55E1141B955E93BE9EA772A113FB031260EBE97F58BFFB...

data

 41

2. The packet loss rate at 1-hop in LOS condition, and when the distance of next hop is
similar to what can be found in Santander, is very small. In non-LOS condition, for
instance with buildings in-between, the packet loss rate can be very high: we for
instance found packet loss rate as high as 92% with the developed audio board in a
dense urban environment in non-LOS condition.

3. At 2-hop or more, using relay nodes, non-LOS condition can be overcome, and
reception quality can greatly be improved. This is particularly important in in-door
environment as shown in the HEPIA building. However, the choice of the relay nodes
can have a big impact of the performances. In urban environment, the packet loss rate
can still be high and more hops may be needed at the cost of higher latencies.

4. The packet relaying times measured with a promiscuous sniffer are consistent of what
have been predicted in the previous deliverable. According to the maximum relaying
capabilities, an appropriate aggregation level at the source can be used to reduce the
packet losses at intermediate relay nodes.

5. The packet relay jitter was found again quite small and can be easily compensated at
the destination with a very simple playout buffer.

Therefore, as a result of the benchmark tests, the SmartSantander test-bed in
Santander is capable of supporting streamed audio both in open space and urban
environment when LOS transmission is possible. in NLOS conditions, 1-hop
transmission is not capable of providing a sufficiently small packet loss rate for an
acceptable audio quality (packet loss rate much higher than 35%). Using 2-hop or
more transmission can leverage the NLOS conditions and decrease the packet loss
rate in urban environment. However, the choice of the relay nodes is of critical
importance increase transmission quality and there are certainly many interesting
issues to dynamically chose the right relay nodes. In all cases, the packet jitter at
the source and at the relay nodes is very small.

 42

4.2 Tests in Geneva (HobNet, HEPIA site)

The second set of tests is performed at HEPIA site in Geneva. We chose this site because it is
quite representative of various environments that can be found in buildings for Smart Buildings
purposes. Figure 45 shows various parts of HEPIA building with long corridors (3),
student/public restaurants and halls (1) and even an in-door chimney (2) with quite interesting
transmission particularities.

Figure 45 : various images of the HEPIA building

In total, we performed 7 tests on 3 locations of the HEPIA building:

• Location 1: test #1, #2 and #3
• Location 2: test #4
• Location 3: test #5, #6 and #7

The tests are also divided into 1-hop and 2-hop transmission:

• 1-hop: test #1, #4, #5, #6
• 2-hop: test #2, #3, #7

Only AdvanticSys TelosB motes will be used, both for audio source (the developed audio
board) and the relay nodes because these are the hardware platforms deployed in HobNet for
Smart Buildings applications.

 43

1-hop, source to destination

In test#1, the audio source is placed in location 1 of HEPIA, in the student cafeteria. The
audio source mote is strapped on one of the pillar of the cafeteria, somewhere in equal
distance from the 2 entrances of the cafeteria. The promiscuous sniffer is moved from one
entrance to the other by the outside hall. The configuration of test#1 is illustrated in figure 46
below, with A1 aggregation level, i.e. one 24-byte packet every 20ms.

Figure 46 : test#1 in the main hall of the HEPIA building

Figure 47 shows the packet inter-arrival time during a 86s (approximately) audio capture. As
the receiver is moved around the main hall, through the glass wall, we can observe variations
on the number of packet losses. In total, we observed 687 lost packets out of a total of 4280
(giving a packet loss rate of about 16%).

The maximum number of consecutive lost packets is 8. The mean inter-arrival time is 0.24

 44

Figure 47 : packet inter-arrival time from the audio board, A1 level, test#1

In test#4, we tested the transmission quality on the in-door chimney, see figure 48 below.
The audio board is placed on the metallic structure shown with the red rectangle.

Figure 48 : test#4 in in-door chimney of the HEPIA building

 45

Figure 49 shows the inter-arrival time at the receiver when it moves from the base floor up to
the last floor of the building, following the stairs around the chimney.

Figure 49 : packet inter-arrival time from the audio board, A2 level, test#4

We observed 2556 packet losses out of a total of 6572 packets. The packet loss rate is
therefore quite high, 38.89%.

Figure 50 shows the number of lost packets when the receiver moves. At several moments, we
can have 165 lost packets in a row.

Figure 50 : number of lost packets in a row, A2 level, test#4

In test#5, we tested the transmission quality in a long corridor, illustrated by figure 51. The
audio board is placed on a concrete pillar at one end of the corridor. We moved the receiver to
the other end (to the corridor entrance, towards the stairway), then went down one floor.

 46

Figure 51 : test#5 in a long corridor of the HEPIA building

Figure 52 shows the number of lost packets as the receiver is moved towards the corridor
entrance, to the stairways and to level 2 of the building. We measured 2861 lost packets out of
a total of 6713 packets, giving a packet loss rate of about 42.61%.

Figure 52 : number of lost packets in a row, A1 level, test#5

We can however observe that the lost packets are concentrated in the right-most part of figure
52, when the receiver was actually in the stairway, towards 2nd floor. Before the receiver went
to 2nd floor, the packet loss rate was below 8%.

 47

In test#6, we placed the receiver one floor below the audio board as illustrated by figure 54,
first near the elevator, then a bit farther. Figure 55 shows the number of lost packets. The
packet loss rate is very high, about 81%, especially when the receiver is moved away from the
stairs (right-most part of figure 61).

Figure 54 : test#6 in a long corridor of the HEPIA building, receiver in 2nd floor

Figure 55 : number of lost packets in a row, A1 level, test#6

 48

2-hop transmission: source, relay and destination

In test#2 and test#3 we placed a relay node in the restaurant as shown in figure 56. The
audio board is set like in test#1, the relay node is placed between the audio board and the exit
in the back of the central picture in figure 56. Test#2 uses A1 aggregation and test#3 uses A2
aggregation.

Figure 56 : test#2 & test#3 in the main hall of the HEPIA building, with relay node

Figure 57 shows the number of lost packets. We have observed 86 lost packets out of a total
of 1681 packets, resulting in a packet loss rate of about 5.11%.

If we look back at test#1 that did not use the relay node, the right-most part of figure 47 from
packet index 3822 to 4280 (458 packets) corresponds to when the receiver was located at the
same place (near the exit door) than in test#2. We then observed 62 lost packets, resulting in
a packet loss rate of about 13.53%. We can clearly see the benefit of using the relay node
inside the restaurant space to improve the reception quality in the main hall.

 49

Figure 57 : number of lost packets in a row, A1 level, test#2

We show in figure 58 the output of test#3 with the A2 aggregation level. We observed the
same level of packet losses: 30 lost packets out of a total of 520 resulting in a 5.76% packet
loss rate.

Figure 58 : number of lost packets in a row, A2 level, test#3

In test#7, we added a relay node to test#6 where we placed the receiver one floor below
(level 2) the audio board, a bit away from the stairways. The relay node was fixed at the
corridor entrance, near the stairs to level 2 as shown in figure 59.

 50

Figure 59 : test#7 in a long corridor of the HEPIA building, receiver in 2nd floor, relay at corridor

entrance, near the stairways

Compared to test#6 where the packet loss rate was about 81%, we observed here 342 lost
packets out of a total of 1170 packets, resulting in a packet loss rate of about 30%. Adding the
relay node at the corridor entrance, near the stairways greatly improves the reception quality
at one floor below, keeping the packet loss rate below 35% therefore allowing for a reasonable
audio quality. Figure 60 shows the number of lost packets for this test.

Figure 60 : number of lost packets in a row, A2 level, test#7

 51

Test#7 also provides measures of the packet relaying time at the AdvanticSys TelosB relay
node. The next table reproduces the first lines of the wireshark capture where we can see in
the “delta time” column the difference between the time at which the packet from the audio
source is captured and the time the packet from the relay node has been captured. This time
can be considered as the relay time. The audio source has address 0x0090 and the relay node
has address 0x0200.

