Al for cyber-physical systems
Part 2 — Neural Networks & Deep Learning
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How does a Perceptron work?

® Single Layer Perceptron (SLP) receives the value of the
attributes of an input, just as dendrites do in a neuron

® Each attribute has a weight w that measures its contributionto
the final result, which is the sum of the multiplications of inputs

of each attribute by its corresponding weight

@ The final output depends on the activation function: here, if the
sum is >0 Perceptron returns a value of 1, otherwise it yields O
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inputs —

What can an SLP do?

Weights
7y = O(wir1 + waks + ... + WyTy, + b)
=0O(wW-x+0)

Weighted

@\ N Sum here O(n) {1 V>0
where v) =
NS 0 otherwise
@/) Wa-1 T Step Function
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Bias b

® SLP is the simplest type of artificial -
neural networks and can only classify
linearly separable cases with a binary target

@® Activation functions are mathematical
equations that determine the output of a
neural network

® Here, the Heaviside step function 6 SRR 4
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Multi-Layer Perceptron - MLP

© Multi-Layer Perceptrons (and so-called neural networks) can be
considered as more general function approximators and they are
able to distinguish data that is not linearly separable

® MLP have several neuron layers with so-called hidden layers

® Hidden layers are "hidden" to the final user who only "see" inputs
and outputs

Input Layer Hidden Layers QOutput Layer
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"~ Learning in MLP?

©@ With more layers, there are more parameters to optimize, so
training an MLP is obviously more complex and will take much
much more time, if not done in an intelligent way!

@ A fundamental method in neural network is back-propagation!

Hidden layer(s)

VYa, .
¥,
Backprop output [ayer
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Neural Network in a nutshell
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Pictures from https://www.youtube.com/watch?v=Q9Z20HCPnww (Brandon Rohrer)
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- Example 1: 4-pixel camera

Categorize images Categorize images
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Example 1, contt

Simple rules can’t do it
O Gray scale
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Pictures from https://www.youtube.com/watch?v=dPWYUELwIdM

Example 1, con't

Input vector Receptive fields
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Example 1, con't

Sigmoid squashing function @

Weighted sum-and-squash neuron
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Example 1, con't

Make lots of neurons, identical except for weights Receptive fields get more complex

To keep our picture

clear, weights will either i = _ 3 | N put th at
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Example 1, con't

Rectified linear units (ReLUs)

If your number is positive, keep it.
Otherwise you get a zero.
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Example 1, con't
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Pictures from https://www.youtube.com/watch?v=dPWYUELwIdM

~ Example 1, finally!
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S
: Example 2: Shawarma guy example

Pictures from https://www.youtube.com/watch?v=Q9Z20HCPnww (Brandon Rohrer)

Observed on a
given day

Start with random

Sometimes he works mornings, sometimes evenings
weights

light=working; dark=off

Pr. Congduc Pham
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Error=1-2=.8 Error=1-6=.4 Here comes again our 17
Gradient Descent methods!
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Example 2, con't

Pictures from https://www.youtube.com/watch?v=Q9Z20HCPnww (Brandon Rohrer)

Pr. Congduc Pham

am Increase active Error=1-7=.3 The next day The next day
links, decrease _> betterl pm pm

z inactive links

s

3

At this point
you have a
trained model!

The next day The next Eventually, weights 18
day don't change anymore!

......................
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" Deep Neural Networks (DNN)

@© Deep Neural Networks are Neural Networks with a large number

of hidden layers

® More hidden layers can

create/store more

internal abstract represen-
tation of the training data

Simple Neural Network

@® But optimization/learning is

more difficult!

antique
finish

evasive

answer states

altered astern

answer antique
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® 6 6 0 ©
a b ¢ id e

altered

@ Input Layer

Deep Learning Neural Network

() Hidden Layer

@ Output Layer
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©@ With more layers, there are more parameters to optimize, so
training an MLP is obviously more complex and will take much
much more time, if not done in an intelligent way!

@ A fundamental method in neural network is back-propagation!

Hidden layer(s)

VYa, .
¥,
Backprop output [ayer

21



+U Look back at the NN of example 1

@ In example 1, the NN has already been
trained so that the weights have already
been assigned accordingly!
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To keep our picture
clear, weights will either
o
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1.0 (white)
-1.0 (black) or
0.0 (missing)

horizontal

Pictures from https://www.youtube.com/watch?v=dPWYUELwIdM 22
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: But this was the initial NN!

