Towards Service Differentiation on the Internet

from

"New Internet and Networking Technologies for Grids and High-Performance Computing", tutorial given at IEEE HOTI 2006, Stanford, California August 25th, 2006

C. Pham

University of Pau, France LIUPPA laboratory

Revisiting the same service for all paradigm

IP packet

No delivery guarantee

INTERNET

Enhancing the best-effort service

Introduce Service Differentiation

Service Differentiation

The real question is to choose which packets shall be dropped. The first definition of differential service is something like "not mine."

-- Christian Huitema

- □ Differentiated services provide a way to specify the relative priority of packets
- □ Some data is more important than other
- □ People who pay for better service get it!

Divide traffic into classes

Design Goals/Challenges

- □ Ability to charge differently for different services
- □ No per flow state or per flow signaling
- ☐ All policy decisions made at network boundaries
 - Boundary routers implement policy decisions by tagging packets with appropriate priority tag
- □ Traffic policing at network boundaries
- Deploy incrementally: build simple system at first, expand if needed in future

IP implementation: DiffServ

Flow

Flow

Flow -

No per flow state in the core

IP packet

10Gbps=2.4Mpps with 512-byte packets

Stateful approaches scalable at gigabit rates

6 bits used for Differentiated Service Code Point (DSCP) and determine PHB that the packet will receive RFC 2475

DiffServ building blocks

Traffic Conditioning

User declares traffic profile (eg, rate and burst size); traffic is metered and shaped if non-conforming

2Mbps

Service

Token Bucket for traffic characterization

□Given b=bucket size, C=link capacity and r=token generation rate

Differentiated Architecture

Pre-defined PHB

- Expedited Forwarding (EF, premium):
 - departure rate of packets from a class equals or exceeds a specified rate (logical link with a minimum guaranteed rate)
 - □ Emulates leased-line behavior

- Assured Forwarding (AF):
 - 4 classes, each guaranteed a minimum amount of bandwidth and buffering; each with three drop preference partitions
 - Emulates frame-relay behavior

Premium Service Example

Fixed Bandwidth

Assured Service Example

Border Router Functionality

Internal Router Functionality

A DSCP codes aggregates, not individual flows
No state in the core
Should scale to millions of flows

Putting it together! WRED Queue 0 Drop probalility WRED Queue 1 13/4 Queue filling Prec. 0 BE + AF UDP out profile Queue 30 % Prec. 1 AF UDP in profile Prec. 2 AF TCP out profile 30 % Queue AF TCP in profile Prec. 3 Classifier Prec. 4 30 % Queue 2 Prec. 5 EF Prec. 6 Control 10 % Queue 3 Prec. 7 Control 28 **DiffServ** Source VTHD

DiffServ for grids

DiffServ for grids (con't)

Bandwidth provisioning

- DWDM-based optical fibers have made bandwidth very cheap in the backbone
- On the other hand, dynamic provisioning is difficult because of the complexity of the network control plane:
 - □ Distinct technologies
 - Many protocols layers
 - Many control software

The telephone circuit view

Advantages of circuits

- □ Provides the same path for information of the same connection: less out-of-order delivery
- □ Easier provisioning/reservation of network's resources: planning and management features

Back to virtual circuits

□Virtual circuit refers to a connection oriented network/link layer: e.g. X.25, Frame Relay, ATM

Virtual
Circuit
Switching:
a path is defined
for each connection

But IP is connectionless!

Virtual circuits in IP networks

- Multi-Protocol Label Switching
 - □Fast: use label switching → LSR
 - Multi-Protocol: above link layer, below network layer
 - □ Facilitate traffic engineering

45

IP

MPLS

LINK

Label structure

Label = 20 bits Exp = Experimental, 3 bits S = Bottom of stack, 1bit TTL = Time to live, 8 bits

- More than one label is allowed -> Label Stack
- MPLS LSRs always forward packets based on the value of the label at the top of the stack

From multilayer networks...

... to IP/MPLS networks

MPLS operation

1a. Routing protocols (e.g. OSPF-TE, IS-IS-TE) exchange reachability to destination networks

4. LSR at egress removes label and delivers packet

packets using label

switching

Source Yi Lin, modified C. Pham

Label Distribution

Label Distribution (con't)

Dynamic circuits for grids

52

Forwarding Equivalent Class: high-level forwarding criteria

Forwarding Equivalent Class

A FEC aggregates a number of individual flows with the same characteristics: IP prefix, router ID, delay or bandwidth constraints...

) B, L3) F, pop

C, L22

C, L23

C, L24

C, L25

pop

L17

L18

MPLS FEC for the grid

MPLS for resiliency

MPLS FastReroute

- □Intended to provide SONET/SDH-like healing capabilities
- Selects an alternate route in tenth of ms, provides path protection
- Traditional routing protocols need minutes to converge!
- □ FastReroute is performed by maintaining backup LSPs

MPLS for resiliency, con't Backup LSPs

- One-to-one
- Many-to-one: more efficient but needs more configurations

MPLS for resiliency, con't Recovery on failures

- □ Suppose E or link B-E is down...
- □B uses detour around E with backup LSP

MPLS for optical networks Before MPLS Application Application Transport Transport Network Network Network Network Link **WDM WDM** Link **Terminals Terminals** IP router IP router

Source J. Wang, B. Mukherjee, B. Yoo

MPLS for ON, con't

 $MP\lambda S=MPLS+\lambda lightpath$

From cisco

Summary Towards IP/(G)MPLS/DWDM