We can see that this relay time is about 10ms is these few lines. Figure 61 plots the relay time
of all relayed packets (6380 packets) and the mean value is 0.10959 with a standard deviation
of 0.00323. Some relaying time appeared higher (at 40ms) because the initial packet from the
audio board was not captured. In this case, the value represent the time difference from the
last relayed packets. As the aggregation level was A2 (the payload is then 48 bytes), the audio
packets are sent every 40ms by the audio source. Therefore, even if the original packet from
the audio board was not captured, a time difference of about 40ms means that the relay jitter
is very small.

Figure 61: relay time of an AdvanticSys TelosB relay node, test#7

Now, compared to the relaying time shown previously in figure 4(bottom), the measures are
quite consistent with what have been measured with the optimized version of our relay nodes.

index time src dest type SN delta1time data
1 129.959456 0x0090 0x0200 Data, 89 0.033504 FF55DF141B992B0A54E519CFA180BCE58459739C04E739CE...
2 129.970112 0x0200 0x0100 Data, 209 0.010656 FF55DF141B992B0A54E519CFA180BCE58459739C04E739CE...
3 130.002912 0x0090 0x0200 Data, 90 0.0328 FF55E11419D9A4A4038008402DC007240BB6CB925405AA6A...
4 130.014208 0x0200 0x0100 Data, 210 0.011296 FF55E11419D9A4A4038008402DC007240BB6CB925405AA6A...
5 130.044128 0x0090 0x0200 Data, 91 0.02992 FF55E3141B9442722EBB2E59776CE73834EA439CFFDFA9CA...
6 130.053632 0x0200 0x0100 Data, 211 0.009504 FF55E3141B9442722EBB2E59776CE73834EA439CFFDFA9CA...
7 130.084512 0x0090 0x0200 Data, 92 0.03088 FF55E5141B944277FEA72E76775795E5FFABCE725FD4AF39...
8 130.094016 0x0200 0x0100 Data, 212 0.009504 FF55E5141B944277FEA72E76775795E5FFABCE725FD4AF39...
9 130.126752 0x0090 0x0200 Data, 93 0.032736 FF55E7141B942E52FEA5795BFF579CBB3FA902C05FD4E739...
10 130.136256 0x0200 0x0100 Data, 213 0.009504 FF55E7141B942E52FEA5795BFF579CBB3FA902C05FD4E739...
11 130.16896 0x0090 0x0200 Data, 94 0.032704 FF55E9141B945C7CCD012A53A040B72B23A95A9C69FFA9D9...
12 130.180256 0x0200 0x0100 Data, 214 0.011296 FF55E9141B945C7CCD012A53A040B72B23A95A9C69FFA9D9...
13 130.209248 0x0090 0x0200 Data, 95 0.028992 FF55EB141B944282F7B9D973FD5CECBB3BB6539C5DDB39CE...
14 130.220224 0x0200 0x0100 Data, 215 0.010976 FF55EB141B944282F7B9D973FD5CECBB3BB6539C5DDB39CE...
15 130.251808 0x0090 0x0200 Data, 96 0.031584 FF55ED141B941087EFDB2E7677F2E738BDEECBB39EF739D9...
16 130.263104 0x0200 0x0100 Data, 216 0.011296 FF55ED141B941087EFDB2E7677F2E738BDEECBB39EF739D9...

 52

Conclusion of benchmark tests in Geneva's HEPIA building

We summarize the main results of the benchmark tests performed in Geneva in the table
below:

Geneva, HEPIA building
test scenario Pkt jitter at source pkt jitter at relay pkt loss rate
1-hop no occlusion very small (1) NA 0% - 8% (3)
1-hop occlusion very small (1) NA 16% - 81% (4)
2-hop very small (1) very small (5)(6) 5% - 30% (2)

1. The packet jitter at the source (AdvanticSys TelosB audio board), is very small and can

be easily compensated at the destination with a very simple playout buffer.

2. At 2-hop or more, using relay nodes, non-LOS condition can be overcome, and
reception quality can greatly be improved. This is particularly important in in-door
environment as shown in the HEPIA building. However, the choice of the relay nodes
can have a big impact of the performances.

3. In indoor environment, LOS transmissions (actually the distance between the source
and the sink is quite small) show very low packet loss rate, similar to what can be
found in open space environment.

4. In indoor environment, NLOS transmissions can rapidly become very difficult,
decreasing dramatically the reception quality.

5. The packet relaying times measured with a promiscuous sniffer are consistent of what
have been predicted in the previous deliverable. According to the maximum relaying
capabilities, an appropriate aggregation level at the source can be used to reduce the
packet losses at intermediate relay nodes.

6. The packet relay jitter was found again quite small and can be easily compensated at
the destination with a very simple playout buffer.

Therefore, as a result of the benchmark tests, the Geneva's HEPIA test-bed is
capable of supporting streamed audio in LOS transmission. in NLOS conditions, 1-hop
transmission is not capable of providing a sufficiently small packet loss rate for an
acceptable audio quality (packet loss rate much higher than 35%). Using 2-hop or
more transmission can leverage the NLOS conditions and decrease the packet loss
rate. However, the choice of the relay nodes is of critical importance to increase
transmission quality, especially when transmitting from one floor to another. In all
cases, the packet jitter at the source and at the relay nodes is very small.

 53

6. Energy indicators

We also set-up some energy consumption measures in order to determine the cost of
capturing and transmitting audio data on an intensive basis. We use facilities from the SIAME
laboratory of University of Pau and 2 students performed the experimental measures on both
the WaspMote audio mote and the AdvanticSys TelosB with the developped audio board.

Figure 62(left) shows the stabilized power supply used to power the sensor boards, and figure
68(right) shows the voltage measure station.

Figure 62: stabilized power supply (left), measure station (right)

Figure 63 shows for the WaspMote audio at 4kHz the cumulated energy consumption when the
radio module is not plugged into the board. We can therefore measure the consumed energy
when the board is idle and when the board is sampling at 4kHz. The behavior that is hard-
coded into the mote is “idle” for 5s followed by “capture” for 15s.

Figure 63: cumulated energy consumption, WaspMote audio, 4kHz, idle & capture

We then plugged the radio module (the XBee) and repeated the measures. Figure 64 shows
the new cumulated energy consumption.

 54

Figure 64: cumulated energy consumption, WaspMote audio, 4kHz, idle & capture & transmit

We can see that the energy consumed in “idle” mode when the radio is ON is higher than in
the previous case, i.e. 0.084 J/s instead of 0.036 J/s. When capturing and transmitting, the
WaspMote consumes about 0.531 J/s. With 2 AA batteries that usually are assumed to have an
amount of energy of 18720 J, a simple prediction would allow for a continuous capture and
transmission for about 9h and 47min.

We then use the 8kHz version. Figure 65 shows the cumulated energy consumption when the
radio module is not plugged into the board.

Figure 65: cumulated energy consumption, WaspMote audio, 8kHz, idle & capture

We can see that the consumed energy is very close to the 4kHz version meaning that sampling
at 8kHz does not impact much on the board consumption. However, when the radio module is
now plugged in, figure 66 shows the new cumulated energy consumption.

 55

Figure 66: cumulated energy consumption, WaspMote audio, 8kHz, idle & capture & transmit

We can see that the “idle” consumption is the same than for the 4kHz version depicted in
figure 64 and that the “capture & transmit” consumption raises to 0.610 J/s because of the
larger amount of data transmitted. Again, a simple prediction with 2 AA batteries would give a
continuous capture and transmission for about 8h and 30min.

In figure 67, we show the cumulated energy consumption for the AdvanticSys TelosB with the
audio board. Since the radio module cannot be disconnected, we only have the case of “idle”
and “capture & transmit”.