@ Fully connected, and weights needed to be trained!

Training from scratch

http://www.univ-pau.fr/~cpham

Pr. Congduc Pham

Pictures from https://www.youtube.com/watch?v=dPWYUELwIdM
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o g T _
: How can we train an DNN?

® We saw that Gradient Descent is an efficient way to "smartly"
find the optimal weights when trying to minimise the error

What is the change in error with
Learn all the weights: Gradient descent the Change in the Weights?

Error at: :
change in error

Slope change in weight

lower weight

original weight (T Error at: A error
A weight
d(error)

higher weight change in
weight = +1

original weight (

change in
error = -2

Pr. Congduc Pham
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@© But in a DNN, we would still need to iterate on all neurons to

adjust any single weight in any single hidden layer!
Pictures from https://www.youtube.com/watch?v=dPWYUELwIdM

24
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Which direction is downhill?

@ In multi-dimensional problem, the loss function can be quite
complex

Error at:

lower weight

original weight

higher weight

@® There can be millions of weights to adjust so calculating the
gradient (slope) may require millions of passes through the
neural network to find out which direction is downhill!

@® Therefore, we need to "help" GD to converge faster!

25

Pictures from https://www.youtube.com/watch?v=dPWYUELwIdM
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" The challenge in adjusting the weights!

What is the change in error with
the change in the weights?

Pr. Congduc Pham
niv-pau.fr/~cpham
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We need to find out how much error is

propagated (contributed) by a particular
weight to the total error of the network!

Pictures from https://www.youtube.com/watch?v=dPWYUELwIdM
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' Chaining principle

@ Chaining illustrated on a simple case

Chaining
We know e (error) but we need to

know what is the change in e with a
change in w;,

how much a change in w, affects e?

® o o
X y e
(input) (intermediate (output)
value)

Pr. Congduc Pham
http://www.univ-pau.fr/~cpham

Pictures from https://www.youtube.com/watch?v=dPWYUELwIdM

y =x*w;
gy =X
oW1

e =y*w
de =w
ay

e =X*Wi*w:

de =X *w:
OW1

de = oy”*
oW1 OWs

ode

ay

27
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- Chaining
y =X*wi

ay =X

OWi

e =y*w:
de = w:

@ If we know which way we want to oy
change the error, chaining allows us FEPFSEEFSREFS o
X y e oW1

tO CaICU|ate hOW mUCh We Change (input) (intermed)iate (output) 3i= Q[* @
the weights to let that happen o 6 \E

IS
52 Chaining Here weight can be
o 3 .
g & anywhere in the NN
T c
22 and we want to know
3 § _derr = da _* ob* oc* od*..* 9y ogz* oderr .
< c:l oweight oJweight da db ac ox ay 0z hOW err W|” Change
o = . . .
(slope) if weight is
oo o o0 -0 o o changed
a b c X y Z
If | change weight, how much a change? If | We can apply

change a how much b change? If | change b
how much ¢ change? ...

chaining again and
again!

28
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Backpropagation

® Backpropagation involves taking the error rate of a forward
propagation and feeding this loss backward through the neural
network layers to fine-tune the weights

Chaining

o« e e o e e - We start with the

derr = oa * db* oc* ad*..*oay* oz* der err value at the end
oweight oweight da db ac ox ay 0z

owe'g“‘o o o0 0 o o back in the depth
of the NN

29
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e g . .
' Handling weights

@® It is easy to handle weights: "How much b changes if achanges?"
IS just the weight, whatever it is

Backpropagation challenge: weights

If | change a how much err will change?

We know how much err will change if b changes

Pr. Congduc Pham
http://www.univ-pau.fr/~cpham

i b = wa
o O
b

a ¢ -

derr = db* oderr _g_: i

da da ob

How much b changes if a changes?

Pictures from https://www.youtube.com/watch?v=dPWYUELwIdM
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S .
' Handling sums

® Handling sum is also trivial: "How much zchanges if achanges?"
IS just 1

Backpropagation challenge: sums
If I change a how much err will

1S -
£ change?
% Lo : .\\
g5 : :
- & : ‘\\ We know how much err will change if z
- E A\ \
53 > @\ changes
S E S = +b+c+d+
) E - . N ° = 74 arth et Gt Ees
o £ e p—

B oz = 1
Jderr = 0z oerr a

oa da 0z

How much z changes if a changes?

