Wireless network evolution & Internet of Things

Prof. Congduc Pham Université de Pau, France

Cellular Network Generations

It is useful to think of cellular Network/telephony in terms of generations:

□ 0G: Briefcase-size mobile radio telephones

□ 1G: *Analog* cellular telephony

- **Q**2G: *Digital* cellular telephony
- □ 3G: *High-speed* digital cellular telephony (including video telephony)
- □ 4G: IP-based "anytime, anywhere" voice, data, and multimedia telephony at *faster* data rates than 3G
- □ 5G: more throughput, smaller latency, M2M, IoT,...

- Allow usage of the whole bandwith for each end-user
- Orthogonal spread spectrum code

(some) key technologies

Multiple antenna systems, MIMO

Orthogonal Frequency Division Multiplexing (OFDM)

OFDM Signal Frequency Spectra

MIMO - Multiple Input Multiple Output

Each multipath route is treated as a separate channel, creating many "virtual wires" over which to transmit signals

Traditional radios are confused by this multipath, while MIMO takes advantage of these "echoes" to increase range and throughput

OFDM

beam forming on Massive MIMO

3.5G (HSPA)

High Speed Packet Access (HSPA) is an amalgamation of two mobile telephony protocols, High Speed Downlink Packet Access (HSDPA) and High Speed Uplink Packet Access (HSUPA), that extends and improves the performance of existing <u>WCDMA</u> protocols.

14 Mbit/s in the downlink and 5.76 Mbit/s in the uplink

3.5G introduces many new features that will enhance the UMTS technology in future. 1xEV-DV already supports most of the features that will be provided in 3.5G. These include:

- Adaptive Modulation and Coding (16-QAM & 64-QAM)
- Fast Scheduling (prioritizes users with the most favorable channel conditions)
- MIMO

HSPA+

- Provides extensions to the existing HSPA definitions and is therefore backwards compatible all the way to the original Release 99 WCDMA network releases.
- Data rates up to 84 Mbit/s in the downlink and 10.8 Mbit/s in the uplink (per 5 MHz carrier) with multiple input, multiple output (2x2 MIMO) technologies and higher order modulation (64 QAM). With Dual Cell technology, these can be doubled.

INFO

UMTS: Universal Mobile Telecommunications System (W-CDMA)

2G, 3G & 4G network architecture

More throughput in near future!

Cellular network standards

V• T• E		Cellular network standards	[hide]
0G (radio telephones)	MTS · MTA * MT	B * MTC · IMTS · MTD · AMTS · OLT · Autoradiopuhelin	
10	AMPS family	AMPS (TIA/EIA/IS-3, ANSI/TIA/EIA-553) · N-AMPS (TIA/EIA/IS-91) · TACS · ETACS	
IG	Other	NMT · C-450 · Hicap · Mobitex · DataTAC	
	GSM/3GPP fam	ily GSM · CSD	
	3GPP2 fam	ily cdmaOne (TIA/EIA/IS-95 and ANSI-J-STD 008)	
20	AMPS fam	III D-AMPS (IS-54 and IS-136)	
	Ott	CDPD · iDEN · PDC · PHS	
	GSM/3GPP fam	HSCSD · GPRS · EDGE/EGPRS (UWC-136)	
(2.5G, 2.75G)	3GPP2 fam	IIV CDMA2000 1X (TIA/EIA/IS-2000) · 1X Advanced	
(2100) 21100)	Ott	WiDEN	
3G (IMT-2000)	3GPP family	UMTS (UTRAN) · WCDMA-FDD · WCDMA-TDD · UTRA-TDD LCR (TD-SCDMA)	
00 (III1-2000)	3GPP2 family	CDMA2000 1xEV-DO Release 0 (TIA/IS-856)	
	3GPP family	HSPA · HSPA+ · LTE (E-UTRA)	
3G transitional	3GPP2 family	CDMA2000 1xEV-DO Revision A (TIA/EIA/IS-856-A)	
(3.5G, 3.75G, 3.9G)	3GPP2 family	EV-DO Revision B (TIA/EIA/IS-856-B) · DO Advanced	
	IEEE family	Mobile WiMAX (IEEE 802.16e) • Flash-OFDM • IEEE 802.20	
4G	3GPP family	LTE Advanced (E-UTRA)	
(IMT-Advanced)	IEEE family	WiMAX-Advanced (IEEE 802.16m)	
5G	Research concep	t, not under formal development	
	Related articles	Cellular networks • Mobile telephony • History • List of standards • Comparison of standards • Channel access methods • Spectral efficiency comparison table • Cellular frequencies • GSM frequency bands • UMTS frequency bands • Mobile broadband • NGMN Allianc	e • MIMO
Links	External links	3rd Generation Partnership Project (3GPP) & Third Generation Partnership Project 2 (3GPP2) & IMT-2000/IMT-Advanced Portal & Institute of Electrical and Electronics Engineers Inc. (IEEE) 장·International Telecommunication Union (ITU) 장· Telecommunications Industry Association (TIA) 장·	