Figure 67: cumulated energy consumption AdvanticSys TelosB+audio board, idle & capture & transmit

Here, we can see that the “idle” consumption with the radio ON is lower than the consumption
for the WaspMote in “idle” mode with the XBee on, i.e. 0.068 J/s instead of 0.085 J/s. The
energy consumed while capturing and transmitting is also lower: 0.330 J/s with the audio
board plugged in performing the real-time capture and speex compression. Again, a simple
prediction would give a continuous capture and transmission for about 15h and 45min.

 56

In figure 68, we plot the cumulated energy consumption for the WaspMote mote (those of
Santander’s SmartSantander test-bed) when relaying 100 packets of size 30 bytes. A traffic
generator was used to generate 1 packet every 400ms.

Figure 68: cumulated energy consumption WaspMote, relay

We found that the WaspMote needs about 0.1 J to relay a 30-byte packet. Using conservative
assumption, the energy needed to relay 1 byte could be estimated at 0.0033 J. Table IV
therefore can give an estimation of the relaying energy cost at various aggregation levels.

Figure IV: energy consumption WaspMote, relay

If we consider the 100-byte case and the A6 dedicated aggregation level (which capture 6
audio frames to send only 4 audio frames, giving a time window of 120ms), then the
WaspMote relay node can relay for about 1h and 53min.

In figure 69, we plot the cumulated energy consumption for the AdvanticSys TelosB mote
(those of Geneva’s Hobnet test-bed) when relaying 100 packets of size 30 bytes. A traffic
generator was used to generate 1 packet every 400ms.

 57

Figure 69: cumulated energy consumption AdvanticSys Telosb, relay

We found that the AdvanticSys TelosB needs about 0.03 J to relay a 30-byte packet. Using
conservative assumption, the energy needed to relay 1 byte could be estimated at 0.001 J.
Table V therefore can give an estimation of the relaying energy cost at various aggregation
level.

Table V: energy consumption AdvanticSys, relay

If we consider the 100-byte case and the A4 aggregation level (which gives a time window of
80ms), then the AdvanticSys TelosB relay node can relay for about 4h and 10min.

 58

7. Benchmarking other test-beds
Why doing a benchmark

The EAR-IT project working in various test beds in city environment (Santander) and in-door
building (in Geneva), has demonstrated that promising applications can be developed using
audio (traffic monitoring, security, energy efficiency, etc). Also using advanced audio codec
(i.e. speex, codec2) we have demonstrated that even constrained network using 802.15.4
radio can be used for audio applications as audio streaming (the most constrained case) can
be performed with only 2kbps bandwidth which is often available on these networks.

The project has now also defined the minimum condition for any test bed to be capable of
hosting audio and audio related applications (see EAR-IT deliverable 1.2). The purpose of the
benchmark procedure for other test-beds is to determine whether a given test bed is capable
of providing the minimum requirements for supporting audio traffic.

Objectives of the benchmark

1. Determine whether a given test bed is capable of providing the minimum
requirements for supporting audio traffic

2. Indicators and target values are given together with supporting documentation

What you need to do

1. Download the procedures and be ready to perform the tests on your test bed
2. Either use the developped audio mote or a simple traffic generator with a promiscuous

packet sniffer that can also be downloaded
3. Determine if your test bed is “audio ready” by filled-in data in an excel sheet given

where script can generate indicators which can be compared to minimum necessary
4. Audio source and audio hardware on TelosB can be borrowed to check on a real audio

streaming conditions

Review of useful documents and EAR-IT deliverables

The proposed benchmark procedure is described in a set of slides "WP1 Acoustic Test-bed
Qualification/Benchmarking procedure for other test-beds", see ANNEX.C of this
document. Read this document for detailed instructions on the benchmark procedure and the
usage of the various tools that have been developped. The general benchmark methodology
was also described in an earlier document "WP1 Acoustic Test-bed Qualification/Qualify
and Benchmark Test-beds for Acoustics in Deployment of Targeted Applications". Our
test-bed and various control software are also described in "WP1 Acoustic Test-bed
Qualification/Audio Test-bed Description", see ANNEX.A of this document. Please refer to
these documents as well as to deliverable "WP1 Acoustic Test-bed Qualification/D1.2 :
Miminium requirements for use of acoustic sensors" that describe the developped audio
board, the audio constraints and the purposes the test-bed benchmarking procedure.
Additionally, there are a number of publications that you might find usefull as well:

1. C. Pham, P. Cousin, A. Carer, "Real-time On-Demand Multi-Hop Audio Streaming with
Low-Resource Sensor Motes", Proceedings of IEEE SenseApp, in conjunction with LCN
2014, Edmonton, Canada, September 2014.

2. C. Pham and P. Cousin, "Benchmarking low-resource device test-beds for real-time
acoustic data", Proceedings of the 9th International Conference on Testbeds and

 59

Research Infrastructures for the Development of Networks & Communities
(TridentCom'2014) , Guangzhou, China, May 5-7, 2014. Slides .pdf

3. C. Pham and P. Cousin, "Streaming the Sound of Smart Cities: Experimentations on the
SmartSantander test-bed", Proceeding of the 2013 IEEE International Conference on
Internet of Things (iThings2013), Beijing, China, August 20-23, 2013. Slides .pdf

Benchmarking procedure

The benchmarking procedure is explained in the EAR-IT web site:

 http://www.ear-it.eu/audio-benchmarking

All resources such as scripting tools, Excel template files and communication tools are available
for download.

ANNEX.B of this document reproduces the benchmarking procedure web pages.

ANNEX.C of this document shows the accompanying slides that explain further the
benchmark procedure.

Call for Benchmark

A "Call for Benchmark" has also been issued to various scientific partners in order to validate
the benchmark procedure and to have additional NETWORK indicators from other test-beds.

Preliminary results from Surrey test-bed

The University of Surrey accepted to conduct our benchmark procedure on their test-bed. The
outcome was two-folds: first, the provided tools and benchmark procedure were validated by
the Surrey team, second, the preliminary results consist of packet loss rate. Figure 70 below
the packet interarrival time from the traffic generator. The packet loss rate was found vey
small, 5.07% (11 packet losses out of a total of 218), and fully compatible with
speex audio requirements.

Figure 70 : packet inter-arrival time from the traffic generator, 100-byte packets

 60

Figure 71 below shows the Surrey test settings.

Figure 71 : test settings at University of Surrey

!
"
#
$
%&
'
$
%(
&
)*
"
+(
#
,
-
(
$
"

.
(
/
0
1
"
)*
"
+(
#
,
-
(
$
"

2
"
+'
3
4
.
&
%5
5
"
0
)*
"
+(
#
,
-
(
$
"

!
%#
$
'
&
1
"
)6
"
$
7
"
"
&
)
$
8
"
)#
(
/
0
1
"
)&
(
9
"
)
'
&
9
)$
8
"
)9
"
#
$
%&
'
$
%(
&
)
&
(
9
"
:
)
'
6
(
/
$
);
<
-
"
$
"
0

 61

Preliminary results from EGM test-bed

EGM has a TST-based test-bed. TST motes are depicted in figure 72. They are designed and
distributed by TST Sistemas in Spain.

Figure 72 : TST mote

The TST mote main characteristics are summarized in Table VI below.

Microcontroller 32 bits STM with ARM
Cortex-M3 core

Clock Frequency 72 MHz
Flash Memory 1 MB
RAM Memory 96 kB
Serial Interfaces 3 UART, 2 I2C, 1 SPI
Input / Output Ports Up to 6 analog, up to 20

digital
Timer resolution 0.1 ms

Table VI: TST mote characteristics

The radio module is the XBee radio that was already studied. The main differences that we can
expect from the TST motes are the much more powerful micro-controller clocked at a much
faster clock rate than low-end sensor motes previously studied, i.e. Libelium WaspMote,
Arduino and AdvanticSys TelosB.

