DESIGNING AND DEPLOYING LOW-COST IOT: DIGITAL AGRICULTURE OPPORTUNITY FOR SMALLHOLDERS

Presented on May 26th, 2021

Prof. Congduc Pham http://www.univ-pau.fr/~cpham Université de Pau, France

(*AZION) IoT – from idea to reality (*AZION)

Intel-IrriS

...shows communicating objects

FRIMA Googling for "Smart Agriculture"

Smart Agriculture, a mature technology tel-Irris

• IoT device can be viewed as a simple Embedded System

PRIMA Smart Agriculture Sensors

8

PRIMA Smallholders & Smart Agriculture? Intel-Irris

Prof. Congduc Pham

Smallholders: the next decade challenge!

Smallholders are small-scale farmers, pastoralists, forest keepers, fishers who manage areas varying from less than one hectare to 10 hectares. Smallholders are characterized by family-focused motives such as favouring the stability of the farm household system, using mainly family labour for production and using part of the produce for family consumption.

Eighty percent of the farmland in sub-Saharan Africa and Asia is managed by smallholders (working on up to 10 hectares). While 75 percent of the world's food is generated from only 12 plants and 5 animal species, making the global food system highly vulnerable to shocks, biodiversity is key to smallholder systems who keep many rustic and climate-resilient varieties and breeds alive.

The economic lives of

smallholder farmers

Training Manual 4

2012

Connecting Smallholder Farmers to Markets WFP support for agricu

World Food Program

AGRICULTURAL SERVICES AND DIGITAL INCLUSION IN AFRICA

Ngital services are changing he way farmers do business, nformation and communication	developing and implementing digital inclusion initiatives and scaling up innovative digital	1		
echnologies can maximize the impact of existing rund ad visory ervices, financial services and ocial protection programes, they also facilitate access o markets, information and	services for smallholders and family formers, with particular emphasis on young, self-employed entregreeners and female-headed households.	-		
rintegora ne urship opportunities, cigitali indivisioni initiatives, beesk kown harriers to mohile internet adoption through infrastructure and policy, atfordability, digital ittency and availability of ocal context. They contribute interfay to powerty reduction and lood security.	Just role Using naw technology called Progressite Web App, EAO Ins. developed four upps to safe up applicational are roles: Wather and expendentiate combines information on wather Recentshand expendentiates. It passides unity samily sarring services to		In Africa: 27 percent of individual using the Internet are young people aged 15-24, compared with: 13 percent or devisioned countries and 23 percent globally. Succ. Christian Spec. 2017 data	

Many commercial systems are not adapted for developing countries, rural areas, smallholders

(ACTION Low-cost IoT!

PRIMA Low–cost microcontroller boards *intel-Irris*

PRIMA Energy consumption comparaison

PRIMA Low-power, long-range radios

Last but not least: low-cost sensors low-cost sensors

PRIMA IoT-for-All can become reality!

Prof. Congduc Pham http://www.univ-pau.fr/~cphar

20

PRIMA Generic IoT v.s. highly specialized Intel-Irris

- Build low-cost, low-power, generic IoT platform
- Methodology for low-cost platform design
- Technology transfers to user communities, economic actors, stakeholders,...

PRIMA A simple temperature sensor example

Wakes-up every 10min, take a measure (temp) and send to gateway

5µA in deep sleep mode, about 40mA when active and sending

More than 1 year with 1 measure/10min

Can run several years with 1 measure/1h

PRIMA A soil humidity sensor example

Prof. Congduc Pham http://www.univ-pau.fr/~cpha

ThingSpeak

PRIMA Deployment for Nestlé's WaterSense Intel-Irris

Prof. Congduc Pham http://www.univ-pau.fr/~cpha

PRIMA Minimum Viable Products (MVP)

Soil moisture solutions

PRIMA Minimum Viable Products (MVP)