Communicating Objects

LTE-M (Cat M1, LTE-MTC)

- 3GPP Extension of LTE (4G) for Machine Type Communication (MTC) to propose lower throughput (up to 1Mbps) and low-power operation
- No need to change much hardware
- Can handle voice and video
- Can handle mobility (roaming inherited from 4G)

V.T.E LTE Cat 1 LC-LTE/MTCe [7][8] LTE Cat 0 LTE Cat M1 **3GPP Release** Release 8 Release 12 Release 13 **Downlink Peak Rate** 10 Mbit/s 1 Mbit/s 1 Mbit/s **Uplink Peak Rate** 5 Mbit/s 1 Mbit/s 1 Mbit/s Latency 50-100ms 10ms-15ms not deployed Number of Antennas 1 2 1 Full or Half Duplex Full or Half Duplex Duplex Mode **Full Duplex** 1.4 - 20 MHz 1.4 - 20 MHz 1.4 MHz Device Receive Bandwidth 1 (SISO) **Receiver Chains** 2 (MIMO) 1 (SISO) Device Transmit Power 23 dBm 23 dBm 20 / 23 dBm

3GPP Narrowband Cellular Standards [edit]

LTE-M

LTE-M by Orange

Orange developing end-to-end IoT ecosystem from device to platform

In France :

- LTE-M POC in Lille in July 2018
- 8th November Commercial Launch
- Nov-Dec 2018 : Developer Challenge with SNCF

30

- Cat M1
- PSM
- SMS

Coverage map online :

https://www.orange-business.com/fr/reseau-LTE-M

300 MHz

© Ericsson AB 2013 | 1/31/2013 | Page 29 (14)

□ A set of objectives, various technologies

Figure 1. 5G will enable very diverse use cases with extreme range of requirements

3 GHz

30 GHz

300 GHz

5G demo at ITU Telecom World'19

NB-IoT (LTE Cat NB1)

Narrow-Band IoT uses much smaller bandwitch than LTE-M to offer very low-power operation mode to small devices

□ Throughput up to 250kbps

3GPP Narrowband Cellular Standards [edit]

				NR Ist		
V·T·E [7][8]	LTE Cat 1	LC-LTE/MTCe	eMTC		ND-IOT	
		LTE Cat 0	LTE Cat M1	LTE Cat M2	non-BL	LTE Cat NB1
3GPP Release	Release 8	Release 12	Release 13	Release 14	Release 14	Release 13
Downlink Peak Rate	10 Mbit/s	1 Mbit/s	1 Mbit/s			250 kbit/s
Uplink Peak Rate	5 Mbit/s	1 Mbit/s	1 Mbit/s			250 kbit/s (multi-tone) 20 kbit/s (single-tone)
Latency	50–100ms	not deployed	10ms-15ms			1.6s-10s
Number of Antennas	2	1	1			1
Duplex Mode	Full Duplex	Full or Half Duplex	Full or Half Duplex			Half Duplex
Device Receive Bandwidth	1.4 – 20 MHz	1.4 – 20 MHz	1.4 MHz			180 kHz
Receiver Chains	2 (MIMO)	1 (SISO)	1 (SISO)			1 (SISO)
Device Transmit Power	23 dBm	23 dBm	20 / 23 dBm			20 / 23 dBm

NB-IoT by SFR

Optimizing for IoT

Wireless space – long range

Energy-Range dilemma

Transmitting: TC/22.5/HUM/67.7; about 20 bytes with packet header Time on air can be 1.44s with LoRa

THE TRUE LPWAN REVOLUTION!