The preliminary tests to verify the suitability of the EGM test-bed for acoustic data are
performed on:

1. TST mote's sending capability, in case the audio board is connected to these motes as
audio source,

2. TST mote's relaying capability in case these motes are deployed to relay acoustic data

Sending	 capability	

Figure 73 shows the TST send overhead as the payload is increased. According to Table I, the
TST mote is perfectly capable of handling audio data from the audio board, i.e. one
24-byte packet every 20ms.

 62

Figure 73 : TST mote sending overhead

Relaying	 capabiliy	

Regarding the relaying capability for multi-hop audio streaming, figure 74 shows the relaying
overhead as the payload is increased.

Figure 74 : TST mote relaying overhead

 63

Once again, referring to Table I which indicates that a relay node must be able to relay a 24-
byte packet in less than 20ms, we can see that the TST mote can satisfied this constraint.
However, as it has previously been observed on the AdvanticSys TelosB motes, a mean relay
time of 18.3ms for a 25-byte packet does not mean that all relays can be performed in less
than 20ms. In this case, it is much safer to use A2 aggregation level to have a time window of
40ms. Figure 74 shows that the relay time for a 50-byte packet is on average 24.5ms, which is
much lower than 40ms.

We can conclude that the EGM test-bed based on TST motes is fully capable of
handling acoustic data.

 64

8. Connecting the audio on other IoT platforms

The audio board has been designed to ease connectivity to other sensor mote platforms. The
encoded audio stream is sent through an UART line (at 115200 or 38400 baud that could be
configured on the audio board firmware). A 5V supply and a GND must be supplied, that are
generally available on most sensor platforms. The host microcontroller should poll the
corresponding serial input for data in order to get 20-byte audio frames every 20ms.

The audio board has been successfully connected to a Libelium WaspMote (the hardware that
are deployed in Santander), see figure 72, and an Arduino MEGA 2560 board. ANNEX.D
describes the procedure.

Figure 72 : connecting the audio board to a Libelium WaspMote

 65

9. Summary and conclusions

Based on the results of deliverable 1.1 during the network qualification process, we developed
an audio board with real-time sampling and encoding capabilities to allow for multi-hop audio
streaming scenario. The audio board can be connected to most of sensor motes provided that
a serial port is available.

We performed in-situ tests in both Santander and Geneva test-beds to determine in real
conditions the network performances. For network indicators, we measured:

1. Packet jitter at the source
2. Packet loss rates at 1-hop
3. Packet loss rates at 2-hop
4. Packet relaying time at relay nodes
5. Packet relaying jitter at relay nodes

For energy indicators, we measured:

6. Energy consumption at the audio source
7. Energy consumption at the relay nodes

Summary of main results of the various tests

Network indicators

Santander, SmartSantander test-bed
test scenario Pkt jitter at source pkt jitter at relay pkt loss rate
1-hop LOS open space very small (1) NA 0% - 12% (2)
1-hop LOS urban very small (1) NA 35% (2)
1-hop NLOS urban very small (1) NA 60% - 92% (2)
2-hop open space very small (1) very small (6)(7) 5% - 23% (3)
2-hop urban very small (1) very small (6)(7) 53% (3)

Geneva, HEPIA building
test scenario Pkt jitter at source pkt jitter at relay pkt loss rate
1-hop no occlusion very small (1) NA 0% - 8% (4)
1-hop occlusion very small (1) NA 16% - 81% (5)
2-hop very small (1) very small (6)(7) 5% - 30% (3)

1. The packet jitter at the source, for both the WaspMote audio mote and the AdvanticSys

TelosB audio board, is very small and can be easily compensated at the destination with
a very simple playout buffer.

2. The packet loss rate at 1-hop in LOS condition, and when the distance of next hop is
similar to what can be found in Santander, is very small. In non-LOS condition, for
instance with buildings in-between, the packet loss rate can be very high: we for
instance found packet loss rate as high as 92% with the developed audio board in a
dense urban environment in non-LOS condition.

3. At 2-hop or more, using relay nodes, non-LOS condition can be overcome, and
reception quality can greatly be improved. This is particularly important in in-door
environment as shown in the HEPIA building. However, the choice of the relay nodes
can have a big impact of the performances. In urban environment, the packet loss rate
can still be high and more hops may be needed at the cost of higher latencies.

4. In indoor environment, LOS transmissions (actually the distance between the source
and the sink is quite small) show very low packet loss rate, similar to what can be

 66

found in open space environment.
5. In indoor environment, NLOS transmissions can rapidly become very difficult,

decreasing dramatically the reception quality.

6. The packet relaying times measured with a promiscuous sniffer are consistent of what
have been predicted in the previous deliverable. According to the maximum relaying
capabilities, an appropriate aggregation level at the source can be used to reduce the
packet losses at intermediate relay nodes.

7. The packet relay jitter was found again quite small and can be easily compensated at
the destination with a very simple playout buffer.

Energy indicators

1. The energy consumption of the audio boards (both WaspMote and AdvanticSys TelosB)

are found compatible with smart cities scenarios where nodes can be recharged at
periodic moments in the day (at night for instance).

2. The relaying energy consumption was found to be the limiting factor in the system.
However, in all cases, the relaying duration is larger than 1h. In emergency scenario
where some minutes of streamed acoustic data are requested, we believe that 1h can
be enough, especially if some advanced scheduling or audio source selection
mechanism are implemented.

Conclusions

Santander	 test-‐bed	

Ther SmartSantander test-bed in Santander is capable of supporting streamed audio both in
open space and urban environment when LOS transmission is possible. in NLOS conditions, 1-
hop transmission is not capable of providing a sufficiently small packet loss rate for an
acceptable audio quality (packet loss rate much higher than 35%). Using 2-hop or more
transmission can leverage the NLOS conditions and decrease the packet loss rate in urban
environment. However, the choice of the relay nodes is of critical importance increase
transmission quality and there are certainly many interesting issues to dynamically chose the
right relay nodes. In all cases, the packet jitter at the source and at the relay nodes is very
small.

Geneva	 test-‐bed	

The Geneva's HEPIA test-bed is capable of supporting streamed audio in LOS transmission. in
NLOS conditions, 1-hop transmission is not capable of providing a sufficiently small packet loss
rate for an acceptable audio quality (packet loss rate much higher than 35%). Using 2-hop or
more transmission can leverage the NLOS conditions and decrease the packet loss rate.
However, the choice of the relay nodes is of critical importance to increase transmission
quality, especially when transmitting from one floor to another. In all cases, the packet jitter at
the source and at the relay nodes is very small.

 67

10. References

[802154] IEEE Std 802.15.4™-2006.

[ADVAN] http://www.advanticsys.com/shop/wireless-sensor-networks-802154-mote-
modules-c-7_3.html

[CC2420] ChipCon CC2420, 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver.
www.ti.com/lit/ds/symlink/cc2420.pdf

[DMDigi] XBee®/XBee-PRO® DigiMesh RF Modules product manual (90000991_E), Digi
International Inc. January 6, 2012

[TELOSB] www.willow.co.uk/html/telosb_mote_platform.html and/or
http://bullseye.xbow.com:81/Products/productdetails.aspx?sid=252

[TINYOS] The TinyOS operating system. http://www.tinyos.net/

[XBeeDigi] XBee®/XBee-PRO® RF Modules product manual (90000982_G), Digi International
Inc. August 1, 2012.

 68

ANNEX.A: Review of software environment, tools and
test hardware

1

2

the sounds of smart environments

Development environments

•  Linux-based systems for higher
flexibility and better interoperability
•  most of software tools are targeted for

Unix
•  most of gateways devices are Linux-

based (Meshlium, Beagle, Rasperry,…)
•  When possible, avoid Java

development and priviledge C, C++
and scripts (shell, python)

the sounds of smart environments

Standard IDE & software tools

•  Libelium WaspMote

•  Libelium IDE (Arduino-based) & API development environment

•  AdvanticSys TelosB

•  TinyOS 2.1.2 development environment

•  Audio

•  Codec2 software (www.codec2.org): c2enc, c2dec!

•  Speex software (www.speex.org): speexenc, speexdec!