Fish farming solutions

23

Cattle rusting and location monitoring

rduino_LoRa_temp	
temperature sensor on anal	log 8 to test the LoRa gateway
Copyright (C) 2015 Congdue	c Pham, University of Pau, France
This program is free softw it under the terms of the the Free Software Foundati	ware: you can redistribute it and/or modify GAU General Public License as published by ion, either version 3 of the License, or
(at your option) any Perton	Arduino 1.6.6 Teensyduino 1.27
This program is distr but WITHOUT ANY WARRAN	
MERCHANTABILITY or FI GNU General Public Lic	
You should have receiv	Genuino
along with the program	ARDUINO
	AN OPEN PROJECT WRITTEN, DEBUGGED,
nclude the SX1272	
MPORTANT	LEARN MORE ABOUT THE CONTRIBUTORS
	- · · · · · · · · · · · · · · · · · · ·
prease uncomment only .	
t seems that both Hope	
uncomment if your radio is	an HopeRF RFM92W or RFM95W
ncomment if your radio is	a Modtronix inAir9B (the one with +20dBm features), if inAir9, leave comment
define RADIO_INAIR98 ////////////////////////////////////	
INDODTANT	
	0

Arduino LoRa temp | Arduino 1.6.6

CongducPham / LowCostLo	RaGw	O Unwatch ▼ 62	★ Unstar 39	7 [%] Fork 213
<> Code ① Issues 161 ⑦ P	ull requests 2 III Projects 0 III Wiki	🔟 Insights 🛛 🗘 Setting	gs	
Branch: master - LowCostLoRaG	w / Arduino /	Create new file	e Upload files	Find file History
Congduc Pham update SX1272.cpp			Latest commi	t 114d06d 7 days ago
Arduino_Encrypt_LSC_v2	update LSC lib and related examples			2 months ago
Arduino_GPS_Parser_GGA	update Arduino examples			a month ago
Arduino_LoRa_Demo_Sensor	update Arduino examples			a month ago
Arduino_LoRa_GPS	update Arduino examples			a month ago
Arduino_LoRa_Gateway	update lora_gateway.cpp and SX1272.cpp			26 days ago
Arduino_LoRa_Gateway_1_4	improve management of transmission power, a	add channels in 863-865		2 years ago
Arduino_LoRa_Generic_DHT	update Arduino examples			a month ago
Arduino_LoRa_Generic_Simple_Mu	update Arduino examples			a month ago
Arduino_LoRa_InteractiveDevice	update Arduino InteractiveDevice			a month ago
Arduino_LoRa_Ping_Pong	update Arduino examples			a month ago
Arduino_LoRa_Ping_Pong_LCD	update Arduino examples			a month ago
Arduino_LoRa_Radiohead_Example	update README and example sketch for Radio	Head lib		a year ago
Arduino_LoRa_Simple_DHT	update Arduino examples			a month ago
Arduino_LoRa_Simple_temp	update Arduino examples			a month ago
Arduino_LoRa_temp	update Arduino examples			a month ago
Arduino LoRa ucamll	update image support			2 years ago

Many examples using various temp/hum sensors https://github.com/CongducPham/LowCostLoRaGw/tree/master/Arduino

PRIMA Community building for sustainable innovation^{tel-IrriS}

Launch event (Ghana, iSpace)

Launch event (Senegal, CTIC Dakar)

Workshop at the European Conference

on Networks & Cmmunications

(Greece, CNET)

IoTWeek2016 (Belgrade, EGM)

loTBigData2016 (Italy, EGM)

IoTCareConference (Budapest, CNET)

Credit: C. Vavasseur, CTIC Dakar Workshop at the RESSACS 2016 (France, UPPA)