Orange LoRa

Orange IoT LoRaWAN® network deployments

- France : Nationwide coverage in 2018.
- 95% population coverage, 30 000 cities
- 4900 Gateways deployed on mobile site
- Densify our networks on demand depending on customers needs

A targeted LoRaWAN coverage in other countries, in cities, airports, ports or industrial sites for B2B Market

⁽¹⁾ Figures as of early July 2018

For France

Couverture LoRa® Orange

https://www.orange-business.com/fr/reseau-iot

LoRaWAN coverage from Semtech

Today's LoRaWAN[®] Coverage Availability

LTE-M vs NB-IoT vs LoRa vs SigFox?

LoRaWAN[®] Will Be The De Facto LPWAN Standard

LoRaWAN is forecasted to be the dominant LPWAN technology with > 50% marketshare,

LPWAN19 Conference

www.semtech.com

SEMTECH

LPWAN=star topology, gateway centric

33

- LoRaWAN specifications/protocols run on top of LoRa physical networks. It is defined and managed by the <u>LoRa Alliance</u>
- Make possible to run large-scale, public LoRa networks

- The physical layer, thus the long-range radio technology, is called LoRa
- A so-called 1-byte sync word is used to add a "filtering" level
- You can decide to transmit using only the LoRa physical layer and then define our own packet format
- With pure LoRa you can transmit from any device to any other device with same LoRa datarate, frequency and sync word
- LoRaWAN uses LoRa physical layer but defines its own packet format and uses sync word of 0x34 (public LoRaWAN)
- In LoRaWAN, a gateway applies I/Q inversion on TX, and nodes do the same on RX. This ensures that gateways can talk to nodes and vice-versa, but gateways will not hear other gateways and nodes will not hear other nodes" [LMIC Arduino]

 A full LoRaWAN gateway should be able to listen on multiple channels and spreading factors

EU863-870

Uplink:

They are mostly based on the Semtech SX1301 radio concentrator

• Most of LoRaWAN gateways run the following software

- the Semtech's concentrator gateway at the lowest level (<u>https://github.com/Lora-net/lora_gateway</u>)
- The Semtech's LoRa packet forwarder on top of the low-level concentrator gateway (<u>https://github.com/Lora-net/packet_forwarder</u>)
- A LoRa packet forwarder is a program running on the host of a LoRa gateway that forwards RF packets receive by the concentrator to a server through a IP/UDP link, and emits RF packets that are sent by the server."
- The server is the so-called LoRaWAN Network Server (LNS) as described in the next slides
- The Network Server is usually linked to the Application Server which can be seen as a LoRaWAN cloud

- LNS manages the state of the network, has knowledge of devices active on the network and is able to handle overthe-air-activation procedure (OTAA)
- When data is received by multiple gateways, the LNS can also de-duplicate this data
- When a message needs to be sent back to a device, the LNS forwards it to one of the gateways
- Currently, each LoRaWAN network provider will have their own LNS
 - The Packet Forwarder run on deployed gateways needs to identify an LNS
 - Therefore users need to be "bounded" to a particular LoRa network provider because end-devices need to be registered

- Popular LoRa Network Provider
- Provides the TTN Network Server

- Community-based deployment of LoRa gateways
 - User A can buy a LoRa gateway, register it and deploy it
 - User B then creates an account on TTN to register its devices
 - Messages from registered devices received by a TTN gateway will be made available for users on the TTN console

Integrations

Application

THE THINGS CONSOLE COMMUNITY EDITION	pplications	Gateways	Support	O cpham	~						
Applications > 🥪 pau_lorawan_testing											
Application ID pau_lorawan_testing Description Pau LoRaWAN testing Created 9 months ago Handler ttn-handler-eu (current handler)				aocum	entation						
APPLICATION EUIS				✿ <u>man</u>	<u>age euis</u>						
		THINGS CO	NSOLE				Applic	ations Gateways	Support	O cpi	ham 🗸
DEVICES	Applications	> 🥪 pau_lorav	van_testing >	Devices							
						Overview	Devices	Payload Formats	Integrations	Data	Settings
2 registered devices	DEVICES	;								1 re	gister device
	pau_testi	ng_device Pau	u testing device						****	xxxx	•
	pau_testi	ng_otaa_device							xxxxxxxxxxx	xxxx	•

Wireless space – short range

Energy-Range dilemma

Transmitting: TC/22.5/HUM/67.7; about 20 bytes with packet header Time on air can be 1.44s with LoRa