•  sox and play package (Linux)

•  Serial & frame analysis
•  minicom, cutecom!

•  wireshark!

3

 69

3

4

the sounds of smart environments

Customized speex audio tools

•  Simple « pure » speex audio decoder without any
header
•  Modified version of speex’s sampledec.c

•  speex_sampledec_wframing : expects framing bytes!

•  speex_sampledec_nframing : no framing bytes

•  To get a « pure » speex audio encoded file without any
header
•  Modified version of speexdec.c (yes speexdec.c and not

speexenc.c) compatible with speex’s sampledec.c

the sounds of smart environments

Development of dedicated tools

•  Serial tools to read host computer serial port

•  XBeeReceive (C language)

•  SerialToStdout (python script)
•  115200 baud version

•  38400 baud version

•  Communication tool to send control command packets
•  XBeeSendCmd (C language)

•  Communication tool to send binary files
•  XBeeSendFile (C language)

 70

5

6

the sounds of smart environments

XBeeReceive!

•  XBeeReceive!

•  Main target is 802.15.4 XBee-based gateway

•  Translates XBee API frame

•  Reads from the serial port : /dev/ttyUSB0, /dev/ttyS0, …!

•  Reconstructs file in binary mode (handles packet losses)
•  Assumes each packet with 4 bytes header: 2 bytes for file size & 2 bytes for offset

•  Can write to Unix stdout & can act as a transparent serial replacement

•  Can act in a data stream fashion: no header for packets
USAGE: !./XBeeReceive -baud b -p dev -B -ap0 -v val –stdout –stream file_name!
USAGE: !-baud, set baud rate, default is 38400!
USAGE: !-p /dev/ttyUSB1!
USAGE: !-B indicates binary mode. Assumes 4-bytes header for each pkt (that will be removed)!
USAGE: !-framing expect for framing bytes 0xFF0x55 for binary data!
USAGE: !-ap0, indicates an XBee in AP mode 0 (transparent mode) so do not decode frame structure!
USAGE: !-v 77, use 0x77 to fill in missing value in binary mode!
USAGE: !-stdout, write to stdout for pipe mode in binary mode!
USAGE: !-stream, assumes no header & write to stdout for pipe mode in binary mode!
USAGE: !file_name, name for saving binary file!

the sounds of smart environments

SerialToStdout.py

•  Simple python script to read serial port when no
translation is needed

•  Change baud rate and port as needed

•  SerialToStdout.py can be use instead of
XBeeReceive with an XBee in transparent mode

import serial!
import sys!
!
ser = serial.Serial('/dev/ttyUSB0', 38400, timeout=0)!
!
flush everything that may have been received on the port to make sure !
that we start with a clean serial input!
ser.flushInput()!
!
while True:!
 out = ''!
 sys.stdout.write(ser.read(1024))!
 sys.stdout.flush()!

 71

7

8

the sounds of smart environments

XBeeSendCmd

USAGE: !./XBeeSendCmd -p dev [-L][-DM][-at] -tinyos -tinyos_amid id_hex -mac|-net|-addr|-b message!
USAGE: !-p /dev/ttyUSB1!
USAGE: !-mac 0013a2004069165d HELLO!
USAGE: !-net 5678 HELLO!
USAGE: !-addr 64_or_16_bit_addr HELLO!
USAGE: !-b HELLO!
USAGE: !-at to send remote AT command: -at -mac 0013a2004069165d ATMM!
USAGE: !-L insert Libelium API header!
USAGE: !-DM to specify DigiMesh firmware!
USAGE: !-tinyos to forge a TinyOS ActiveMessage compatible packet (0x3F0x05 are inserted)!
USAGE: !-tinyos_amid 6F, to set the ActiveMessage identifier to 0x6F (0x05 is the default)!

•  XBeeSendCmd!

•  Main target is 802.15.4 XBee-based gateway

•  Send ASCII command with Xbee

•  Can be used to sent remote AT command to other Xbee module

•  Support DigiMesh firmware

•  Example
•  XBeeSendCmd -addr 0013a2004069165d ’’/@D0100#’’

the sounds of smart environments

XBeeSendFile

USAGE: !./XBeeSendFile -baud baudrate -p dev -sensor -timing tpkt_us tserialbyte_us tafterradio_us -nw -fake
-drop rate -v val -fill -pktd -pktf -size s -stdout -mac|-net|addr|-b file!
USAGE: !-baud 125000, 38400 by default!
USAGE: !-sensor, will send image pkt to a sensor sniffer!
USAGE: !-framing, will use framing bytes 0xFF0x55+SN for binary packets (e.g. audio)!
USAGE: !-timing 50000 20 25000 by default!
USAGE: !-nw, do not wait for TX status response!
USAGE: !-fake, emulate sending. Will write in fakeSend.dat!
USAGE: !-drop 50, will introduce 50 of packet drop. Useful with -fake!
USAGE: !-v 77, use 0x77 to fill in missing bytes in lost packet!
USAGE: !-fill, will fill missing bytes!
USAGE: !-pktd, display generated XBee frames!
USAGE: !-pktf, generate a pkt list file!
USAGE: !-size 50, set packet size to 50 bytes!
USAGE: !-stdout, write to stdout for pipe mode!
USAGE: !-mac 0013a2004069165d!
USAGE: !-net 5678!
USAGE: !-addr 64_or_16_bit_addr, set either 64-bit or 16-bit dest. address!
USAGE: !-b!

•  XBeeSendFile!

•  Main target is 802.15.4 XBee-based gateway

•  Send binary files with Xbee with controlled timing

•  Can use any packet size between 1 and 100 bytes

•  Can insert framing bytes, can introduce packet losses

 72

9

10

the sounds of smart environments

WaspMote+XBee in raw mode

•  Electret mic with
amplifier

•  XBee in AP0 mode
(transparent mode)

•  8-bit 4Khz sampling
gives 32000bps

•  8Khz sampling gives
64000bps, requires
custom API

ONLY 1 HOP!

Xbee GW

VCC#on#D2,#AUDIO#on#A2,#GND#on#GND

100 8-bit samples (12.5ms)

the sounds of smart environments

Details of pin connection

VCC#on#D2##
AUDIO#on#A2#
GND#on#GND

 73

11

12

the sounds of smart environments

WaspMote test-bed: XBee gw AP0
void loop() {!

!val = analogRead(ANALOG2) ; // read analog value!
!val8bit = ((val >> 2)) ; // convert into 8 bit!

!
 !// write on UART1, need an XBee module!

!// with AP mode 0!
!
 !serialWrite(val8bit,1);!
}!

4KHz sampling!
> XBeeReceive -baud 38400 -ap0 -stdout dumb.dat | play --buffer 50 -t raw –r 4000 -u -1 –!
!
8KHz sampling!
> XBeeReceive -baud 125000 -ap0 -stdout dumb.dat | play --buffer 50 -t raw -r 8000 -u -1 -!
!
Save raw data for off-line playing!
> XBeeReceive -baud 38400 -ap0 -stdout dumb.dat > test.raw!
> play -t raw –r 4000 -u -1 test.raw!

With XBee GW also in AP0 mode

Alternatively using SerialToStdout python script, at 38400 baud only
!
> python SerialToStdout | play --buffer 50 -t raw –r 4000 -u -1 –!

Xbee GW

the sounds of smart environments

XBee gateway in pkt mode (AP2)

•  The receiving XBee module may need
to be in packet mode (AP2) due to
deployment constraints

•  Adds overhead of XBee API frame
decoding: 8KHz sampling may be not
supported

4KHz sampling!
> XBeeReceive -baud 38400 –stream dumb.dat | play --buffer 50 -t raw –r 4000 -u -1 –!
!
!
Save raw data for off-line playing!
> XBeeReceive -baud 38400 –stream dumb.dat > test.raw!
> play -t raw –r 4000 -u -1 test.raw!

