

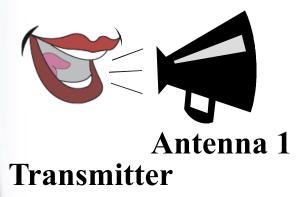
WF101: RF Essentials

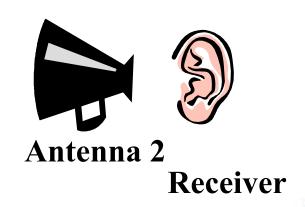
Jared Hofhiens

RF Embedded Product Manager

- Basic communication system
 - Transmitter & receiver

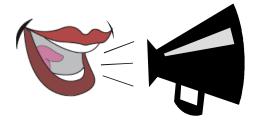
Transmitter




Receiver

www.digi.com

- Basic communication system
 - Transmitter & receiver
 - Transmitting antenna
 - Receiving antenna



Environment

- Basic communication system
 - Transmitter & receiver
 - Transmitting antenna
 - Receiving antenna
 - Environment

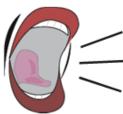
Antenna 1 Transmitter

Antenna 2

Receiver

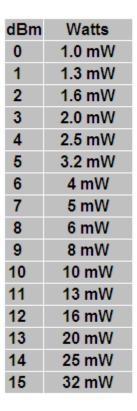
RX Sensitivity

How low can you go?



 Receiver sensitivity is a measure of how well the receiver performs and is defined as the power of the weakest signal the receiver can detect

TX Power


- Total net output power of transmitter
- Typically measured in dBm or mW

- mW: milliwatts are a measurement of power (1000 mW = 1 Watt).
- dB: decibel is a unit for expressing the ratio of two amounts of signal power equal to 10 times the common logarithm of this ratio. So, a power measurement in dB has to be relative to something.
- dBm: dB(mW) is power relative to 1 milliwatt (mW to $dBm = 10Log_{10}(mW/1000) + 30$).
- dBi: dB(isotropic) is the forward gain of an antenna compared to the hypothetical isotropic antenna, which uniformly distributes energy in all directions.
- \bullet dB(dipole) is the forward gain of an antenna compared to a half-wave dipole antenna.

dBm to mW Conversion

dBm	Watts
16	40 mW
17	50 mW
18	63 mW
19	79 mW
20	100 mW
21	126 mW
22	158 mW
23	200 mW
24	250 mW
25	316 mW
26	398 mW
27	500 mW
28	630 mW
29	800 mW
30	1.0 W
31	1.3 W

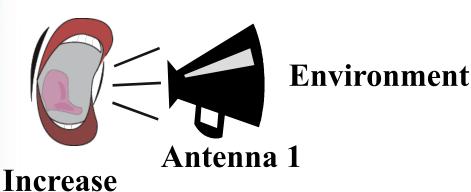
dBm	Watts
32	1.6 W
33	2.0 W
34	2.5 W
35	3.2 W
36	4.0 W
37	5.0 W
38	6.3 W
39	8.0 W
40	10 W
41	13 W
42	16 W
43	20 W
44	25 W
45	32 W
46	40 W
47	50 W

Pop Quiz

0 dBm = ?

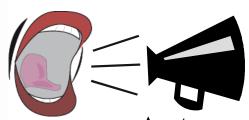
Pop Quiz

30 dBm = ?


Pop Quiz

-10 dBm = ?

- Maximizing range
 - Increase TX (transmit) power
 - Government regulated
 - Low-powered applications

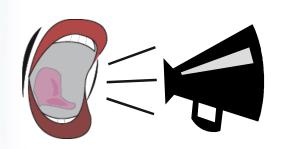


Power

- Maximizing range
 - Increase TX (transmit) power
 - Improve RX (receive) sensitivity
 - Specified in dBm
 - Every 6 dB doubles RF link's range (line-of-sight)
 - Every 12 dB doubles RF link's range in indoor/urban environments

Environment

Antenna 1

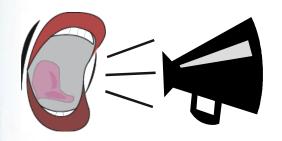

Increase **Power**

Antenna 2

Improve RX Sensitivity

- Maximizing range
 - Increase TX (transmit) power
 - Improve RX (receive) sensitivity
 - Increase antenna gain
 - More gain means more directionality (good and bad)
 - Antenna cables should be as short as possible
 - Government regulated EIRP (TX pwr + antenna gain)

Environment



Increase Increase Power Gain

Increase Improve
Gain RX Sensitivity

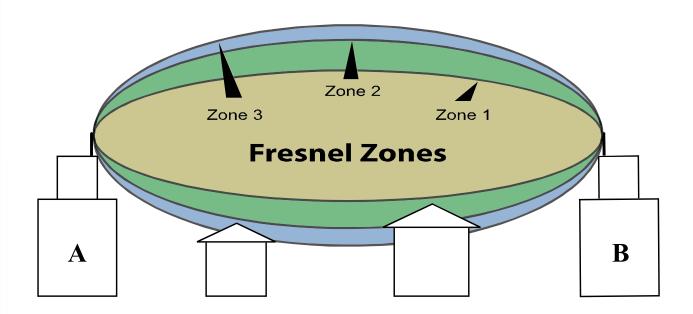
- Maximizing range
 - Increase TX (transmit) power
 - Improve RX (receive) sensitivity
 - Increase antenna gain
 - Clear environment of obstructions
 - Visual (linear) line-of-sight vs. RF (radio) line-of-sight