Pictures from https://www.youtube.com/watch?v=dPWYUELwIdM
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: Handling activation function

® With Logistic function (Sigmoid): "How much 6 changes if a
changes?" can be known using the derivative of Logistic

Backpropagation challenge: sigmoid

If | change a how much err will change?

7.3

1+e
We know how much err will change if b = o(a)
changes
Because math is beautiful /
dumb luck:

Pr. Congduc Pham
http://www.univ-pau.fr/~cpham

® 6
a ammm b =
db = o(a)*(1-6(a))
derr = ob*  Zerr da
da da db

How much b changes if a changes?

Pictures from https://www.youtube.com/watch?v=dPWYUELwIdM
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: Handling activation function

@ With ReL U function: "How much 6 changes if achanges?" can
be known using the derivative of ReLU

Backpropagation challenge: ReLU

If | change a how much err will change?

We know how much err will change if b

changes
,a>0
, otherwise

Pr. Congduc Pham
http://www.univ-pau.fr/~cpham

a ammm b

-]
derr = odb* derr 0, otherwise
oa oa db

How much b changes if a changes?

Pictures from https://www.youtube.com/watch?v=dPWYUELwIdM
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@®© Remember this slides
from part 17

@ "The function is also required
to be differentiable over the
entire space of real numbers"

@ This is needed to make back-

propagation works when we
are doing the chain rule on the

" Back (again) to activation function

Pr. Congduc Pham
http://www.univ-pau.fr/~cpham

" Gradient Descent & output functions

® The only non-linear function that can be used as an activation
function in a neural network is one which is monotonically
increasing. So for example, sin(x) or cos(x) cannot be used as
activation functions.

® Also, the activation function should be defined everywhere and
should be continuous everywhere in the space of real numbers.
The function is also required to be differentiable over the entire
space of real numbers ©

@ For instance Heaviside is not for x=0

@® Typically a back propagation algorithm uses

gradient descent to learn the weights of aneural = ™ * ** | » ' ?

network. To derive this algorithm, the derivative of the activation
function is required

https://machinelearningmastery.com/a-gentle-introduction-to-sigmoid-function

105

derivatives throughout all the layers of the Neural Network!

34
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Putting it altogether

TRAINING &
BACKPROPAGATION
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U Step-by-step example

@® https://theneuralblog.com/forward-pass-backpropagation-
example/

b2=0.35

=0.1
Nt ?pected
utputs
=0.5 @ =0.95
Output Layer

Input Layer Hidden Layer

36
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B \Watch additional (great) videos

Backpropagation Backpropagation
- calculus
é = ; “.’
https://www.youtube.com/watch?v=11g3gGewQ5U https://www.youtube.com/watch?v=tleHLnjs5U8
(3Blue1Brown) What is backpropagation really doing? (3Blue1Brown) Backpropagation calculus

37
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'k More details on backpropagation

For those who are curious!

©® How Does Back-Propagation Work in Neural Networks?

® https://towardsdatascience.com/how-does-back-propagation-work-in-
neural-networks-with-worked-example-bc59dfb97{48

@ How to Code a Neural Network with Backpropagation In Python
(from scratch) — without any library, just to understand what's
under the hood!

@ https://machinelearningmastery.com/implement-backpropagation-
algorithm-scratch-python/

® How Back-Propagation Works — A Python Implementation

@ https://towardsdatascience.com/how-back-propagation-works-a-python-
implementation-21004d3b47c¢c6

38
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4 Beiit .
Back to Loss/Error functions

® Mean Squared Error (MSE) and Mean Absolute Error (MAE) are
appropriate loss functions for regression tasks

KN

* NV (a @ — ’ = (\ (;) & — l ( - -
ol = 3 (+, >zxr..2:(‘@>-a ) MSE = X ¥y yJ
ATt 100 B

> The square difference
K between actual and
re

® For classification problems, log loss function (also known as
cross-entropy) is more suitable with Sigmoid activation function

—(ylog(p) + (1 —y)log(1 —p))

Equation of Log loss function. y-Actual output, p-probability predicted by the logistic regression

39
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@® https://towardsdatascience.com/why-not-mse-
as-a-loss-function-for-logistic-regression-
589816b5e03c