Bluetooth 802.15.1

Bluetooth Spec. Evolution

Specifications	1.1	1.2	2.0 + EDR	2.1 + EDR	3.0 +HS	4.0
Adopted	2002	2005	2004	2007	2009	2010
Transmission	723.1	723.1	2.1	3	24	25
Rate	kbps	kbps	Mbps	Mbps	Mbps	Mbps
Standard PAN Range	10 m	10 m	10 m	10 m	10 m	50 m
Improved Pairing (without a PIN)				Yes	Yes	Yes
Improved Security		Yes	Yes	Yes	Yes	Yes
NFC Support			Yes	Yes	Yes	Yes

IoT Key Enabling Wireless Technologies Summary

Standards	Freq(s)	Max BW	Data rate	Mod	Range	Network	Applications
LTE-M Category 0/1 (LTE Rel12/13)	LTE band	1.4 MHz	200 kbps ~ 1 Mbps	OFDM	1000m	WMAN	lower speed and power versions of the LTE standard defined in Rel12/13
802.11ah	Sub GHz	1 to 16 MHz	150kbps to 78 Mbps	OFDM	1000m	WLAN	Target for Internet of Things, wearable devices or extend range
802.11p	Sub GHz	5/10/20 MHz	1.5Mbps to 54Mbps	OFDM	1000m	WLAN	Wireless access in vehicle environment (WAVE)
Bluetooth Low Energy	2.4GHz	2 MHz	1Mbps	GFSK	50m	WPAN	automotive, healthcare, security, home entertainment
Z-Wave (ITU G.9959)	868.42 MHz 908.42 MHz	200 kHz	9.6 kbps ~100 kbps	BFSK GFSK	100cm	WPAN	Remote controls, smoke alarm, security sensors Owned by Denmark Zensys
Zigbee (802.15.4)	ISM <2.4GHz	5 MHz	40kbits/s, 250kbis/s	BPSK OQPSK	10m	WPAN	Home automation, smart grid, remote control
Thread (802.15.4)	ISM <2.4GHz	5 MHz	40kbits/s, 250kbis/s	BPSK, FSK OQPSK	10m	WPAN	Mesh network for home and support 6LoWPAN
Wi-Sun (802.15.4g)	ISM <2.4GHz	200kHz to 1.2 MHz	50 kbps to 1Mbps	FSK ,OFDM, OQPSK	1000m	WPAN	FAN and HAN Smart Utility Networks, Smart Grid, Smart Metering
NFC	13.56 MHz	1MHz	848Kbps	FSK, ASK	20cm	P2P	Contactless payment, easy other connection (Wi-Fi, BT), identity and access

Bluetooth Low Energy Channel Allocations

- 3 advertising channels (37, 38, 39)
- 37 data channels
- 0.6-1.2 ms for scanning

© 2015 ATEAM SCIENTIFIC

< 10 – 20 times less power

32 hop frequencies for same task

22.5 ms

٠

IEEE 802.15.4 in ISM 2.4GHz

- Low-power radio in the 2.4GHz band offering 250kbps throughput at physical layer
- Power transmission from 1mW to 100mW for range from 100m to about 1km is LOS
- CSMA/CA
- BPSK, used as physical layer 15-1 in ZigBee

IEEE 802.15.4 in ISM 2.4GHz

- Low-power radio in the 2.4GHz band offering 250kbps throughput at physical layer
- *CC2420* Chipcon Products from Texas Instruments Condition / Note Parameter Min. Typ. Max. Unit Current Consumption, transmit mode: The output power is delivered P = -25 dBm 8.5 mA P = -15 dBm 9.9 mA differentially to a 50 Ω singled P = -10 dBm 11 mA ended load through a balun, see 14 P = -5 dBmmΑ also page 55. 17.4 P = 0 dBmmA BitEr Threshold 1E-6 S₀ S_1 $\varphi_1(t)$ 1E-7 Transmitted 1E-8 $\sqrt{E_s}$ $\sqrt{E_s}$ bit = 01E-9

-5

+15

+10

Signal-to-Noise Ratio (SNR)