 74

13

14

the sounds of smart environments

Multi-hop audio solution

•  Use dedicated audio board for
sampling/storing/encoding at 8kbps

•  Allows for multi-hop, encoded audio
streaming scenarios

Specially designed audio
board by INRIA CAIRNS &
Feichter Electronics

dsPIC33 with 8kbps speex
real-time encoder

the sounds of smart environments

Details of pin connection
P1.7 can be
used to power
on/off the audio
board

 75

15

16

the sounds of smart environments

AdvanticSys+audio board

•  The audio board captures 160 bytes (20ms) of raw
audio and uses speex codec at 8kbps to produce
20 bytes to encoded audio data

•  It sends the encoded audio data through an UART
line to the host micro-controller

•  The host micro-controller receives the encoded
data and sends them wirelessly to the next hop

•  The last hop is a base station that will forward the
encoded audio into a speex audio decoder

•  Output of the speex audio decoder is in raw format
that can be feed into a player (play)

the sounds of smart environments

speex at 8kbps
160 8-bit samples (20ms)

20 bytes of encoded audio data

24 or 21 bytes frame

1 byte!
frame size speex_sampledec_wframing!

1 byte!
Seq. No.

2 bytes!
framing!
0xFF0x55

 76

17

18

the sounds of smart environments

async event void UartStream.receiveDone(uint8_t* buf, !
!uint16_t len, error_t error){!
! ! !
!post sendMsg();!

}!

AdvanticSys+audio board

> XBeeReceive -baud 38400 -B -ap0 -stdout dumb.dat | speex_sampledec_nframing | !
!play --buffer 100 -t raw -r 8000 -s -2 –!

!

With XBee GW in AP0 mode

With AdvanticSys base station (115200 baud)
!
> python SerialToStdout | speex_sampledec_wframing | play --buffer 100 -t raw -r 8000 -s -2 -!

Xbee GW

With XBee GW in AP2 mode (pkt mode)
> XBeeReceive -baud 38400 -B -stream dumb.dat | speex_sampledec_nframing | !

!play --buffer 100 -t raw -r 8000 -s -2 –!
!

the sounds of smart environments

Relay nodes

Fully configurable:

Destination node
Additional relay delay
Clock synchronization

Libelium !
WaspMote

AdvanticSys !
CM5000, CM3000

R0/1 enable/disable relay mode!
D0013A2004086D828 set the 64-bit dest. mac addr!
D0080 set the 16-bit dest. mac addr!

 77

19

20

the sounds of smart environments

Multi-hop test-bed w/audio board

R0/1 enable/disable relay mode!
D0013A2004086D828 set the 64-bit dest. mac addr!
D0080 set the 16-bit dest. mac addr!

0x0040

Decode & Play !
Received audio!

Speex audio encoding!
8kbps!

0x0010 Relay

Relay

0x0020

0x0030

A1/2/3/4 aggregate audio frames!
D0013A2004086D828 set the 64-bit dest. mac addr!
D0080 set the 16-bit dest. mac addr!
C0/1 power off/on the audio board!

the sounds of smart environments

Generic & controlled sender

Fully configurable:

Destination node
Clock synchronization
File to send
Size of packet chunk
Inter-packet delay
Binary/Stream mode

Use a generic sender node
to test with a larger variety
of audio codec: store
encoded audio file on SD
card

Do not need specific audio
encoding hardware to test
quality of streaming
encoded audio data

 78

21

22

the sounds of smart environments

Multi-hop test-bed w/generic sender
0x0010

0x0040

T130 transmit with inter pkt time of 130ms!
Z50 set the pkt size for binary mode!
Ftest2400.bit set the file name to test2400.bit !
D0013A2004086D828 set the 64-bit dest. mac addr!
D0080 set the 16-bit dest. mac addr!
B or S set to binary mode/set to stream mode!

All commands must be prefixed by « /@ »
and ended/separated by « # »

/@T130#, /@Ftest2400.bit#B#!

Decode & Play !
Received audio!

Relay

Relay

0x0020

0x0030

the sounds of smart environments

codec2/speex with generic sender

•  Use codec2/speex encoding software to
produce encoded audio file

•  Store encoded audio file (.bit/.spx) on SD
card

•  Configure the generic sender for sending
the encoded audio file
•  Define packet size
•  Determine inter-packet send time

•  Receive the encoded audio stream, decode
the data and determine audio quality

 79

23

24

the sounds of smart environments

Produce encoded audio file: codec2

•  Initial file: test.raw in 16-bit, signed
•  Use sox to get 16-bit, signed if your

raw file is not in this format
•  Encode at 2400bps with
•  c2enc 2400 test.raw test2400.bit

•  Store test2400.bit on SD card

the sounds of smart environments

Codec2 encoding
320 8-bit samples (40ms)

7 bytes of encoded  
audio data

at 1400bps

at 2400bps & 3200bps
160 8-bit samples (20ms)

6 bytes of encoded  
audio data

8 bytes of  
encoded  
audio data

2400bps 3200bps

 80

25

26

the sounds of smart environments

Codec2 at 2400bps & 3200

1 byte!
Seq. No.

2 bytes framing!
0xFF0x55

at 2400bps & 3200bps
160 8-bit samples (20ms)

6/8 bytes of encoded!
audio data

XBeeReceive!

c2dec!

the sounds of smart environments

Multi-hop tests with codec2

Decode & Play !
Received audio!

0x0010

0x0040

/@Ftest2400.dat#B#!
/@Z40#!
/@T90#!

Sample Audio: 13s !
PCM = 104000B!
Codec2 at 2400bps !
gives 3900B

> XBeeReceive -framing –B rcv-test2400.bit!
> c2dec 2400 rcv-test2400.bit - | play -t raw -r 8000 -s -2 –!

!
!
> XBeeReceive -framing –B -stdout rcv-test2400.bit | bfr -b1k -m2% - | !

!c2dec 2400 - - | play -t raw -r 8000 -s -2 -!

Store & Play

Streaming

Relay

Relay

0x0020

0x0030

 81

27

28

the sounds of smart environments

Produce encoded audio file: speex

•  Initial file: test.raw in 8-bit unsigned
or 16-bit signed

•  Encode at 8000bps with
•  speexenc --8bit --bitrate 8000

test.raw test8000.spx!
•  Produce a raw speex byte stream with

modified version of speexdec!
•  speexdec test8000.spx > t8000raw.spx!

•  Store t8000raw.spx on SD card

the sounds of smart environments

Multi-hop tests with speex

Decode & Play!
Received audio!

0x0010

0x0040

/@Ft8000raw.spx#B# !/@Ft8000raw.spx#S#!
/@Z25# ! ! !/@Z21#!
/@T20#!

Sample Audio: 13s !
PCM = 104000B!
speex at 8000bps !
gives 14368B

> XBeeReceive -framing –B t8000raw.spx!
> cat t8000raw.spx | speex_sampledec_nframing | play -t raw -r 8000 -s -2 –!

!
!
> XBeeReceive –B -stdout -stream t8000krw.spx | bfr -b1k -m2% - | !

!speex_sampledec_wframing | play -t raw -r 8000 -s -2 -!

Store & Play

Streaming

Relay

Relay

0x0020

0x0030

 82

29

30

the sounds of smart environments

Apply packet loss rate

•  Use XBeeSendFile to control
•  Timing between packet sending
•  Packet loss probability

> XBeeSendFile -fake -drop 25 -stdout test2400.bit > test2400-25loss.bit

> XBeeSendFile -fake -v 77 -fill -drop 25 -stdout test2400.bit > test2400-25loss-fill.bit

Codec2 2400bps, series of 6-byte encoded audio packets

1 2 3 4

1 3 4

1 2 3 4
77 77 77 77 77 77!