@® First, the target value is either 0/1 in classifi-
cation problems, so (» - ») will always be

between 0—1, making it very difficult to track the progress of
error value

® Second, and the main reason actually, MSE doesn’t work well
with logistic regression because when the MSE loss function is
plotted with respect to weights of the logistic regression model,
the curve obtained is not a convex curve which makes it very
difficult to find the global minimum

From https://medium.com/analytics-vidhya/understanding-the-loss-function-of-logistic-regression-ac1eec2838ce 40
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: Types of Deep Neural Networks

® Feedforward Neural Networks Feed-forwardnetwork
(FFNs, ANNs or NNs)

@® Recurrent Neural Networks

i (RNNs)

f @© Convolutional Neural

g Networks (CNNs) .
g © Autoencoder Neural s
s Networks (AEs)

Original
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- Convolutional Neural Networks

- Ve=+ ~

predicted
pooling convolutional pooling  fully-connected class
layer layer layer layer

@® Contain five types of
layers

@® Each layer has a specific
purpose, like summarizing, —
connecting or activating |

@© CNN are good at image
classification and object
detection

convolutional

input image
P 9 layer
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"~ Running the convolution: filtering (1)
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"~ Running the convolution: filtering (2)

Pr. Congduc Pham
http://www.univ-pau.fr/~cpham

-1 1
-1 1
-1 1
-1 1
-1]- 1
-1]- 1
1] - 1
-1 1
1] - 1

https://www.youtube.com/watch?v=dPWYUELwIdM&list=PLhnok3M54|IAVKHLVIBE7ogmIBNnFNBUY70&index=5&t=3097s

45


https://www.youtube.com/watch?v=dPWYUELwIdM&list=PLhnok3M54lAVKHLvl8E7ogmlBnFNBUY70&index=5&t=3097s

m m
B B g »
.'@Gﬂ IVERSITE
T E T DES

“77" Running the convolution (3)

1-!-1-1-1+1-+—1+1-+-1+1+1_1
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~ Running the convolution: filtering (4)
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~ Running the convolution: filtering (5)
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"~ Running the convolution: filtering (6)
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“~" Running the convolution: filtering (7)
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- Running the convolution: filtering (8)
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1 image = stack of filtered images

Convolution layer
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e B B . _
- Next, Pooling = reduce the size

® Define window size (usually 2 or 3)
® Define a stride (usually 2)

maximum

(oMl -0.11 | 0.11 - ﬁ -0.11

-0.11 kY -0.11 0.11 -0.11

0.11 -0.11-0.33 0.11 -0.11
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At the end of pooling
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'O‘“E . 'O'“ The pattern of the original
Is still maintained
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Do the same for stack of images
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Ul it '
Normalization: ReLU function

® Keep things from becoming unmanageably large as we are
progressing through all the layers
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HU e
' Layers can be repeated!

Watch the video on YouTube htips://www.youtube.com/watch?v=FmpDlaiMIeA (Brandon Rohrer)
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predicted
pooling convolutional pooling fully-connected class
layer layer layer

convolutional layer

. ti
Input image Iayer
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: We found the winner!
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e g T
: We can always add more stacks!
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In addition to hidden layers, the NN can have hidden

"secret" categories before concluding in is an "X"
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- DNN for image classification

@® Top 4 Pre-Trained Models for Image Classification with Python
Code

@® https://www.analyticsvidhya.com/blog/2020/08/top-4-pre-
trained-models-for-image-classification-with-python-code/
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TensorFlow tutorial 1

@® ML basics with Keras

® Basic image classification
@ https://www.tensorflow.org/tutorials/keras/classification

'I TensorFlow Install Learn v APl Resources v Community v More v Q Search @ English ~ GitHub Signin

Pr. Congduc Pham

http://www.univ-pau.fr/~cpham

TensorFlow Core

Overview Tutorials Guide

TensorFlow tutorials
Quickstart for beginners

Quickstart for experts
BEGINNER

ML basics with Keras ~
Basic image classification
Basic text classification
Text classification with TF Hub
Regression
Overfit and underfit
Save and load

Tune hyperparameters with the
Keras Tuner

More examples on keras.io [

Load and preprocess data v

® You can click on "Run in Google Colab"

Migrate toTF2  TF1.