Increase Increase Power Gain

Increase Improve Gain

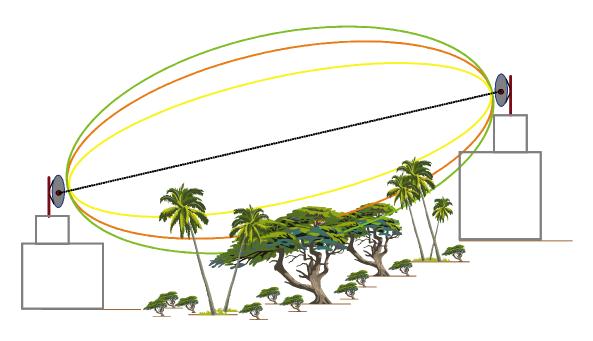
RX Sensitivity

- Fresnel Zone
 - Football-shaped path

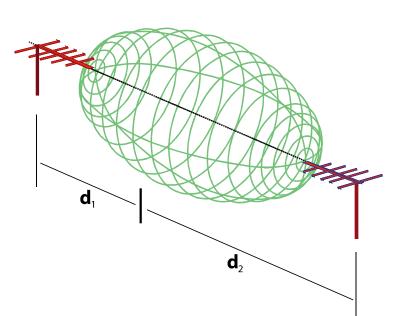


Antenna 1 Transmitter Antenna 2

Receiver

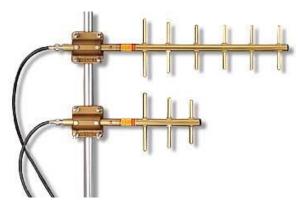


- Fresnel Zone
 - Football-shaped path
 - Acceptable = 60% of Zone 1 + 3 meters

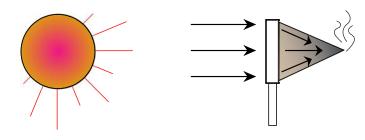

- Fresnel Zone
 - Football-shaped path
 - Acceptable = 60% of Zone 1 + 3 meters
 - Raise antennas to help clear the zone

- Fresnel Zone
 - Football-shaped path
 - Acceptable = 60% of Zone 1 + 3 meters
 - Raise antennas to help clear the zone
 - Formula use an online Fresnel Zone calculator

$$\mathbf{r}_{n} = \sqrt{\frac{\mathbf{n}\lambda\mathbf{d}_{1}\mathbf{d}_{2}}{\mathbf{d}_{1} + \mathbf{d}_{2}}}$$


• Fresnel Zone diameters

Range Distance	900 MHz Modems Required Fresnel Zone Diameter	2.4 GHz Modems Required Fresnel Zone Diameter
1000 ft. (300 m)	16 ft. (5 m)	11 ft. (3.4 m)
1 Mile (1.6 km)	32 ft. (10 m)	21 ft. (6.4 m)
5 Miles (8 km)	68 ft. (21 m)	43 ft. (13 m)
10 Miles (16 km)	95 ft. (29 m)	59 ft. (18 m)

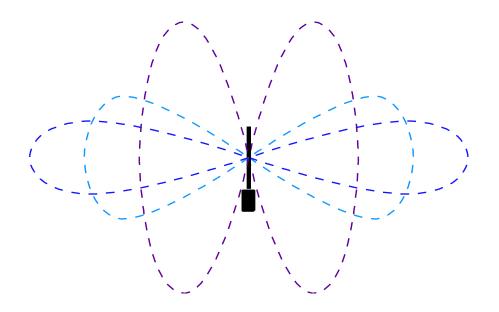


Antennas

- Antenna gain
 - Directional antennas FOCUS energy: they DO NOT ADD energy

Antennas

- Antenna Gain
 - Omni-directional antennas FOCUS energy: they DO NOT ADD energy



Antennas

- Antenna Gain
 - Omni-directional antennas FOCUS energy: they DO NOT ADD energy

Conducted Power vs. EIRP

Conducted: the TX Power of the RF module

EIRP: EIRP (Effective Isotropic Radiated Power) is the effective power of radio + antenna

The Datasheet War

• TX Power: Is this conducted or EIRP?

Output power (w/ 3dBi antenna)

5mW-200mW variable

5mW-1000mW variable

• RX Sensitivity: dB for dB, RX Sensitivity increases range as much as TX Power

Add TX Power + (-RX Sensitivity) for full link budget

• Current Draw: Is this the full TX current draw?

†Current consumption assumes 50% transmitter on-time.