PRIMA WAZIUP Online Course

WAZIUP IoT Courses • http://diy.waziup.io Getting started with sensors (←) → 健 û ▶ 110% … 🗵 ☆ 🗊 🎽 diy.waziup.io/index.html ON-LINE ARDUINO SENSORS AND DIY LORA TUTORIAL (WAZIUD) (WAZHOUD) Forewords 🚓 Home This online tutorial on Arduino, Sensors, and LoRa technologies has been developed by University of Pau, France, in the context of Introduction to Arduino IDE and WAZIHUB projects funded by the European Union in the H2020 research program. The main objective of this online tutorial i comprehensive and guided training materials to be used in training, hackathons, bootcamps, entrepreneur's days,... that are org WAZIUP/WAZIHUB across Africa. The main contributors are Mamour Diop, Muhammad Ehsan and Congduc Pham. Our main curr Measuring temperature focus is on LoRa networks and IoT but this tutorial first start with basic of Arduino and sensor programming to understand sensir that are the foundation of so-called Internet-of-Things (IoT) concepts. Then in a second step, we will introduce LoRa radio technol Measuring distance show how to build low-cost, long-range and energy-efficient IoT devices. WAZIUP is a technology-driven EU-Africa project developing Measuring humidity open source IoT end-to-end (sensors, networking and sof platform, specialized to meet African needs/applications i < Detecting motion cost, energy, internet connectivity and simplicity. Congdu scientific leader of the "Open IoT sensing and communica < Measuring Light platform" workpackage which tasks are to develop an ope and long-range LoRa IoT framework. Interested readers c ۲ resources from our github on the low-cost LoRa IoT frame Measuring Sound Level Agriculture Environment from Congduc Pham's tutorial/talks web page < RFID Feb 2016 - 2019 10 (WAZIUD) (L Using GPS Connecting an OLED screen

or users who wants to gain knowledge on l	oT in a step-by-step lecture mode, we have defined the	fo		
 Fundamentals of IoT 				
1. F-IOT-1a: What is IoT				
Quick introduction to IoT	WAZI			
IoT and Big Data Platform	- Wazi 🖻			
Intel IoT What Does The	Internet of Things Mean? - YouTube			
Edureka Internet of Thir	ngs (IoT) What is IoT How it Works? - YouTube			
Geospatial IoT IoT- What	t is Internet of Things? - YouTube			
IBM Think Academy How	v It Works: Internet of Things? - YouTube			
2. F-IOT-1b: Introduction to				
 Introduction To Ba 	 Fundamentals of IoT 			
 Introduction To Ba 	1. F-IOT-1a: What is IoT			
 Basic Electronics - Introducing physic 				
 Introducing physic Introducing physic 	Quick Introduction to			
3 E-IOT-2a: Understanding	IoT and Big Data Platfe	orm - HAZI 🔁		
4. F-IOT-2b: Introduction to	Intel IoT What Does	The Internet of Things Mean? - YouTube		
5. F-IOT-3: Introduction to	- Eduration Internet of	Things (InT) What is InT How it Works? You Tube		
Introduction to Are	 Edureka Internet of 	Things (IOT) what is IOT How it works? - You tube		
Presentation of the	Geospatial IoT IoT- V	What is Internet of Things? - YouTube		
Setting up the Ard	IBM Think Academy	How It Works: Internet of Things? - YouTube		
6. F-IOT-4: WAZIUP Open T	2 FIOT the Introduction to Da			
 Prototyping and Testing: Get 	2. F-IUT-TD: Introduction to Ba	SIC Electronics		
1. D-IOT-1: Getting started	Introduction To Basic Electronics – KAZI			
 Overview of WaziE 	Introduction To Basic	Electronics – MakerSpaces		
The WaziDev boar	Pagis Electronics Instructules			
 Resources on gith 	Basic Electronics - Instructables			
Installing WAZIUP	Introducing physical sensors, part 1 - HAZI			
Installing wazibev	Introducing physical sensors, part 2 - Hezi sensors			
1 D-GW-1: Building & Conf				
Ouick overview of	3. F-IOT-28: Understanding for	Devices, Architecture & Ecosystem – AHZI		
 Installing gateway 	4. F-IOT-2b: Introduction to IoT hardware – 🏎 🔁			
 Connecting to Gate 	5. F-IOT-3: Introduction to Arduino IDE			
 Configuring Gatew 	Introduction to Arduing IDE _ YouTube			
5. D-GW-2: Building an Out	Introduction to Arduino IDE - YouTube			
6. D-GW-3: Antenna Tutoria	Presentation of the Arduino IDE – VAZI (
7. D-GW-4: Gateway Web A	Setting up the Arduino IDE - Hezi			
8. D-GW-5: Migrating & Usi				
Prototyping and Testing: Dep	6. F-IOT-4: WAZIOP Open Tech	hologies for Low-cost lol - MHZI		
1. D-IOT-2: WAZIUP IoT and Gatew	ay Deployment Guidelines – 🛏 🗛 🖸			
Prototyping and Testing: Introduction				
2. D. CLOUD 2: Create vision of WA				
2. D-CLOUD-2: Create your app with	III WALIUP - HHZI			
Auvanced understanding				
1. A-IOT-T: LORA & LORAWAN EXPLA				