Was this helpful? 9 G

TensorFlow > Learn > Tens w Core > Tutorials

Basic classification: Classify images of clothing o -

) Runin Google Colab ! Download notebook

O View source on GitHub

This guide trains a neural network model to classify images of clothing, like sneakers and shirts. It's okay if you
don't understand all the details; this is a fast-paced overview of a complete TensorFlow program with the details
explained as you go.

This guide uses tf keras, a high-level API to build and train models in TensorFlow.
# TensorFlow and tf.keras
import tensorflow as tf

# Helper libraries

On this page

Import the Fashion
MNIST dataset

Explore the data

Preprocess the
data

Build the model
Setup the layers

Compile the
model

Train the model
Feed the model

Evaluate
accuracy

Make predictions
Verify
predictions
Use the trained
model

@® Then use "Copy to Drive" to get your own copy for further
testing and editing
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TensorFlow tutorial

@® ML basics with Keras

® Basic regression
@ https://www.tensorflow.org/tutorials/keras/regression

1F TensorFlow Install  Learn v APl v  Resources v  Community v  More v Q_ search @ English v GitHub  Signiin

TensorFlow Core

Overview Tutorials Guide Migrate to TF2 TF1/

On this page

The Auto MPG

TensorFlow > Learn > TensorFlow Core > Tutorials Was this helpful? @5 6B dataset

TensorFlow tutorials Get the data

Quickstart or eginners Basic regression: Predict fuel efficiency 0 - e tha it
Quickstart for experts ‘Snn!gl‘l’g'en?:g(a
and test sets
BEGINNER [ 't the
O Runin Google Colab o View source on GitHub i Download notebook d":“;ec e

ML basics with Keras A~ Split features

Basic image classification from labels
In a regression problem, the aim is to predict the output of a continuous value, like a price or a probability. Contrast Normalization

this with a classification problem, where the aim is to select a class from a list of classes (for example, where a

Basic text classification

Text classification with TF Hub The
Reassion picture contains an apple or an orange, recognizing which fruit is in the picture). Normalization
layer
Overfit and underfit . . . )
This tutorial uses the classic Auto MPG dataset and demonstrates how to build models to predict the fuel efficiency Linear regression
e endoad of the late-1970s and early 1980s automobiles. To do this, you will provide the models with a description of many Linear
Tune hyperparameters with the " . . . . . " regression with
Keras Tunes automobiles from that time period. This description includes attributes like cylinders, displacement, horsepower, one variable
More examples on keras.io [} and weight. Linear
regression with
This example uses the Keras API. (Visit the Keras tutorials and guides to learn more.) multiple inputs
Load and preprocess data v AR

® You can click on "Run in Google Colab"

@® Then use "Copy to Drive" to get your own copy for further
testing and editing
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TensorFlow tutorial

® Load and preprocess data
® Images
@® https://www.tensorflow.org/tutorials/load _data/images

1F TensorFlow Install  Learn v APl v  Resources v  Community v  More v Q search @ engiish ~ GitHub  Signin

TensorFlow Core

Overview Tutorials Guide Migrate to TF2 TF1/
= ¢ On this page
Setup
BEGINNER TensorFlow > Learn > TensorFlow Core > Tutorials Was this helpful? (5 G Downiosd the

flowers dataset

Load data using a

ML basics with Keras v Load and preprocess images a- Keras utility

Create a dataset

Load and preprocess data ~
Visualize the
Images 3 data
Q) Runin Google Colab View source on GitHub Download notebook
Video € = Standardize the
csv data
Configure the
NumPy This tutorial shows how to load and preprocess an image dataset in three ways: d;’;g‘:’;r ©
pandas.DataFrame performance
TFRecord and tf Example « First, you will use high-level Keras preprocessing utilities (such as Train a model

tf.keras.utils.image_dataset_from_directory) and layers (such as tf.keras.layers.Rescaling)to

Additional formats with tf.io (£ Using tf.data for

Text read a directory of images on disk. finer control
Configure
More text loading « Next, you will write your own input pipeline from scratch using tf.data. dataset for
Unicode (4 performance
« Finally, you will download a dataset from the large catalog available in TensorFlow Datasets. Visualize the
Subword Tokenization [/} date o

ADVANCED Continue training
= the model

® You can click on "Run in Google Colab"

@® Then use "Copy to Drive" to get your own copy for further
testing and editing
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=Uk2E CNN with TensorFlow