IEEE 802.15.4 in industry

IoT Key Enabling Wireless Technologies Summary

St	tandards	Freq(s)	Max BW	Data rate	Mod	Range	Network	Applications
Cat (LTE	LTE-M tegory 0/1 E Rel12/13)	LTE band	1.4 MHz	200 kbps ~ 1 Mbps	OFDM	1000m	WMAN	lower speed and power versions of the LTE standard defined in Rel12/13
8	02.11ah	Sub GHz	1 to 16 MHz	150kbps to 78 Mbps	OFDM	1000m	WLAN	Target for Internet of Things, wearable devices or extend range
8	302.11p	Sub GHz	5/10/20 MHz	1.5 Nibps to 54 Mbps	OFDM	1000m	WLAN	wireless access in vehicle environment (WAVE)
B Lo	luetooth w Energy	2.4GHz	2 MHz	1Mbps	GFSK	50m	WPAN	automotive, healthcare, security, home entertainment
ב (ודו	Z-Wave U G.9959)	868.42 MHz 908.42 MHz	200 kHz	9.6 kbps ~100 kbps	BFSK GFSK	100cm	WPAN	Remote controls, smoke alarm, security sensors Owned by Denmark Zensys
(8	Zigbee 802.15.4)	ISM <2.4GHz	5 MHz	40kbits/s, 250kbis/s	BPSK OQPSK	10m	WPAN	Home automation, smart grid, remote control
(8)	Thread 302.15.4)	ISM <2.4GHz	5 MHz	40kbits/s, 250kbis/s	BPSK, FSK OQPSK	10m	WPAN	Mesh network for home and support 6LoWPAN
(8)	Wi-Sun 02.15.4g)	ISM <2.4GHz	200kHz to 1.2 MHz	50 kbps to 1Mbps	FSK ,OFDM, OQPSK	1000m	WPAN	FAN and HAN Smart Utility Networks, Smart Grid, Smart Metering
-	NFC	13.56 MHz	1MHz	848Kbps	FSK, ASK	20cm	P2P	Contactless payment, easy other connection (Wi-Fi, BT), identity and access

PHY Differences between 802.11ac and 802.11ah

Feature	802.11ac	802.11ah
Channel bandwidth	20/40/80/160 MHz	1/2/4/8/16 MHz
FFT size	64/128/256/512	32/64/128/256/512
Data subcarriers /	52/108/234/468	24/52/108/234/468
Pilot Sub-carriers	4/6/8/16	2/4/6/8/16
Pilot Type	Fixed pilot	Fixed pilot or traveling pilot
Subcarrier spacing	312.5 kHz	31.25 kHz
OFDM symbol duration	4.0/3.6 us	40/36 us
Guard interval (short/normal/long)	0.4/0.8/1.6 us	4/8/16 us
Preamble duration	16 us	320 us(1M BW)/160 us
Modulation types	BPSK/QPSK/16QAM/64QAM/256QAM	BPSK/QPSK/16QAM/64QAM/256QAM
Coding rates	1/2, 2/3, 3/4, 5/6	1/2 rep2, 1/2, 2/3, 3/4, 5/6
MCS	0-9	MCS0-9, <mark>10</mark>
Transmission Mode	VHT mode, non-HT duplicate mode	Normal mode S1G, 1 MHz duplicate mode, 2 MHz duplicate mode
Duplicated PPDU	Non-HT PPDU	S1G_DUP_1M, S1G_DUP_2M
MIMO	Up to 8	Up to 4
Multi-user	Up to 4	Up to 4, only available in S1G_LONG PPDU
Beamforming Sour	Support ce: Draft Amendment Proposed by 802.11 TGah	Support Working Group

© 2015 ATEAM SCIENTIFIC

The benefit of IP

Don't reinvent the wheel!

RFC 768	UDP - User Datagram Protocol
RFC 791	IPv4 – Internet Protocol
RFC 792	ICMPv4 – Internet Control Message Protocol
RFC 793	TCP – Transmission Control Protocol
RFC 862	Echo Protocol
RFC 1101	DNS Encoding of Network Names and Other Types
RFC 1191	IPv4 Path MTU Discovery
RFC 1981	IPv6 Path MTU Discovery
RFC 2131	DHCPv4 - Dynamic Host Configuration Protocol
RFC 2375	IPv6 Multicast Address Assignments
RFC 2460	IPv6
RFC 2765	Stateless IP/ICMP Translation Algorithm (SIIT)
RFC 3068	An Anycast Prefix for 6to4 Relay Routers
RFC 3307	Allocation Guidelines for IPv6 Multicast Addresses
RFC 3315	DHCPv6 - Dynamic Host Configuration Protocol for IPv6
RFC 3484	Default Address Selection for IPv6
RFC 3587	IPv6 Global Unicast Address Format
RFC 3819	Advice for Internet Subnetwork Designers
RFC 4007	IPv6 Scoped Address Architecture
RFC 4193	Unique Local IPv6 Unicast Addresses
RFC 4291	IPv6 Addressing Architecture
RFC 4443	ICMPv6 - Internet Control Message Protocol for IPv6
RFC 4861	Neighbor Discovery for IP version 6
RFC 4944	4 Transmission of IPv6 Packets over IEEE 802.15.4 Networks

Steer

[2007]

Munun

mm

IPv6

From ArchRock "6LowPan tutorial"

Using IP protocols

IP need IP addresses!