2. A-IOT-2: LoRaWAN with WAZIUP - WAZI 3. A-CLOUD-1: WAZIUP cloud API reference - 🛏 🗐

Technical training sessions
Hackathons, ...

-) → C û	i diy.waz	iup.io/index.html	₽ … ♡	✿ Q Rechercher	⊻ III\ 🖸
Eles plus visités 💮 Débuter ave	c Firefox 🖂	WAZIUP			
DE PAU ET DES		ON-LINE ARDL	JINO SENSO	RS AND DIY I OR	Α
(LACTI LON					
		TOTORIAL			
(เมคระกายค.)					
+ Home		Forewords			
ntroduction to Arduino IDE		This online tutorial on Arduin	o, Sensors, and LoRa techn	ologies has been developed by Univ	versity of Pau, France
		in the context of the WAZIUP	and WAZIHUB projects fun	ded by the European Union in the H	12020 research
leasuring temperature	< C	program. The main objective	of this online tutorial is to	provide comprehensive and guided	training materials to
		used in training, hackathons,	are Mamour Diop, Mubar	s days, that are organized by WAZI	UP/WAZIHUB across
leasuring distance	,	research focus is on LoRa net	works and IoT but this tuto	rial first start with basic of Arduino	and sensor
An encoder of the second of the s	<	programming to understand	sensing systems that are th	ne foundation of so-called Internet-c	of-Things (IoT)
leasuring humidity		concepts. Then in a second st	ep, we will introduce LoRa	radio technologies and show how to	build low-cost, long
etesting motion	<	range and energy-efficient lo	Γ devices.		
electing motion				WAZIUP is a technology-driven EU	-Africa project
leasuring Light	<			developing a fully open source IoT	end-to-end (sensor
leasaning Light		Irrigation Livestock	arming Fish faming & equeculture	networking and software) platforn	n, specialized to mee
Aeasuring Sound Level	<	and a state		African needs/applications in term	is of cost, energy,
icasaring sound cever				scientific leader of the "Open IoT s	y. Congoue Pham is t sensing and
Ising GPS		Storage & logistic	iture Environment	communication platform" workpa	ckage which tasks ar
				to develop an open, low-cost and	long-range LoRa IoT
onnecting an OLED screen		framework. Interested reader	rs can find many resources	from our github on the low-cost Lol	Ra loT framework an
-		from Congduc Pham's tutoria	l/talks web page.		

Online Arduino & IoT step-by-step tutorial https://diy.waziup.io

Q: what's missing?

Accuracy? Simplicity?

intel-Irris: Intelligent Irrigation-in-a-box

Low-cost system based on low-cost sensors and advanced water-soil-plants-climate interaction models for higher accuracy of collected measures

PRIMA BARTINERGHP FOR RESEARCH AND INNOVATION IN THE MEDITERRANEAN AREA

- Build on low-cost, low-power
 IoT expertise (APZIUP)
- Increase accuracy of low-cost sensors by advanced calibration
- Enable deployment of several complementary low-cost sensors: soil conductivity, volumetric water content, ...
- Include agricultural models / knowledge with corrective & predictive analytics

PRIMA Understanding soil water

Source: Christian Hartmann, IRD

• Low-cost sensors usually measure soil water content

• Soil = a pile of aggregates \Rightarrow 3 phases: solid + air & water

Source: Christian Hartmann, IRD

in the soil, the water is UNDER TENSION
 = it is hold by CAPILLARY FORCES

Water tension is also needed!