Assignment to do in lab

@® https://www.tensorflow.org/tutorials/images/cnn

1» TensorFlow Install Learn v APl v Resources v Community v More v Q_ Search @ English ~ GitHub Signin

TensorFlow Core

Overview Tutorials Guide Migrate to TF2 1=

= Filter On this page
e Import TensorFlow
g = = - P - TensorFlow > Learn > TensorFlow Core > Tutorials Was this helpful? (5 cp Download and
a ransfer learning and fine-tuning prepare the
E (&) CIFAR10 dataset
Transfer learning with TF Hub -
c L Convolutional Neural Network (CNN) © - ,
= Data Augmentation Verify the data
o = g
A = Image segmentation Crea(el t?e .
convolutional base
1) g Object detection with TF Hub [ . I
T I 1 3 ense layers
o Video classification ) Runin Google Colab O View source on GitHub i Download notebook ontop
_8_’ g Transfer learning with MoViNet o Compile and train
: the model
c 3 This tutorial demonstrates training a simple Convolutional Neural Network (CNN) to classify CIFAR images.
o 32 Text v X i ] Evaluate the model
Because this tutorial uses the Keras Sequential API, creating and training your model will take just a few lines of
O = code
o Q_ Audio v '
-
o <
Structured data v Import TensorFlow
Generative v o I—D
import tensorflow as tf
Model optimization b4 from tensorflow.keras import datasets, layers, models

® You can click on "Run in Google Colab"

@® Then use "Copy to Drive" to get your own copy for further
testing and editing
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Image classification with TensorFlow
Assignment to do in lab

@® https://www.tensorflow.org/tutorials/images/classification

1F TensorFlow Install

TensorFlow Core

Overview Tutorials Guide
= Filter

ADVANCED

Customization v

Distributed training v

Vision A

Convolutional Neural Network
Image classification

Transfer learning and fine-tuning
Transfer learning with TF Hub

Data Augmentation

Image segmentation

Object detection with TF Hub [
Video classification €}

Transfer learning with MoViNet £}

Learn v APl v Resources v Community v More v Q_ Search

Migrate to TF2 TF1/

TensorFlow > Learn > TensorFlow Core > Tutorials Was this helpful? 2 Gl

Image classification 0 -

i Download notebook

O View source on GitHub

This tutorial shows how to classify images of flowers using a tf.keras.Sequential model and load data using
tf.keras.utils.image_dataset_from_directory . It demonstrates the following concepts:

) Runin Google Colab

« Efficiently loading a dataset off disk.

« Identifying overfitting and applying techniques to mitigate it, including data augmentation and dropout.
This tutorial follows a basic machine learning workflow:

1. Examine and understand data

2. Build an input pipeline

® You can click on "Run in Google Colab"

@® Then use "Copy to Drive" to get your own copy for further
testing and editing

@ english ~

GitHub Signin

On this page
Setup

Download and
explore the
dataset

Load data using a
Keras utility

Create a
dataset

Visualize the data

Configure the
dataset for
performance

Standardize the
data

A basic Keras
model

Create the
model

Compile the
model

Model
summary

Train the madel
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©® "Sensors, computational and physical world are closely
integrated in CPS. CPS includes both conventional embedded
Systems and control systems that are presumed to be
remodelled by emerging methodologies and integration of the
Internet of Things. /o7 is the base or enabling technology for
cyber-physical systems.”

©® "While deep learning in the cloud has been tremendously
successful, it is not applicable in all situations. Many applications
require on-device inference." [see ref]

@ "And the delay caused by the roundtrip to the cloud is prohibitive
for applications that require real-time ML inference" [see ref]

niv-pau.fr/~cpham

Pr. Congduc Pham

http://www.u
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ref;

4 Beiit :
Al on microcontrollers?

® "Your iPhone now runs facial recognition and speech
recognition on device. Your Android phone can run on-device
translation. Your Apple Watch uses machine learning to detect

movements and ECG patterns." [see ref]

@ BUT Al on microcontrollers needs to go a step further to make
Al techniques computationally tractable on much more
resource-constrained devices ~

@ "TinyML takes edge Al one step
further, making it possible to run
deep learning models on , ,
microcontrollers". [see ref] || == T :

® https//www.tinymlorg/ ~ |EEESR-e e ol

a
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' TinyML & Tensorflow Lite