 \Box IPv4 has no more addresses!

- □ IPv6 gives plenty of addresses
 - □ 128bit address=16bytes!
- 6LowPan adapts IPv6 to resource-constrained devices

Compressed IPv6 header

Version	Traffic Class		Flow Lab	el					
F	Payload Length Next Header Hop Limit								
Source Address									
	De	stinatic	on Address						
	4() b	ytes						

D pan	Dst EUID 64 S pan Src EUID 64 7 bytes !	
preamble	FCF S Dst16 Src16 Network Header Application Data	Fchk
IETF 6L	-oWPAN Format 율 오 한 IP UDP	
Dispatc	h: Compressed IPv6	
Dispatc HC1: IP:	h: Compressed IPv6 Source & Dest Local, next hdr=UDP Hop limit	
Dispatc HC1: IP: UDP:	h: Compressed IPv6 Source & Dest Local, next hdr=UDP Hop limit HC2+3-byte header (compressed)	
Dispatc HC1: IP: UDP: so	h: Compressed IPv6 Source & Dest Local, next hdr=UDP Hop limit HC2+3-byte header (compressed) urce port = P + 4 bits, p = 61616 (0xF0B0)	

The 6LoWPAN Format

6LoWPAN is an adaptation header format
Enables the use of IPv6 over low-power wireless links
IPv6 header compression
UDP header compression

Addressing Example

Internet for things

TCP, UDP

Internet Routing Protocols: RIP, OSPF, BGP,...

IPv4, IPv6

Internet for things

RPL and CoAP exchanges

	Source	Destination	Protocol	Length Info	SN Time
1 0.000000000	0x0078	0×0000	IEEE 802.15.4	35 Data. Dst: 0x0000. Src: 0x0078. Bad	FC 1 0.000000000
2 3,253408000	fe80::212:6d45:50cc:16b4	fe80::ff:fe00:1	ICMPv6	88 RPL Control (Destination Advertiseme	ent 55 3,253408000
3 3.253952000			IEEE 802.15.4	5 Ack, Bad FCS	55 0.000544000
4 13.642912000	fe80::212:6d45:50cc:16b4	fe80::ff:fe00:1	ICMPv6	88 RPL Control (Destination Advertiseme	ent 56 10.388960000
5 13.643456000			IEEE 802.15.4	5 Ack, Bad FCS	56 0.000544000
6 24.023584000	fe80::212:6d45:50cc:16b4	fe80::ff:fe00:1	ICMPv6	88 RPL Control (Destination Advertiseme	ent 57 10.380128000
7 24.024128000			IEEE 802.15.4	5 Ack, Bad FCS	57 0.000544000
8 25.457824000	::ff:fe00:100	::ff:fe00:3	COAP	39 Confirmable, PUT (text/plain), Bad F	CS 12 1.433696000
9 25.458368000			IEEE 802.15.4	5 Ack, Bad FCS	12 0.000544000
0 25.479296000	::ff:fe00:3	::ff:fe00:100	COAP	41 Acknowledgement, 2.04 Changed (text/	pl 58 0.020928000
1 25.479840000			IEEE 802.15.4	5 Ack, Bad FCS	58 0.000544000
2 34.462976000	fe80::212:6d45:50cc:16b4	fe80::ff:fe00:1	ICMPv6	88 RPL Control (Destination Advertiseme	ent 59 8.983136000
13 34.463520000			IEEE 802.15.4	5 Ack, Bad FCS	59 0.000544000
45.451072000	fe80::212:6d45:50cc:16b4	fe80::ff:fe00:1	ICMPv6	88 RPL Control (Destination Advertiseme	ent 60 10.987552000
15 45.451616000			IEEE 802.15.4	5 Ack, Bad FCS	60 0.000544000
6 56.289696000	fe80::212:6d45:50cc:16b4	fe80::ff:fe00:1	ICMPv6	88 RPL Control (Destination Advertiseme	ent 61 10.838080000
7 56.290240000			IEEE 802.15.4	5 Ack, Bad FCS	61 0.000544000
18 64.688096000	::ff:fe00:100	::ff:fe00:3	COAP	37 Confirmable, PUT (text/plain), Bad F	CS 13 8.397856000
19 64.688640000	<i>((()))</i>	[[] []	IEEE 802.15.4	5 Ack, Bad FCS	13 0.000544000
0 64.707744000	::TT:TE00:3	::TT:Te00:100	COAP	39 Acknowledgement, 2.04 Changed (text/	pt 62 0.019104000
21 64.708288000	f-00, -010, cd45, 50, 10-4	f-00 ff f-00 1	IEEE 802.15.4	5 ACK, Bad FCS	62 0.000544000
2 00.098080000	1080::212:0045:50CC:1004	1680::11:1600:1		88 RPL CONTROL (Destination Advertiseme	ent 63 1.989792000
802.15.4 Data, Ds (24 bytes)	t: 0x0000, Src: 0x0078, Bad F	CS			
11 99 01 24 12 00	00 79 00 2f 00 77 60 72 65 7	2 A A x 2 wiror			