 83

ANNEX.B: Benchmarking procedure for other test-beds
(reproduction of the benchmark procedure web pages)

Benchmarking IEEE 802.15.4 low-resource
device test-beds for audio traffic: procedure &
tools
as part of EAR-IT WP1: Acoustic Test-bed Qualification
C. Pham (LIUPPA laboratory, University of Pau, France & EGM) and P. Cousin
(EGM, EAR-IT deputy project manager)

In the context of the FP7 EAR-IT project on acoustic surveillance in smart environments, this page describes and
provides links to various tools for benchmarking low-resource device test-beds based on IEEE 802.15.4 connectivity.

last update: July 17th, 2014.

Why doing a benchmark ?
The EAR-IT project as working in various test beds in city (Santander) and with building (in Geneva) has demonstrated
that nice applications can be developed using audio (traffic monitoring, security, energy efficiency, etc). Also using
advanced audio codec (i.e. speex, codec2) we have demonstrated that even constrained network using 802.15 wireless
network can be used for audio applications as audio streaming (the most constrained case) can be performed with only
2kbps bandwidth which is often available on these networks.

The project has now defined the minimum condition for any test bed to be capable of hosting audio and audio related
applications (see EAR-IT deliverable 1.2). Doing this benchmark is easy and will allow your test bed to expand its
usage for a broad range of amazing applications and research cases using acoustic.

Objectives of the benchmark
1. Determine whether a given test bed is capable of providing the minimum requirements for supporting audio

traffic

2. Indicators and target values are given together with supporting documentation

What you need to do
1. Download the procedures and be ready to perform the tests on your test bed
2. Either use the developped audio mote or a simple traffic generator with a promiscuous packet sniffer that can

also be downloaded
3. Determine if your test bed is “audio ready” by filled-in data in an excel sheet given where script can generate

indicators which can be compared to minimum necessary
4. Audio source and audio hardware on TelosB can be borrowed to check on a real audio streaming conditions

 84

Documents and EAR-IT deliverables
The proposed benchmark procedure is described in a set of slides "WP1 Acoustic Test-bed Qualification/Benchmarking
procedure for other test-beds". Read this document for detailed instructions on the benchmark procedure and the usage
of the various tools that have been developped. The general benchmark methodology is also described in an earlier
document "WP1 Acoustic Test-bed Qualification/Qualify and Benchmark Test-beds for Acoustics in Deployment of
Targeted Applications". Our test-bed and various control software are also described in "WP1 Acoustic Test-bed
Qualification/Audio Test-bed Description". Please refer to these document as well as to deliverable "WP1 Acoustic
Test-bed Qualification/D1.2 : Miminium requirements for use of acoustic sensors" that describe the developped audio
board, the audio constraints and the purposes the test-bed benchmarking procedure. Additionally, there are a number of
publications that you might find usefull as well:

1. C. Pham, P. Cousin, A. Carer, "Real-time On-Demand Multi-Hop Audio Streaming with Low-Resource
Sensor Motes", Proceedings of IEEE SenseApp, in conjunction with LCN 2014, Edmonton, Canada,
September 2014.

2. C. Pham and P. Cousin, "Benchmarking low-resource device test-beds for real-time acoustic data",
Proceedings of the 9th International Conference on Testbeds and Research Infrastructures for the Development
of Networks & Communities (TridentCom'2014) , Guangzhou, China, May 5-7, 2014. Slides .pdf

3. C. Pham and P. Cousin, "Streaming the Sound of Smart Cities: Experimentations on the SmartSantander test-
bed", Proceeding of the 2013 IEEE International Conference on Internet of Things (iThings2013), Beijing,
China, August 20-23, 2013. Slides .pdf

Benchmark tools
We developped in collaboration with INRIA CAIRNS and Feichter Electronics a daughter audio board with speex
compression capability. The audio board is connected to a low-resource device, allowing real-time audio capture and
compression. You actually don't need the audio board for the benchmark, but if you want to test real audio streaming on
your test-bed, we can provide you with the audio mote, see the "Contact" section at the end of this page.

• To use the full audio benchmark procedure with the developped audio board, proceed with all steps from
#1 to #6. You will be able to perform 1-hop audio streaming, determine relay capability of your test-bed for
multihop audio and determine 1-hop packet loss rate in real audio conditions in your test-bed environment.

• To perform a simple benchmark of your test-bed to determine the relaying capability of your test-bed for
multi-hop audio, you can proceed with steps #2, #5 and #6. Note that if you already have your own traffic
generator and promiscuous packet analyser, you can only check in EAR-IT deliverable 1.2 whether your test-
bed performances are adequate to support our audio mote traffic.

1/ Developped audio board and associated software

Figures below show the developped audio board that was initially designed to be connected to an AdvanticSys CM3000
mote (or CM3300 or CM4000), that will be referred to as the TelosB audio mote.

 85

The control software for the Telosb audio mote gets the compressed data from the audio board and sends them to the
next hop (a BaseStation or a relay node). The BaseStation is another TelosB mote that is connected to a Linux computer
to act as a Sink. The BaseStation is not mandatory in the benchmark procedure but we can use it to listen in real-time to
the audio stream. The archive for the source code of the TelosB audio and the BaseStation can be obtained here, all
source code are under the TinyOS 2.1.2 operating system. Please refer to TinyOS installation instructions for setting up
the TinyOS environment.

• archive for the source code of the TelosB audio and the BaseStation

The TelosB audio mote can be used to benchmark the test-bed for acoustic data. speex handles audio data in
FRAME_SIZE. The value of FRAME_SIZE on the audio board is 160 bytes. Then encoding takes FRAME_SIZE bytes
and compresses them is a number of encoded bytes. For 8000 bps rate, the encoded packet size is 20 bytes and the
periodicity is 20ms. The BaseStation receives packets from the audio board. Each packet has frame delimiters (0xFF
0x55 SN) prior to the number of bytes (0x14=20) per packet in the output stream. SN will store an 8-bit sequence
number. An example is shown below:

0xFF 0x55 0x00 0x14 ..
0xFF 0x55 0x01 0x14 ..
0xFF 0x55 0x02 0x14 ..

To build the TelosB audio mote with IEEE 802.15.4 16-bit address of 0x0090:

> CFLAGS="-DNODE_SHORT_ADDRESS=0x0090 -DDEST_SHORT_ADDRESS=0x0100" make telosb

Then install with:

 86

> make telosb reinstall bsl,/dev/ttyUSB0

To build and install the BaseStation mote with IEEE 802.15.4 16-bit address of 0x0100:

> CFLAGS=-DNODE_SHORT_ADDRESS=0x0100 make telosb
> make telosb reinstall bsl,/dev/ttyUSB0

Then refer to "WP1 Acoustic Test-bed Qualification/Benchmarking procedure for other test-beds" to see how the
TelosB audio mote can be controlled wirelessly with the XBeeSendCmd tool.

2/ XBeeSendCmd

We use an XBee S1 from Digi (802.15.4, not ZigBee) as a radio gateway to send control messages. We provide the
XBeeSendCmd tool that uses such gateway to send ASCII command. However, you can use any similar tools (or the
X-CTU program provided by Digi) to send pure ASCII command sequence with an IEEE 802.15.4 radio module.
Please refer to "WP1 Acoustic Test-bed Qualification/Benchmarking procedure for other test-beds" for a list of ASCII
control sequence used to control the TelosB mote.

