Routers Technologies \& Evolution for High-Speed Networks

Router Evolution slides from
Nick McKeown, Pankaj Gupta
nickm@stanford.edu
www.stanford.edu/~nickm

"The Internet is a mesh of routers"

The Internet was a mesh of IP routers, ATM switches, frame relay, TDM, ...

Now, the Internet is a mesh of routers mostly interconnected by SONET/SDH

Where high performance packet switches are used

Ex: Points of Presence (POPs)

What a Router Looks Like

Cisco GSR 12416

Juniper M160

Basic Architectural Components

Control Plane

Basic Architectural Components

Datapath: per-packet processing

Routing constraints

Year	Throughput (Gbps)	40 B (Mpps)	84 B (Mpps)	354 B (Mpps)
$1997-98$	0.155	0.48	0.23	0.054
$1998-99$	0.622	1.94	0.92	0.22
$1999-00$	2.5	7.81	3.72	0.88
$2000-01$	10.0	31.25	14.88	3.53
$2002-03$	40.0	125	59.52	14.12
2010	200	625	297.6	70.6
2016	1000	3125	1488	353
GEthernet	1.0	3.13	1.49	0.35

Flow-aware vs Flow-unaware Routers

- Flow-aware router: keeps track of flows and perform similar processing on packets in a flow
- Flow-unaware router (packet-bypacket router): treats each incoming packet individually

Special Processing Requires Identification of Flows

- All packets of a flow obey a pre-defined rule and are processed similarly by the router
- E.g. a flow = (src-IP-address, dst-IPaddress), or a flow = (dst-IP-prefix, protocol) etc.
- Router needs to identify the flow of every incoming packet and then perform appropriate special processing

Examples of special processing

- Filtering packets for security reasons
- Delivering packets according to a preagreed delay guarantee
- Treating high priority packets preferentially
- Maintaining statistics on the number of packets sent by various routers

Memory limitation

Added by C. Pham

First Generation Routers

First Generation Routers

Queueing Structure: Shared Memory

Limitations (1)

- First generation router built with 133 MHz Pentium
- Instruction time is 7.51 ns
- Mean packet size 500 bytes
- Interrupt is $10 \mu s$, memory access take 50 ns
- Per-packet processing time is 200 instructions $=1.504 \mu s$
- Copy loop

```
register <- memory[read_ptr]
```

memory [write_ptr] <- register
read_ptr <- read_ptr + 4
write_ptr <- write_ptr + 4
counter <- counter -1
if (counter not 0) branch to top of loop

- 4 instructions +2 memory accesses $=130.08 \mathrm{~ns}$
- Copying packet takes $500 / 4 * 130.08=16.26 \mu \mathrm{~s}$; interrupt $10 \mu \mathrm{~s}$
- Total time $=27.764 \mu \mathrm{~s}=>$ speed is 144.1 Mbps
- Amortized interrupt cost balanced by routing protocol cost

Limitations (2)

- First generation router built with 4 GHz i7
- Instruction time is 0.25 ns
- Mean packet size 500 bytes
- Negligible interrupt~0, memory access take 5 ns
- Per-packet processing time is 200 instructions $=50 \mathrm{~ns}$
- Copy loop

```
register <- memory[read_ptr]
memory [write_ptr] <- register
read_ptr <- read_ptr + 8
write_ptr <- write_ptr + 8
counter <- counter -1
if (counter not 0) branch to top of loop
```

- 4 instructions + 2 memory accesses $=11 \mathrm{~ns}$
- Copying packet takes $500 / 8 * 11=687.5 \mathrm{~ns}$
- Total time $=687.5 \mathrm{~ns}=>$ speed is 5.8 Gbps

Second Generation Routers

Second Generation Routers

As caching became ineffective

Second Generation Routers

Queueing Structure: Combined Input and Output Queueing

Third Generation Routers

\square Third generation switch provides parallel paths (fabric)

Switched Backplane

Third Generation Routers

Queueing Structure

Review: crossbar, general design

- Simplest possible spacedivision switch
- Crosspoints can be turned on or off, long enough to transfer a packet from an input to an output
- Expensive
- need N2 crosspoints
- time to set each crosspoint grows quadratically

Switch Fabrics: Buffered crossbar (packets)

■ What happens if packets at two inputs both want to go to same output?

- Can defer one at an input buffer
- Or, buffer cross-points: complex arbiter

Switch fabric element

■ Goal: towards building "self-routing" fabrics

- Can build complicated fabrics from a simple element

data	10

■ Routing rule: if 0 , send packet to upper output, else to lower output

- If both packets to same output, buffer or drop

Multistage crossbar

- In a crossbar during each switching time only one cross-point per row or column is active
- Can save crosspoints if a cross-point can attach to more than one input line
- This is done in a multistage crossbar

C. Pham, University of Pau, France

Banyan element (1 possible configuration)

Stage 1	Stage 2	Stage 3
routes on	routes on	routes on
the high	the	the low
order bit	middle bit	order bit

ATM has boosted research on high-performance switches
C. Pham, University of Pau, France

Batcher-Banyan switch

a same direction than arrow if $a>b$, a opposite direction if a is alone
iversity of Pau, France

Buffer management

- Input buffers

- Output buffer

(a)

(b)

(c)
C. Pham, University of Pau, France

Still, cost of datagram packet switching

- With IP datagram mode, packet lookup is performed for each packet

Class-based lookups

C. Pham, University of Pau, France

C. Pham, University of Pau, France

CIDR/VLSM lookup

Find the most specific route, or the longest matching prefix among all the prefixes matching the destination address of an incoming packe \dagger

192.2.0/22, R2
192.2.2/24, R3
200.11.0/22, R4

Cost of packet lookup is further increased!!!

Reliability of circuit switching

C. Pham, University of Pau, France

Traditional circuit in telephony

Simple, efficient, but low flexibility and wastes resources

1 sample every 125 us gives a $64 \mathrm{Kbits} / \mathrm{s}$ channel

Packet-switching with virtual circuit:

take advantages of both worlds
C. Pham, University of Pau, France

Virtual Circuit

Setting up a virtual circuit (1)

Setting up a virtual circuit (2)

Link failure with virual circuit

Using virtual circuit to decrease lookup cost

■ Introduced by X.25, Frame Relay, ATM
■ Use labels to forward packets/cells

				0	
				1	
	15	17	2	2	
\rightarrow	17	14	0		
\cdots	57	19	2	4	
	27	94	6		94
\square					

C. Pham, University of Pau, France

VC \& VP: introducing hierarchy

- A VPC = 1 VP or a concatenation of several VPs.
- A VCC = 1 VC or a concatenation of several VCs.
- A VP contains several VCs
- Avantages
- Simple connection setup for most used paths
- Easy definition of Virtual Private Networks (VPN),
- Simplier traffic management: traffics with different constraints can be transported in different VPs for isolation.

2 level switching

C. Pham, University of Pau, France

Advantages of VP and VC hierarchy

■ Re-routing a VP automatically re-routes all VCs of the VP
■ Towards Traffic Engineering!!
C. Pham, University of Pau, France

Optics in routers

Complex linecards

Typical IP Router Linecard

Replacing the switch fabric with optics