Main loop
Device microphone Audio provider
Captures audio
= Bt samples from
V microphone

Feature provider

@® It is already part of our daily life in most of .

as

<
2
H
3

wake-up word application T | I [ —
® The most popular and built-out ecosystem == =
for TinyML development is TensorFlow Lite St

Device LEDs Command responder

for Microcontrollers (TF Lite Micro) o | i

Inference Learning -
o0 i
Q TensorFlow Lite ===

Pr. Congduc Pham
http://www.univ-pau.fr/~cpham

Real Time Data

ini tflite format
Training
Conversion Array Modelling
TensorFlow
Model C Array Models Microcontroller
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Example: the Arduino Nano 33 BLE Sense

®© ARM Cortex-M4 at 64 MHz with BLE and plenty of sensors! 3D
accelerometer, microphone, gesture, light, proximity, barometric
pressure, temperature, humidity. Run Al using TinyML and

™ |
TensorFlow™ Lite. https://youtu.be/HzCRZsGJLbl

)

RU LINFERENCIN
ON ARDUINO
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~ Al on single computer boards?

@® Single Board Computer can be part of the CPS ecosystem

@® They can natively run complex Al models but for some real-time
applications, Al accelerators can provide them with specialized
Al hardware such as TPU (Tensor Processing Unit), VPU (Visual
Processing Unit), ...

@ For SBC, the most convenient Al accelerators are those

embedded on the USB stick format
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: Al accelerators in USB stick format

T.l___;-rlt:k“"

Al Compute Stick

@® Depending on the product, the AI/ML models can be different,
with performances depending on how you plan to use them

® Some provide pre-trained DL models for image classification
and object detection, allowing real-time applications on SBC

@® They can support most of the well-know Al frameworks/libs
such as TensorFlow, ApacheMXNet, PyTorch,

http://www.univ-pau.fr/~cpham

Pr. Congduc Pham
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" Example: real-time embedded Al on RPI

@ Dive in the exciting world of real-time embedded Al with
hardware accelerators (Intel Neural Compute Stick, Google

Coral USB, ...)
https://youtu.be/6XnktdajhxU

intel' Neural Compute Stick 2 [}

= ¥

C / ‘
| & Raspberry Pi
Smart cam
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" Edgelmpulse

® https://www.edgeimpulse.com/

@ Edge Impulse is a cloud-based machine learning operations
(MLOps) platform for developing embedded and edge ML
(TinyML) systems that can be deployed to a wide range of

hardware targets st o v S
@® It enables the deployment Easily deploy on any

of highly-optimized ML on a3 edgeitargel

hardware ranging from W S

MCUs to CPUs and [ = S e
custom Al accelerators
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' eXplainable Al?

©® "the effectiveness of Al systems is limited by the machine’s
current inability to explain their decisions and actions to human

users" [see ref]

) AL S DoD and non-DoD
5 ystem Applications
€ g —= e _»
3 DR
g & _,.'&.? Transportation
é § - P("_;\..n‘el:\'.w(M\m"(M secunty
& 2 « We are enteriqg a new Medicine * Why did you do Fhat?
age of Al applications + Why not something else?

. Mach'i:nehlealrning is the Finance * When do you succeed?
core technology * When do you fail?

« Machine learning models Legal * When can I trust you?
are opaque, non- » How do I correct an error?
intuitive, and difficult for Military
people to understand

ref; https://www.darpa.mil/program/explainable-artificial-intelligence
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- eXplainable Al?

@ "New machine-learning systems will have the ability to explain
their rationale, characterize their strengths and weaknesses, and
convey an understanding of how they will behave in the future"

[see ref]

IS

g Today
% S « Why did you do that?
c E o Machine Decision or Y. 3 * Why not something else?
o § Tram.ng | Learnin n Learned Recommendation * Whendo you succeed?
S 2 Data 9 Function * Whendo you fail?
© £ Process « Whencan | trust you?
g’ = * How do | correct an error?
o 2
O £
=
o <

XAl | Task
\ 4

* | understand why

New « | understand why not
Training n Machine N Explainable | Explanation « | know when you succeed
Data Learning Model Interface * | know when you fail

Process « | know when to trust you
* | know why you erred

ref; https://www.darpa.mil/program/explainable-artificial-intelligence
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