📼 🔳 user@instant-contiki: ... 📶 Standard input [Wire...

Copper for web browser

CoAP pluggin to query CoAP nodes in an httplike fashion

Firefox	<u>*</u>					
Reppe	r :: Add-ons for Firefox ×	vs0.inf.ethz.ch/lipsum	×	🗾 tmote-sky1/light		× + *
(+)	coap://vs0.inf.ethz.ch/lipsum			👷 = 🥙 🛃 = Goo	gle	P 🍙 💽
GET	🔁 POST 😢 PUT 🔀 DELETE P	ayload PUTme	🔊 Оы	serve 🝳 Discover 🔳	Auto d	iscovery 🔽 Retransmissions
vs0.in	f.ethz.ch:61616	ulletin-board/PUTme	/lipsum /tem	perature /time]	Debug options Content-Type
200	OK (Blockwig					Max-Age
200	OK (DIOCKWIS	e)				1
Header	Value	Option	Value	Info		ETag
Туре	Acknowledgment	Content-Type	text/plain	0		not set: use hex
Code	200 OK	Max-Age	2w	3 byte(s)		Uri-Host
TransID	13545	Block	23 (64 B/block)	2 byte(s)		vhost.vs0.inf.ethz.ch
Options	3					Location-Path
Payload						not set
ferment	m lacus elementum venenatis aliquet	tortor risus laoreet canie	annes, consectedar ou	folor ut odio. Vivamus		Uri-Path
congue e	elementum fringilla. Suspendisse portt	itor, lectus sed gravida vo	lutpat, dolor magna g	ravida massa, id		/lipsum
fermentu	im lectus mi quis erat. Suspendisse lac	inia, libero in euismod bit	bendum, magna nisi t	empus lacus, eu suscipit	•	Observe
augue ni	si vel nulla. Praesent gravida lacus nec	elit vestibulum sit amet r	honcus dui fringilla. Q	uisque diam lacus,	ai.	1
nec mau	ris. Nulla facilisi. Mauris vel erat mi. Mo	orbi et nulla nibh, vitae cu	rsus eros. In convallis,	magna egestas dictum		Token
porttitor,	diam magna sagittis nisi, rhoncus tine	idunt ligula felis sed mau	ris. Pellentesque pulv	nar ante id velit convallis		0x01CC
in porttit	or justo imperdiet. Curabitur viverra p per erat. Duis varius viverra aliquet. In	lacerat tincidunt. Vestibuli tempor varius elit vel pha	um justo lacus, sollicit retra. Sed mattis, qua	udin in facilisis vel, m in pulvinar	E	Block number
ullamcor	per, est ipsum tempor dui, at fringilla	magna sem in sapien. Pha	sellus sollicitudin orn	are sem, nec porta libero		42
tempus	ritae. Maecenas posuere pulvinar dictu	ım. Vestibulum ante ipsur	n primis in faucibus o	rci luctus et ultrices		Uri-Ouery
posuere amet laci	cubilia Curae; Cras eros mauris, pulvin us massa nunc. <fot></fot>	ar tempor facilisis ut, con	dimentum in magna. l	Nullam eget ipsum sit	-	not set
annes loci						