The source code for XBeeSendCmd is available here:

• source code of the XBeeSendCmd

To compile:

 > g++ -Wno-write-strings -o XBeeSendCmd XBeeSendCmd.c -lrt

Example (trigger audio capture and transmission at the TelosB audio mote):

 > XBeeSendCmd -p /dev/ttyUSB0 -addr 0090 "@/C1#"

3/ Simple speex decoder at the sink

We also provide a simple speex decoder that waits for frame delimiters (0xFF 0x55) and that will decompress the audio
stream into raw format to Linux's stdout. The source code for speex_sampledec_wframing is available here:

• source code of the speex_sampledec_wframing

To compile:

> gcc -DWITH_PKT_FRAMING -o speex_sampledec_wframing speex_sampledec.c -lspeex -lspeexdsp

See below for an example of usage

 87

4/ 1-hop scenario with TelosB audio mote and BaseStation

Once you have the TelosB audio mote and the BaseSation mote, you can test by triggering the audio capture and listen
in real-time to the audio stream. Here are the procedure:

1. Connect the XBee gateway to a computer (on /dev/ttyUSB0 for instance)
2. Connect the TelosB BaseStation to a computer (the same here, on /dev/ttyUSB1 for instance)
3. Run a python script that will continuously read the serial port for compressed audio data and that will forward

these data to the speex decoder

> python 115200SerialToStdout.py /dev/ttyUSB1 | ./speex_sampledec_wframing
| play --buffer 100 -t raw -r 8000 -s -2 -

4. Power on the TelosB audio mote
5. Use XBeeSendCmd

1. to activate the TelosB audio mote, you may need to send the control command twice

> XBeeSendCmd -p /dev/ttyUSB0 -addr 0090 "@/C1#"

2. to stop the TelosB audio mote

> XBeeSendCmd -p /dev/ttyUSB0 -addr 0090 "@/C0#"

5/ Promiscuous packet sniffer for wireshark

We provide a promiscuous packet sniffer under TinyOS to be connected to the wireshark packet analyser. It's usage
for the benchmark of test-bed is described in "WP1 Acoustic Test-bed Qualification/Benchmarking procedure for other
test-beds". The promiscuous packet sniffer is based on the TKN154 protocol stack and the TestPromiscuous or
packetsniffer example. We improved TestPromiscuous to build a sniffer node. The source code is available
here:

• archive for the source code of the promiscuous packet sniffer

To build and install the packet sniffer:

 > CFLAGS="-DSNIFFER_CONF -DPCAP_SERIAL_OUTPUT" make telosb
 > make telosb reinstall bsl,/dev/ttyUSB0

Then there is a simple python program that will continuously read the serial port and send data to wireshark. The
mote will capture packets and will send pcap-formatted data to the serial port. More information on pcap format can be
found here. The python program is TelosbToStdoutPcap.py

Then you can run the following command with your TelosB mote plugged in your computer on /dev/ttyUSB0:

 > python TelosbToStdoutPcap.py | wireshark -k -i -

you may need to give sudo permission:

 > python TelosbToStdoutPcap.py | sudo wireshark -k -i -

If running on /dev/ttyUSB1, just specifiy it in the command:

 > python TelosbToStdoutPcap.py /dev/ttyUSB1 | wireshark -k -i -

You can see the graphical result below:

 88

 89

You can see various scenarios in this snapshot:

1. broadcast packets do not need acknowledgment (see frame 1 for instance)
2. unicast packets need acknowledgment and the ACK is captured when the receiver is active (see frames 5 and 6

for instance)
3. unicast packet to an non-existing device will generate 1 transmission and 3 retransmissions (the default

retransmission count in IEEE 802.15.4, see frame 13-16 for instance)

Limitations:

1. The timestamps for ACKs are normally incorrect from the SFD, but a turn around is proposed when using
wireshark

1. when a packet is an ACK packet, take the previous timestamp and add 192us (12
symbol=aTurnAroundTime)

2. additionally adds 354us which is the ACK transmission time at 250kbps (11 bytes)
2. FCS is not valid so all frames will have bad checksum but it is not important as all captured frames already

have good checksum for the radio module to accept them
3. When the sniffer is started while there are lot's of traffic, it may happen that the script sends a truncated frame

read from the serial port resulting in an error such as "frame too long". You can have a more "secure" start by:
1. press and maintain the reset button on the sniffer mote
2. start the python script
3. when wireshark is running, release the reset button. Since the radio module only accept valide

frames (FCS is checked) starting the script well before the mote ensures that no truncated information
from the serial port will be sent to wireshark.

Acknowledgments:

The original development tool for plugging a mote to wireshark has been provided by Pierre-Yves Lucas from
University of Brest. He wrote a simple program to translate XBee API format to pcap format in order to be able to use
wireshark with XBee module. We improved this idea by porting it to TelosB and MicaZ and CC2420 radio using
TinyOS and TKN154 which is a much more powerful environment.

6/ Packet analysis script and Excel template

As described in "WP1 Acoustic Test-bed Qualification/Benchmarking procedure for other test-beds" here are:

1. An example of the wireshark capture converted into text format
2. The pkt-loss-rate awk script
3. The Excel template

Contact information
The TelosB audio board can be borrowed if you are willing to benchmark your test-bed. Please contact Philippe Cousin
(EGM) from EAR-IT project.

 90

ANNEX.C: Benchmarking procedure for other test-beds
(slides)

1

2

 91

3

4

 92

5

6

 93

7

8

 94

9

10

the sounds of smart environments

Illustration: 1-hop packet loss rate

receiver

sniffer
Sniffer node will
capture all frames in
order to determine
packet loss rate for
typical/maximum 1-
hop distance

Audio source

the sounds of smart environments

Illustration: relay latency & jitter

relay
receiver

sniffer Sniffer node will
capture all frames
(those from audio
source and those
from relay node) in
order to measure
relay latency & jitter

Audio source

 95

11

12

the sounds of smart environments

Simplified way to measure relay latency

•  Instead of using the audio source to
measure the relay latency,
XBeeSendCmd can be used to send a
number of packets of a given size at a
given rate

•  Example: broadcast 10 packets of 100
bytes, one every 500ms
•  XBeeSendCmd -p /dev/ttyUSB0 -b -size 100 -n 10 -t 500!

•  Use wireshark as previously described

31

the sounds of smart environments

Get statistics from wireshark
captured frames

•  Add custom columns info to have
•  IEEE 802.15.4 frame sequence number (wpan.seq_no)
•  Time from previously displayed frame

•  Export the wireshark capture in text format,
applying filters as needed (if filters, export only
displayed frames)

•  Also save the wireshark capture in pcap format for
future usage as the pcap format stores all the
information to apply additional filters if needed

32

 96

13

14

the sounds of smart environments

Example: text file

33

Identify relevant part,
removing lines
associated to control
messages (those
used to start/stop the
audio capture)

The first inter-arrival
value is not correct,
so replace by the
value of the second
frame (copy/paste)

the sounds of smart environments

Simply determine packet loss rate

•  Use the provided awk script to
process the text file

•  Be sure to have a text file with only
the relevant frames (remove the
control messages at the beginning
and at the end of the captured trace)

•  Example
•  awk -f pkt-loss-rate.awk mytrace.txt

34

 97

15

16

the sounds of smart environments

Awk results

35

Processes each
line and shows the
packet number, the
of lost packets at
that stage and the
total # of lost
packets so far

At the end, shows
the total # of packet
(taking into account
the # of lost
packets), the total #
of lost packets and
the final packet loss
percentage

the sounds of smart environments

Use Excel to vizualize loss patterns

36

Then select only relevant
frames & columns,
discarding control
messages if needed (if
you have used the awk
script before, you should
have a correct text file)

Copy/Paste the
text into an
Excel blank
page, using text
importation
assistant to
separate data
into columns

 98

17

18

the sounds of smart environments

Copy selection into the template page

37

Copy at packet
index 1 of column C

Column Q and R
are automatically
filled.

Column Q counts
the number of
packets sents and
column R indicates
the number of
detected packet
losses.

Scroll down column
S to find the total
number of packets
and fill in cell S1
with this value to
get the correct
packet loss rate

Check that the
graph uses the
correct ranges,
reduce or extend if
needed

the sounds of smart environments

Check test-bed performances

•  Refer to EAR-IT deliverable 1.2
•  With 1-hop packet loss rates, check

whether the value is acceptable, i.e.
below 50% for raw audio and below
35% for speex audio

•  Check whether the relay time of your
test-bed is compatible with audio
requirements, use aggregation if
needed

38

 99

ANNEX.D: Audio board on other IoT platforms

1

2

 100