PRIMA Smart embedded control

Build on low-cost embedded
 & open IoT gateway expertise

- Implement the "Itelligent Irrigation in-the-box" vision
- Model complex interactions: water-soil-plant interaction, evapotranspiration,...
- Embed Decision Support System (DSS) and disruptive Artificial Intelligence (AI)
- Integration of multiple knowledge streams
- Fully autonomous

Prof. Congduc Pham http://www.univ-pau.fr/~cpham

PRIMA Edge-Al for fully autonomous system^{tel-Irris}

 Embed every thing on the IoT gateway to provide a fully autonomous system for the "Intelligent Irrigation-in-the-box"

Prof. Congduc Pham ttp://www.univ-pau.fr/~cphan

• ML model is presented with *input data* which is labeled

• Each *input data* is tagged with the correct label.

The goal is to approximate math operations in the ML model so well that when presented with new *input data*, the ML model can <u>predict</u> the output variables for that *input data*.

- On the left side of the image, some data is marked as 'Spam' or 'Not Spam'. This is *labeled data*. This data is used to train the supervised model, the *intelligent* program (at center of the image).
- Trained model is tested with new mails (on the top of the image) and checking if the output of the supervised model is correct (on the right side of the image).

- Classification: A classification problem is when the output is a category, such as "red" or "blue" or "disease" and "no disease".
- **Regression**: A regression problem is when the output is a real number, such as "dollars" or "weight".

- Dependent variables: the main event or factor to understand or predict. Also known as *explanatory variable.*
- Independent variables: the events or factors suspected to have an impact on the dependent variable. Also known as *response variable*.

Simple regression: single independent variable for a single dependent variable. It is very common to name the independent variable as *x* and Y as the dependent variable *x*: number of cricket chirps
 Y: temperature

• Multivariable regression: multiple

independent variables, x_1 , x_2 , x_3 , for a dependent variable **Y**.

- x_1 : number of cricket chirps
- x_2 : rainfall
- x_3 : automobile traffic
- Y: temperature

PRIMA It is NOT ONLY about technology! **Intel-Irris**

Prof. Congduc Pham http://www.univ-pau.fr/~cpha

PRIMA Smallholder Piloting Program

- Participatory approach to co-design & test the innovative solutions in fields
- Take into account region-dependent technical, agricultural, social, climatic and environmental aspects
- Will run for 30 months to ensure that the proposed irrigation systems are well tailored for the specificities of the regional context
- 9 farms already enrolled to participate in the Piloting Program
- Scale-up to involve at least 20 small-scale farms

PRIMA Farmer Training Program

- Run in parallel to the Smallholder Piloting Program
- Increase smallholders' knowledge so that they can familiarize with the proposed technologies, tools and practices
- Specific training materials will be created for that purpose and dedicated training sessions will be organized in coordination with the Smallholder Piloting Program
- Increase engagement of final users
- Recruit for Smallholder Piloting Program and distribution of starter-kits

- Internet-of-Things provides the unique feature to make things "talk" to us: localisation, surrounding environmental conditions,...
- It has unique capabilities in helping humanity to reach more sustainable development
- Adapting IoT solution for smallholders is the next decade challenge!

Conclusions

- Next generation sensors such as cameras, spectrometers, hyperspectral cameras,... will provide possibilities to further optimize a number of complex processes
- We have more than 8 years expertise in developping & deploying low-cost IoT in Africa with 4 EU H2020/PRIMA projects

DESIGNING AND DEPLOYING LOW-COST IOT: DIGITAL AGRICULTURE OPPORTUNITY FOR SMALLHOLDERS

Presented on May 26th, 2021

Prof. Congduc Pham http://www.univ-pau.fr/~cpham Université de Pau, France

(*AZION) IoT – from idea to reality (*AZION)